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ABSTRACT
There is rising interest in applying SDN principles to wireless multi-
hop networks, as this paves the way towards bringing the pro-
grammability and flexibility that is lacking in today’s distributed
wireless networks (ad-hoc, mesh or sensor networks) with the
promising perspectives of better mitigating issues as scalability,
mobility and interference management and supporting improved
controlled QoS services.

This paper investigates this latter aspect and proposes an Inte-
ger Linear Programming (ILP) based wireless resource allocation
scheme for the provision of point-to-point and point-to-multipoint
end-to-end virtual links with bandwidth requirements in software-
defined multi-radio multi-channel wireless multi-hop networks.
The proposed scheme considers the specificities of wireless com-
munications: the broadcast nature of wireless links which can be
leveraged for point-to-multipoint links resource allocations, and,
the interference between surrounding wireless links. It also con-
siders switching resource consumption of wireless nodes since, for
the time being, the size of SDN forwarding tables remains quite
limited. A Genetic Algorithm derived from the ILP formulation is
also proposed to address the case of large wireless networks. Our
simulation results show that both methods work effectively.

KEYWORDS
wireless SDN, resource allocation, Quality of Service, virtual link
embedding, multicast, genetic algorithm.

1 INTRODUCTION
Applying Software Defined Networking (SDN) design principles to
wireless networks can pave the way to the emergence of novel and
effective wireless network control applications (routing, network
resource allocation, mobility management, energy management,
etc.) with diverse expected benefits [1], notably, an improved global
network performance, end-to-end network services with enhanced
Quality of Service (QoS), etc.

Indeed, under the assumption of an effective topology discov-
ery service [2] that allows SDN controllers to build an updated
global and comprehensive view of the network, network control
algorithms can leverage on this global and detailed view to derive
informed and wise control decisions that are able to accommodate
with the dynamicity of the network and flows’ QoS requirements.
Moreover, the flow level forwarding capability of SDN allows un-
precedented fine-grained control on the traffic that is flowing in
the network. Some of the prominent works from the literature that

attempt to apply SDN to wireless networks in order to dynamically
control the traffic for an improved provided QoS are : [3], [4] and
[5] respectively in the context of wireless ad-hoc, wireless sensor
and wireless mesh networks.

The focus of this work is on the design of resource allocation
methods that enable the on-demand provision of network ser-
vices with QoS requirements in an SDN enabled multi-radio multi-
channel multi-hop physical network. The network service is ex-
pressed as a set of point-to-point and point-to-multipoint unidirec-
tional end-to-end virtual links (VLs), each with its own bandwidth
requirement.

Two methods are proposed in this paper. Both aim at mapping
the requested virtual links on the substrate wireless network by
computing the data paths thatminimize and balance link and switch-
ing resource consumption as well as interference between wireless
links while satisfying the QoS requirements. They also consider and
account for some of the specificities of wireless communications,
namely the broadcast nature of wireless links, and the mutual inter-
ference caused by transmissions on neighboring links. An Integer
Linear Programming based formulation method is proposed to com-
pute the optimal allocations for small and moderate size networks
as well as an accompanying genetic algorithm for large networks.
A Performance Evaluation is conducted for both methods.

The paper is organized as follows. Section II reviews previous
work from the literature that are related to virtual network resource
allocation in wireless networks. Then, section III introduces the
system model used in our formulations. Section IV describes the
ILP formulation and Section V describes the genetic algorithm
formulation. Section VI presents the performance analysis of the
proposed methods. Finally, Section VII concludes the paper.

2 RELATEDWORKS
Virtual network embedding has attracted lots of attention in recent
years. While most embedding schemes are conceived for wired
substrate networks, existing works also considered the case where
the substrate network is a wireless one. Table 1 summarizes exist-
ing works in the field of virtual link resource allocation, classified
according to the virtual link types, QoS support, considered node re-
sources, etc. (Referring to table 1, VL stands for virtual link, P2P and
P2MP for Point-to-Point and Point-to-Multi-Point, ILP for Integer
Linear Programming and GA for Genetic Algorithm).

As shown in Table 1, to the best of our knowledge, our work
stands out as the first to address the issue of virtual link embedding
in software-defined multi-radio multi-channel multi-hop wireless
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Table 1: Classification of virtual link resource allocation schemes for wireless multi-hop networks

VL
type VL QoS multi-

radio
multi-
channel

Network model
specificity Method Node

resources
Support
path-split

[6] P2P
(Anypath)

packet loss
delay no no link metrics

(EATT and EATX)
Incremental virtual
network embedding None No

[7] P2P bandwidth no no mobility backtracking
based heuristic CPU, storage etc. Not supported

but discussed
[8] P2P bandwidth no no interference matrix heuristic CPU No

[9] P2P bandwidth yes yes distance based
interference model

greedy algorithm
and GA None No

[10] P2P bandwidth yes yes SINR-based
interference model ILP and heuristic CPU yes

our
work

P2P
P2MP bandwidth yes yes conflict graph based

interference model ILP and GA flow table entries
and group entries

Yes for ILP,
No for GA

networks. Moreover, our work does not only consider point-to-
point virtual links, but also addresses the case of point-to-multi-
point virtual links. It also takes into account switching resources
which is crucial especially when dealing with SDN based substrate
networks.

