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CONSISTENT PROCEDURES FOR MULTICLASS CLASSIFICATION
OF DISCRETE DIFFUSION PATHS

Abstract. The recent advent of modern technology has generated a large number of datasets which
can be frequently modeled as functional data. This paper focuses on the problem of multiclass clas-
sification for stochastic diffusion paths. In this context we establish a closed formula for the optimal
Bayes rule. We provide new statistical procedures which are built either on the plug-in principle or
on the empirical risk minimization principle. We show the consistency of these procedures under mild
conditions. We apply our methodologies to the parametric case and illustrate their accuracy with a
simulation study through examples.
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1. Introduction

In the multiclass classification framework, it is assumed that we have at our disposal a learning
sample of observations that consists of N independent realizations of (X,Y ) with the feature X ∈ X
and the label Y ∈ {1, . . . ,K} constructed on some probability space (Ω,F ,P). For a new observation
X the goal is to predict the associated unobserved label Y . This is done through a classifier g :
X → {1, . . . ,K}. The misclassification risk of g is P(g(X) 6= Y ). The accuracy of the classifier
is then evaluated by comparison with the Bayes classifier g∗. For x ∈ X , g∗(x) is defined as