3 SYSTEM MODEL
3.1 Network Model
Each node in a wireless multi-hop multi-radio multi-channel net-
work is equipped with one or multiple Network Interface Cards
(NICs). Each NIC is tuned to a channel and, any two NICs at the
same node are tuned to different channels, in order to efficiently
and fully make use of radio resources.
We assume that the channel assignment is given and static. There
are in total |Λ| non-overlapping frequency channels in the system
and each node is equipped with q NICs where q ≤ |Λ|. The channel
capacity of λ is noted as Bλ .

We model the multi-hop multi-radio multi-channel network as
a directed graph G = (V ,E) where V is the set of SDN nodes and
E ⊆ V ×V the set of bidirectional physical links which operate in
half-duplex mode.

As we consider an OpenFlow-enabled infrastructure, to each
node v ∈ V , is associated a switching capacity Lv , which is the
maximum number of entries (i.e. size limit) of its flow table. The
current size of node v flow table is denoted by L′v .

An OpenFlow group table is also considered. A group table en-
try is either used to duplicate packets belonging to a point-to-
multipoint virtual link on different network interfaces or to divide
a flow of packets on many interfaces to implement path splitting.
Similarly,Mv andM ′v denote respectively the maximum and cur-
rent size of the group table of node v . We assume that we have
already obtained a good channel assignment ζ . ζ assigns to each
node v ∈ V a set of ζ (v) of |Λ| different channels : ζ (v) ⊆ Λ.

A pair of NICs can communicate with each other if they are on
the same channel and are within the transmission range of each
other. In other words, the wireless link e = ((u,v), λ), u,v ∈ V and
λ ∈ |Λ| belongs to the substrate network, if channel λ ∈ ζ (u) ∩ζ (v)
and on this latter channel, nodesu andv are within the transmission

range of each other. The set of neighbours of v (via any channel) is
noted as N (v).

3.2 Interference Model
Our interference model is based on the concept of conflict graphs
[11]. A conflict graph is related to a channel. It describes the pres-
ence of interferences (represented as edges in the graph) between
pairs of links (represented as vertices) if both links are active simul-
taneously. Following the logic of some previous works [12], from
the conflict graph, we derive maximal cliques [13]. A clique is a
subgraph of the conflict graph where all nodes interfere with each
other. Maximal cliques are jointly or individually used in different
ways to derive different kinds of constraints on the transmission
rates of the wireless links that form the clique. For instance, since
links belonging to a maximal clique cannot be active simultane-
ously, their aggregate transmission rate must be lower than the
channel capacity.

There are different ways to build the conflict graphs with differ-
ent levels of accuracy in capturing the interference. In this work,
we do not promote any method and assume that we have the max-
imal conflict graphs as input. Thanks to the centralized nature
of SDN and the adoption of an effective topology discovery ser-
vice at the controller, the appropriate conflict graphs that meet the
needs of network control applications can be made available by
the controller. Also, we do not stick to any method to exploit the
maximal cliques even if we have chosen one, for illustration, in our
formulation of the resource allocation problem.

In the following, we denote the set of maximal cliques as C . We
also denote the set of wireless links that form a clique c as Ec , and
the nodes of the substrate network in the clique as Sc .

3.3 Virtual Links Request Model
A virtual links request consists of a set of |K | virtual links. Each
virtual link k ∈ K is characterized by:

• a source node sk ∈ V , and a set of destination nodes Tk ∈
V \

{
sk
}
(when

��Tk �� = 1, the VL is point-to-point, otherwise
it is point-to-multipoint);
• a bandwidth requirement of bk ;
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The sequence of virtual links requests is noted as ®K = [K1,K2, ..., ].

4 ILP PROBLEM FORMULATION
Based on our previous work [14] whose focus was on wired SDN
networks, this section describes our ILP formulation of the online
virtual links resource allocation on an SDN based wireless multi-
hop substrate network. In comparison to the previous work, this
formulation adds in many aspects by taking into consideration (1)
the broadcast nature of wireless links, which is used as a leverage
to efficiently support point-to-multipoint virtual links, as well as,
(2) the interferences between surrounding links which is minimized
and distributed on different cliques (regions) to improve the admis-
sibility of forthcoming virtual links requests. Below, the variables
and problem constraints are listed. Then, the considered objective
function is defined.

4.1 Resource-related assignment variables
The resource allocation algorithm provides as output the set of
routes with the needed resources to support each of the virtual links
(with its required QoS) that composes a request. As cited above,
two types of network resources are considered : the bandwidth of
wireless links and the switching resources (flow table and group
table entries). Since VLs may be point-to-multipoint, it is likely that
resource allocations will be mutualized close to the source and as
we get closer to destinations, they will tend to be more dedicated to
specific destinations. As a consequence, basic assignment variables
are related to a specific destination of a VL. Our model considers
the following variables:
• f tk ((v,u), λ) is an integer variable that represents the band-
width allocated at link ((v,u), λ) to the packets of VL k that
are flowing from the origin node sk to a destination node
t . More generally, fk ((v,u), λ) refers to the amount of band-
width used on link ((v,u), λ) by the VL k , whatever the desti-
nation. It is set to the maximum of f tk ((v,u), λ) for all t ∈ Tk .
Specific to the broadcast nature of wireless medium, in which
one node can deliver a paket to multiple neighbors from one
transmission, we also introduce an integer variable denoted
as fk (v, λ) that refers to the amount of bandwidth used on
channel λ ∈ ζ (v) by node v to support the VL k . It is set
to the maximum of fk ((v,u), λ) for all u ∈ N (v) such as
((v,u), λ) ∈ E.
• lk (v) is a binary variable that indicates the number of flow
table entries consumed by VL k at node v . An entry is in-
stalled in node v flow table if at least one of its adjacent
physical links supports the VL. Formally:

∀k ∈ K ,∀v ∈ V ,∀u ∈ N (v),
∀λ ∈ ζ (v) ∩ ζ (u) : дk ((v,u), λ) ≤ lk (v) (1)

∀k ∈ K ,∀v ∈ V ,∀u ∈ N (v) :
lk (v) ≤

∑
λ∈ζ (v)∩ζ (u)

(дk ((v,u), λ) + дk ((u,v), λ)) (2)

where дk ((v,u), λ) is an intermediate binary variable that
equals 1 if some bandwidth is assigned to VLk at link ((v,u), λ),
0 otherwise. It is derived from some other intermediate
variables дtk ((v,u), λ) that, in turn, indicates whether some
bandwidth is assigned to the flow of packets of VL k des-
tined to t ∈ Tk in link ((v,u), λ) (i.e. дtk ((v,u), λ) = 0 if
f tk ((v,u), λ) = 0 and 1 otherwise).
• similarly, mk (v) is a binary variable indicating if a group
table entry is assigned to VL k at nodev . A group table entry
is added when splitting a flow of packets belonging to k at
node v or when duplicating packets (for point-to-multipoint
VLs) on two or more links that operate on distinct channels.
This is expressed as:

∀k ∈ K ,∀v ∈ V :

mk (v) =
{
0 i f

∑
λ∈ζ (v) дk (v, λ) ≤ 1

1 otherwise

where дk (v, λ) is an intermediate boolean variable that in-
dicates if node v relays packets from VL k on channel λ,
whatever its neighbors on this channel. It is derived from
the set of previous variables дk ((v,u), λ) with u ∈ N (v) and
λ ∈ ζ (v) ∩ ζ (u). This equation could be easily linearized as
follows:

∀k ∈ K ,∀v ∈ V :

2mk (v) ≤
∑

λ∈ζ (v)
дk (v, λ) ≤ 1 + |Λ|mk (v) (3)

• ξmax and ξmin which refer to the maximum and minimum
clique utilization after request acceptance (i.e. by taking into
account the bandwidth allocations consumed by the virtual
links that compose the request).
• lmax and lmin which similarly refer to the maximum and
minimum flow table utilization (when considering all net-
work nodes) after request acceptance.

4.2 Problem constraints
The constraints on bandwidth allocations are described hereafter
in equations 4 to 12. The constraints related to switching resources
allocation is given by inequalities 4 and 5. They simply ensure that
the total number of flow and group table entries assigned to VLs
composing the request, does not exceed available nodes’ flow and
group tables entries. Equation 6 reflects the linearization of theMax
and Min operator applied to the variables lk (v) to get lmax and
lmin .

∀v ∈ V :
∑
k ∈K

lk (v) ≤ Lv − L′v (4)

∀v ∈ V :
∑
k ∈K

mk (v) ≤ Mv −M ′v (5)

∀v ∈ V : lmin ≤ Lv − L′v +
∑
k ∈K

lk (v) ≤ lmax (6)

Constraint 7 reflects the linearization of the maximum bandwidth
f tk (e) allocated to VL k at link e = ((v,u), λ), whatever the destina-
tion. Equation 8 ensures that the total bandwidth assigned to the
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substrate wireless nodes that belong to the clique does not exceed
the remaining bandwidth of the clique. In this equation, each maxi-
mal cliquewith it’s associated channel λ is noted as (c, λ) ∈ C , which
is composed of Ec , and the residual capacity is ξ (c) = Bλ − ξ ′(c),
with ξ ′(c) denoting the bandwidth allocations related to already
admitted virtual links on all the physical links that compose the
clique c . Equation 9 reflects the linearization of the Max and Min
operator applied to the variables fk (v, λ) to get ξmax and ξmin .
Equation 10 presents the usual flow conservation constraints.

∀k ∈ K ,∀e = ((v,u), λ) ∈ E,∀t ∈ Tk : f tk (e) ≤ fk (e) (7)

∀(c, λ) ∈ C :
∑
k ∈K

∑
v ∈S (c)

fk (v, λ) ≤ Bλ − ξ ′(c) (8)

∀(c, λ) ∈ C : ξmin ≤ Bλ − ξ ′(c) +
∑
k ∈K

∑
v ∈S (c)

fk (v, λ) ≤ ξmax (9)

∀k ∈ K ,∀t ∈ Tk ,∀v ∈ V :

∑
u ∈N (v)

∑
λ∈ζ (u)∩ζ (v)
e1((v,u),λ)
e2((u,v),λ)

(f tk (e1) − f tk (e2)) =


bk i f v = sk
−bk i f v = t

0 else

(10)

Equation 11 is a channeling constraint between integer and bi-
nary variables: fk ((v,u), λ) and дk ((v,u), λ). It also constrains the
VL k’s bandwidth assignment at a physical link to the requested
bandwidth bk . Equation 12 constrains the bandwidth that is as-
signed to the flow of packets destined to a specific VL’s end-point
(or destination) within a range of values, in addition to establishing
a channeling constraints between binary and integer variables. The
inequality on the right side ensures that the bandwidth requirement
of the VL is never exceeded. The inequality on the left side directs
path-splitting and avoids the multiplication of splits with low band-
width allocations. Indeed, if active, path-splitting is feasible only if
the bandwidth allocated to the splits respects a minimum threshold
bmin
k . In practice, bmin

k is a ratio of bk , bmin
k = PSratio ∗ bk with

PSratio ∈ [0, 1] (then, PSratio ≤ 0.5 when the path-splitting is
allowed, and PSratio = 1.0 when it is forbidden).

∀k ∈ K ,∀v ∈ V ,∀u ∈ N (v),∀λ ∈ ζ (v) ∩ ζ (u) :
дk ((v,u), λ) ≤ fk ((v,u), λ) ≤ bk ∗ дk ((v,u), λ) (11)

∀k ∈ K ,∀t ∈ Tk ,∀v ∈ V ,∀u ∈ N (v),∀λ ∈ ζ (v) ∩ ζ (u) :
bmin
k ∗ дtk ((v,u), λ) ≤ f tk ((v,u), λ) ≤ bk ∗ дtk ((v,u), λ) (12)

src src src

src
src

dst1 dst1 dst1

dst1
dst1

dst2 dst2
dst2

dst2
dst2

dst3 dst3 dst3

dst3
dst3

(a) Parent 1 (b) Parent 2 (c) Keeping common
traits from parents

(d) Connect different components 
into one with k-shortest paths

(e) After processing: remove unused links

Figure 1: Crossover of two parent trees to get a offspring

4.3 Objective function
Minimize

α1
∑
k ∈K

∑
v ∈V

∑
λ∈ζ (v)

fk (v, λ) + α2
∑
k ∈K

∑
v ∈V

lk (v)

+ α3
∑
k ∈K

∑
v ∈V

mk (v) + β1
∑
(c,λ)∈C

∑
v ∈S (c)

∑
k ∈K

��E(c)�� fk (v, λ)
+β2(ξmax − ξmin ) + β3(lmax − lmin ) (13)

The objective function is set to take into account both the re-
source consumption and the interference introduced by bandwidth
allocations on surrounding links. For that, the main objective of our
approach is to minimize the total resources required to map virtual
links, which is represented by the first three terms that cover respec-
tively links bandwidth, flow tables and group tables resources. In
addition, the objective function mitigates the interference between
links by avoiding overloading links belonging to cliques with a
high number of members. This favors radio resource spatial reuse,
increasing the overall available network resources. Finally, the last
two terms aim at reducing the disparities of cliques’ bandwidth uti-
lization and flow tables’ utilization. They also contribute improving
flow admissibility.

5 GENETIC ALGORITHM
Exact solutions to the considered problem can be obtained by solv-
ing our previously presented ILP-based algorithm. However, the
complexity of computation, which increases exponentially with the
number of parameters (number of nodes, links, radios and chan-
nels etc.), might make it practically infeasible for large networks.
Therefore, a practically feasible approach is to find a proficient
near-optimal solution while sustaining realistic performance. In this
section, we present a genetic algorithm based solution to address
this aspect. The overall work flow of our GA scheme is described
in Algorithm 1. Hereafter we present the detailed algorithm.

5.1 Encoding scheme
To use a GA, it is necessary to choose a representation that defines
the genotype of an individual which is conceptually designated as
a chromosome. In our case, an individual is a possible solution to a
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Algorithm 1: GA-based Resource Allocation
Input :G(V ,E);K ;W = [we1 ,we2 , ...,we|E | ];

α1;α2;α3; β1; β2; β3;Np ;Nд ; cxPB;mutPB;
Output : χ = [τ1,τ2, ...,τ |K |] (i.e. the best individual)

1 begin
2 P0←− InitialPop(G,K ,Np ,W )
3 P ←− P0
4 for ( jд = 0; jд < Nд ; jд + + ) {
5 for ( jp = 0; jp < Np ; jp + + ) {
6 (χa , χb ) ←− TournamentSelection(P)
7 χc ←− Crossover(G,K , (χa , χb ), cxPB,W )
8 P ←− P ∪ Mutation(χc ,mutPB)
9 P←−

PopulationSelection(P ,Np ,α1,α2,α3, β1, β2, β3)
10 χ ←− SelectBestIndividual(P)

Algorithm 2: Initial Population Computation
Input :G(V ,E);K ;Np ;W = [we1 ,we2 , ...,we|E | ]
Output :P0 = {χ i ,∀i ∈ {1, ...,Np } with χ i = [τ i1 ,τ

i
2 , ...,τ

i
|K |]}

1 begin
2 P0 ←− ∅
3 G ′(V ′,E ′) ←− Clone(G(V ,E))
4 W ′ ←− Clone(W )
5 for ( i = 0; i < Np ; i + + ) {
6 foreach e ∈ E ′ do
7 W ′[e] ←−W ′[e] × Random(1, 1.5)
8 foreach k ∈ K do
9 τ ik ←− ComputeSteinerTree(G ′,W ′[e], sk ,Tk )

10 χ i [k] ←− τ ik
11 P0←− P0∪ χ i

request for resource allocation. Recall that each request K consists
of a set of point-to-point and/or point-to-multipoint virtual links.
We naturally represent an individual i denoted by χi as a vector of
genes where each gene τk maps resources assigned to a virtual link
k ∈ K . In other words, χi[k] = τ ik refers to gene k of individual i .
As our GA doesn’t take into consideration the case of path splitting,
a tree connecting the source sk to the destination nodes t ∈ Tk ,
is sufficient to represent a gene. This tree is in fact a subgraph
of the substrate network graph G. Each tree is associated with
switching resources and links bandwidth respectively allocated at
each substrate node and link belonging to this tree.

5.2 Initial population
The first step in the functioning of a GA is the generation of an ini-
tial population (Algorithm 1 - line 2). It is computed by generating
a given population size (Np ) with each member of this popula-
tion encoding an individual representing a possible solution. One
important objective is to have a reasonable diversity among the
initial population, in order to avoid premature local convergence.

In our case, as detailed in Algorithm 2, to generate an individual i
(Algorithm 2 - line 4), we compute the minimum Steiner tree as a
routine to build the tree representation of each genes k (Algorithm
2 - line 9). Note that in the case of multiple links between two nodes,
the link with the minimum link cost is sustained for Steiner tree
construction. To bring diversity, at each Steiner tree construction,
the cost of each link in the substrate network is multiplied by a
random factor in the range of [1, 1.5].

5.3 Fitness function
After creating the initial population, each individual is evaluated
and assigned a fitness value according to a fitness function. The
optimality of a solution is defined by its corresponding fitness value.
Equation 14 defines our fitness function.

F (χ ) =(Fbw (χ ) + Fopenf low (χ ) + Fдroup (χ ) + Finter f (χ )
+ Fbw_balance (χ ) + Fsw_balance (χ ))
∗ F̂cliques (χ ) ∗ F̂sw (χ ) (14)

where

Fbw (χ ) = α1
∑
τ ∈χ

∑
e ∈τ

ϕ(τ , e)bτ

Fopenf low (χ ) = α2
∑
τ ∈χ

∑
v ∈V

σ (τ ,v)

Fдroup (χ ) = α3
∑
τ ∈χ

∑
v ∈V

η(τ ,v)

Finter f (χ ) = β1
∑
τ ∈χ

∑
(c,λ)∈C

∑
v ∈S (c)∩S (τ )

��S(c)��bτ
Fbw_balance (χ ) = β2 ∗ (max_bw(C, χ ) −min_bw(C, χ ))
Fsw_balance (χ ) = β3 ∗ (max_sw(V , χ ) −min_sw(V , χ ))

F̂cliques (χ ) = 1 + 100
∑
(c,λ)∈C

δ (χ , c)

F̂sw (χ ) = 1 + 100
∑
v ∈V

θ (χ ,v)

In the fitness function, ϕ(τ , e), σ (τ ,v), η(τ ,v), δ (χ , c) and θ (χ ,v)
are all indicator functions that take value 0 or 1. ϕ(τ , e) indicates
if an edge e in a tree τ supporting a virtual link is transmitting or
not. It takes value 1 for all edges in the tree τ except those who use
the multicast advantage: in the latter case, ϕ(τ , e) takes value 0. bτ
is the requested bandwidth of a virtual link, and corresponds to the
bk in the ILP formulation. Hence we have Fbw (χ ) which is the sum
of bandwidth consumed by transmitting links. In the same manner,
σ (τ ,v) indicates if a node v is included in the tree τ or not, hence
consuming one OpenFlow table entry. η(τ ,v) indicates if a node
v serves as a multicast node or not, hence consuming one group
table entry. Finter f (χ ) reflects the total interference brought by the
instantiated virtual links. For space reasons, detailed explanations
of Fbw_balance (χ ) and Fsw_balance (χ ) are not given here. They
correspond to the maximum minus minimum clique bandwidth
consumption among all cliques and maximum minus minimum
flow table entries consumption among all nodes and can also easily
be calculated with ϕ(τ , e) and σ (τ ,v).
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Those six fitness terms correspond to the objective function in
the ILP formulation, i.e. they give the same results when the virtual
link embeddings are the same.

Unlike the ILP formulation, the constraints on cliques and switch-
ing resources are also included in the fitness function of GA, i.e.
the Fcliques (χ ) and Fsw (χ ) multiplier. In a feasible solution, those
two terms should be of value 1. However, in some cases due to
the sparsity of feasible solutions, those infeasible solutions should
not be removed from the population. In fact, some solutions are
more infeasible than others, and should be reflected in our fitness
function. To reflect to which extent a solution χ is far from a fea-
sible solution, we penalize those infeasible solutions according to
how seriously they violate the clique bandwidth and the switching
resource constraints. δ (χ , c) indicates if the bandwidth allocations
chosen in χ respect clique c bandwidth constraint, i.e. the total
bandwidth of transmitting links in c which come from χ , doesn’t
violate the constraint delimited by the minimum remaining capac-
ity of all links in c . The 100 here is a large number (compared to 1
as a multiplier) that penalizes violations of constraints. The more
we have clique constraint violations for χ , the larger the fitness
function F̂cliques (χ ). In the same manner, θ (χ ,v) indicates if a
node respects its switching resource constraint or not, and F̂sw (χ )
reflects to which extent the violation is serious, i.e. the number of
nodes that doesn’t respect its switching resource constraint.

5.4 Selection of parents and crossover scheme
In this stage (Algorithm 1 - Line 6), chromosomes from a popula-
tion are selected for reproduction (crossover), detailed in Algorithm
3. The operation of selection aims at favoring reproduction and
survival of the fittest individuals. We use tournament selection
of size 3 to select a pair of chromosomes as the parents to pro-
duce an offspring by applying crossover operator between them,
with the crossover probability cxPB. Its strategy is summarized
in Algorithm 3. The idea is simple and consists to pass common
traits from parents to offspring according to a specific logic called
Similitude (Algorithm 3 - Line 4). In order to explain how this
primitive works, let χa = [τa1 ,τ

a
2 , ...,τ

a
K ] and χb = [τb1 ,τ

b
2 , ...,τ

b
K ]

be the selected parents. The crossover operator generates a child
χc = [τ c1 ,τ

c
2 , ...,τ

c
K ] by identifying the same links between τak and

τbk for each k ∈ K , and retaining these common links in τ ck (as
in [15] ). According to the definition of the fitness function, the
“better" individual has higher probability of being selected as a
parent and survive. Thus, the common links between two parents
are more likely to represent the “good" traits. However, retaining
these common links in τ ck may generate some separate sub-trees.
Therefore, links are needed to be selected to connect these discon-
nected sub-trees into a tree. The whole process is illustrated in
Figure 1. Moreover, to maintain diversity among solutions, instead
of connecting separated components each time with the shortest
path, we adopt a random k-shortest path (with k ≤ 3). Note that
in the case of multiple links between two nodes, the link with the
minimum link cost is used for k-shortest path construction. Finally,
a post-processing can be required to remove isolated branches of
the tree that contain neither the source node nor destination nodes.
As the cross-over is carried out from one VL to a next one that

Algorithm 3: Crossover Scheme

Input :G(V ,E);K ; χa ; χb ; cxPB;W = [we1 ,we2 , ...,we|E | ];
Output : χc = [τ c1 ,τ

c
2 , ...,τ

c
|K |]

1 begin
2 G ′(V ′,E ′) ←− Clone(G(V ,E))
3 W ′ ←− Clone(W )
4 if (Random(0, 1) < cxPB) then
5 foreach k ∈ K do
6 τ ck ←− Similitude(τak ,τ

b
k )

7 while isNotConnected(τ ck ) do
8 τ ck ←− randomKShortestPath(G ′,W ′,τ ck )
9 χc [k] ←− τ ck

10 updateProhibitiveLinkCost(G ′,W ′,τ ck )

compose the request, the function updateProhibitiveLinkCost (Algo-
rithm 3 - Line 10) assigns an infinity link cost to links that belong
to cliques with no longer bandwidth left for future VLs, and to
links with one end node with no flow table entries left. In this way,
infeasible solutions are kept away when possible.

5.5 Mutation schemes
When a new offspring is produced, the mutation operation is per-
formed according to the mutation probabilitymutPB (Algorithm
1 - Line 8). We identify two types of mutations that could be very
helpful, i.e. (1) mutation based on link breaking and reconnection,
(2) mutation based on channel transition. The action of mutation
gives more chances of getting rid of local sub-optimal solutions.
For the first type of mutation, the procedure randomly selects a
link in the tree and remove it to create two separate sub-trees; then,
it re-connects these separate sub-trees using a random k-shortest
path. The second type of mutation come from the importance of
channels in our problem. That is, when a selected link to mutate in
the tree corresponds to a multi-link in the substrate network, it’s
possible to directly change the channel of this link. This could lead
us to finding more opportunities of multicast advantage, or a better
load balancing among cliques.

5.6 Balanced resource allocation with dynamic
link cost

We set the normal link cost of e = ((v,u), λ) as we = α1 +
α2 + β1

��E(c)��. If this static manner of defining the link cost is used
across all requests in ®K = [K1,K2, ...], cliques with low link costs
are always favored in comparison to cliques with high link costs,
regardless of their current load, leading to unbalanced cliques uti-
lizations. Although in our fitness function the clique utilization
balancing is taken into consideration, it’s inefficient if most candi-
date solutions in GA lead to an unbalanced situation. To mitigate
this, we give a dynamic version of link cost, as shown in Algorithm
4. The idea of the algorithm is that if the clique utilization of a
clique c is among the top Ntop most loaded, the link cost of links
that form c should be multiplied by a factor of 1.1. If the clique c is
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Algorithm 4: Balanced Resource Allocation With Dynamic
Link Cost
1 Input :G(V ,E); ®K;C;Ntop ;α1,α2,α3, β1, β2, β3,

Np ,Nд , cxPB,mutPB

2 begin
3 foreach e ∈ E do
4 W [e] ←− α1 + α2 + β1

��E(c)��
5 foreach K ∈ ®K do
6 χK ←− geneticAlgorithm(G,K ,W ,α1,

α2,α3, β1, β2, β3,Np ,Nд , cxPB,mutPB)
7 Cmost ←− mostUsedCliques(C,Ntop )
8 Cleast ←− leastUsedCliques(C,Ntop )
9 Cnormal ←− C −Cmost −Cleast

10 foreach c ∈ Cmost do
11 if c ∩ χK , ∅ then
12 foreach e ∈ c do
13 W [e] ←−W [e] × 1.5

14 else
15 foreach e ∈ c do
16 W [e] ←−W [e] × 1.1

17 foreach c ∈ Cleast do
18 if c ∩ χK = ∅ then
19 foreach e ∈ c do
20 W [e] ←−W [e] ÷ 1.5

21 else
22 foreach e ∈ c do
23 W [e] ←−W [e] ÷ 1.1

24 foreach c ∈ Cnormal do
25 foreach e ∈ c do
26 W [e] ←− α1 + α2 + β1

��E(c)��

yet being used in the current embedding of K (i.e. χK ∩ c , ∅, as
shown in Line-11 of Algorithm 4), then an even higher multiplying
factor (i.e. 1.5) should be given to links in c , before calculating the
embedding solution of Knext . In this way, those most used cliques
will be unfavored in the embedding of forthcoming requests, due
to their high link costs. Note that the increase of link cost can be
accumulated over time, i.e. if a clique stays always among the top
most loaded from Ki to Ki+∆, its links costs will be increased ∆ + 1
times, until the clique is removed from the top most loaded list, at
which point the normal link cost is given to the links in the clique.
Inverse actions are carried out on the Ntop least used cliques. At
each iteration, links in other cliques are given normal link cost.
6 PERFORMANCE EVALUATION
The objectives of this performance analysis is to show that our
methods clearly succeed in capturing three essential aspects of
wireless links : (1) their broadcast nature which should be exploited
whenever possible when embedding point-to-multipoint virtual
links; and (2) interference between neighboring links which should

Figure 2: Network model used in our performance evalua-
tion. Cliques are directly drawn on the illustrating graph,
with ellipsoids covering the midpoint of each link in the
clique.

be avoided whenever possible; and (3) to achieve a decent load-
balancing of clique and flow table utilization to improve admissibil-
ity. It also compares both proposed methods and investigates the
trade-off raised by these latter: accuracy versus computation time.
Below, we describe our simulation model, the main performance
metrics and some of the obtained results.

6.1 Network Model
For space reasons, one single network instance is considered in the
presented results. It is composed of 20 nodes connected via 60 links.
Nodes are equipped with up to 3 radio interfaces that operate on 6
disjoint frequency bands (channels). The capacity of each channel is
set to 180 units of bandwidth (UB). The left side of Figure 2 depicts
the network topology, each link color reflects a frequency band.
It leads to 9 cliques (as depicted in right side of Figure 2) with a
number of members ranging from 3 to 11 links. Unless specified,
the flow table and group table maximum size are set to 1000 and
100, respectively.

6.2 Load Model
Virtual links requests are composed of a number of point-to-point
and point-to-multipoint virtual links randomly chosen between
4 and 6. Each point-to-multipoint virtual link has a number of
destinations randomly chosen between 2 and 6. The bandwidth
requirement of each virtual link is also chosen randomly from 1 to
3 UB. Source and destination selection is performed on a random
basis. The request arrivals follow a Poisson process with an arrival
rate r of 0.01, 0.02, 0.03, 0.04, i.e. in average 1, 2, 3 or 4 requests
each 100 units of time (UT). The request life-time conforms to an
exponential distribution with an average of 1000 UT.

6.3 Simulation Settings
The Integer Linear model was implemented in Python with CPLEX
12.63 solver. The experiments were carried out on a virtual machine
with 25 vCPU and 16GB of RAM and running Ubuntu 14.04. A gap
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of less than 1% to the optimal solution is considered satisfactory.
Unless specified, path splitting is disabled for ILP. For GA, the im-
plementation is in Python (running on pypy 1) using deap [16].
Unless specified, population size is set to 18 and number of genera-
tions at 18. Cross-over probability is 0.9 and mutation probability
is 0.05. Ntop is set to 2. The simulation horizon is fixed to 10000 UT
(this time period is sufficient to have our methods in the stationary
regime). α1, α2 and α3 are set to 1, 1 and 5 respectively throughout
all evaluation experiments.

6.4 Performance metrics
The following performancemetrics are computed during simulation
for performance analysis purposes:
• Acceptance rate (ac , in %): the percentage of successful vir-
tual links requests out of all the requests that arrived during
the simulation time or accumulatively with the time.
• Clique utilization (cu, in %): bandwidth allocated at the links
composing a clique divided by channel capacity.
• Switch resource utilization regarding flow table utilization
(su, in %): flow table utilization at the nodes divided by the
initial flow table size.
• Switch resource utilization regarding group table utilization
(дu, in %): group table utilization at the nodes divided by the
initial group table size.
• Computation time (in second): the average computation time
for one request.

6.5 Performance Results
6.5.1 Coping with wireless links interference. The objective is to
assess how efficient are our methods in reducing and avoiding
wireless links interference. To this end, β2 and β3 are set to 0 in a
first place. We compare the effect of setting β1 to 1 versus to 0.

In fact, when embedding virtual links requests, our methods
favor links belonging to cliques with limited number of members,
introducing, by the way, in their surroundings less interference and,
hence, preserving the overall available bandwidth. This is clearly
shown in Figure 3 which focuses on the clique utilization of two
groups of cliques: small cliques with a small number (3 ∼ 6) of
interfering links and large cliques with a high number (8 ∼ 11)
of links. When activating interference reduction, the bandwidth
consumed by large cliques is decreased contrary to small cliques.
As expected a portion of the bandwidth consumed by a large-size
clique is transferred to smaller-size cliques: small cliques experience
an increase in clique utilization while large cliques get less loaded.

Favoring small-size cliques may lead to longer data paths and
hence more resources are needed to support the virtual links be-
ing embedded. Since the acceptance rate is improved with such a
strategy, this means that this latter increase is compensated by the
resource that are preserved thanks to interference reduction. With
the considered network and load models, our experiments show a
slight increase around 1% on the average length of selected data
paths.

6.5.2 Assessing the gain brought by the Multicast advantage. The
objective is to quantify the gain in resource usage that our methods

1http://pypy.org/

0 2000 4000 6000 800010000
0

50

100

cu
(%

)

all cliques

Left: ILP with β1 = 1

0 2000 4000 6000 800010000
0

50

100

cu
(%

)

all cliques

Right: ILP with β1 = 0

0 2000 4000 6000 800010000
0

50

100

cu
(%

)

large cliques

0 2000 4000 6000 800010000
0

50

100

cu
(%

)

large cliques

0 2000 4000 6000 800010000
0

50

100

cu
(%

)

small cliques

0 2000 4000 6000 800010000
0

50

100

cu
(%

)

small cliques

0 2000 4000 6000 800010000

time (UT)

80

85

90

95

100

a
c
(%

)

0 2000 4000 6000 800010000

time (UT)

80

85

90

95

100

a
c
(%

)

Figure 3: Clique utilization (all cliques, large cliques and
small cliques) and acceptance rate with β1 = 1 v.s β1 = 0.
Computed with ILP. Arrival rate = 0.02. β2 = 0, β3 = 15. Simi-
lar results are obtained with GA.

achieve by exploiting the multicast advantage when embedding
point-to-multipoint virtual links. Again, β2 and β3 are set to 0 in a
first place. β1 is set to 1 as we have shown that interference should
be taken into consideration for the modeling.

The clique utilization of the 9 cliques is presented in Figure 4. We
see that disabling the multicast advantage induces extra bandwidth
consumption that overloads all cliques and causes significantly
more embedding failures.

6.5.3 Clique utilization balancing. By setting β2 to 5, we activate
clique load balancing. To show the effect of clique load balancing,
Figure 5 shows that the clique utilizations have now much less
disparity, with ILP as well as GA, compared to Figure 3 and 4 where
β2 = 0, leading to an improved acceptance rate (99.5% for ILP and
98.5% for GA) .

6.5.4 Switch resource consumption and balancing. To show how
flow table resource is consumed and balanced and in which manner
this might impact , we set the initial flow table size to 90, and
compared the results of β3 = 0 versus β3 = 15 using ILP, as is
shown in Figure 6. Apart from a much better balancing of flow
table resource utilization, we also see an improved acceptance rate
(99.5% v.s. 94.5%). Hence, flow table resource balancing should be
activated. The effect of switch resource balancing of GA is shown
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Figure 4: Clique utilization and acceptance rate with and
without multicast advantage. Computed with ILP. Arrival
rate = 0.02. β2 = 0, β3 = 15. Similar results are obtained with
GA.
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Figure 5: Clique utilization balancing with ILP and GA. Ar-
rival rate = 0.02. β3 = 15.
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Figure 6: Switch resource consumption of all nodes, com-
puted with ILP, with initial flow table size set at 90. Arrival
rate = 0.02. β2 = 5

in Figure 7. We can see that GA is less effective than ILP in switch
resource balancing.
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Figure 7: Switch resource consumption of all nodes, com-
puted with GA, with initial flow table size set at 90. Arrival
rate = 0.02. β2 = 5.
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Figure 8: Group table consumption of ILP and GA. Arrival
rate = 0.02. β2 = 5, β3 = 15.

Figure 8 presents the group table utilization, computed with ILP
and GA. We observe that with ILP and GA, thanks to the multicast
advantage, the group table consumption remains very limited de-
spite the successful mapping of point-to-multipoint virtual links. As
expected, for the considered simulation model, group table entries
are abundant in comparison to embedding needs. As a consequence,
it does not play a decent role in the selection of the data paths.
Hence, there is no need to balance its utilization in the formulation.

6.6 Embedding method selection : ILP v.s. GA

There are two important criteria to consider when choosing
the method to be applied: (1) accuracy (leading to optimal accep-
tance rate) and (2) computation time. Figure 9 shows the acceptance
rate using different methods, and we can see that ILP-PS (ILP with
path splitting enabled) gives slightly better results than ILP and
GA. Figure 10 and Figure 11 present the acceptance rate and the
computation time obtained with GA when considering different
population and generation sizes. For the considered network model,
GA with a population of 18 individuals and 18 generations lasts 80%
of the computation time of ILP. With smaller population and gener-
ation size (e.g. 12 and 12), the computation time can be significantly
reduced (less than 1/10 of ILP), bringing only minor degradation of
the acceptance rate (∼1.5%). Our experiments show that for larger
network models, GA shows a significant advantage in computation
time compared to ILP. On the contrary, with ILP-PS, as the search
space explodes, the computation time can be several folds of that
of ILP and hence much more than GA.
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Figure 9: Acceptance rate with ILP, GA and ILP-PS, for dif-
ferent arrival rates. β2 = 5, β3 = 15.
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Figure 10: Acceptance rate of GA by varying number of gen-
eration and size of population, compared with ILP and ILP-
PS. Arrival rate = 0.02
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Figure 11: Average Computation Time of each request of
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7 CONCLUSION
In this paper, we developed an Integer-Linear programming method
and a genetic algorithm method for the resource allocation of mul-
tiple virtual links in wireless software defined multi-radio multi-
channel multi-hop networks. In comparison to existing works, the
main contribution or our proposals lies in the conjunction of the
following features: (1) the support of point-to-multipoint virtual
links in addition to point-to-point virtual links, and, in a wire-
less context, how to benefit from the multicast advantage to gain

in bandwidth consumption, (2) the consideration of switching re-
sources in the allocation of resources in addition to the bandwidth
of channels. Through our evaluations, we show that both of our
proposed methods work well. More interestingly, we investigated
how the consideration of interference, multicast advantage as well
as resource balancing could impact the embedding results, and, how
the two proposed methods differ in performance and computation
time.
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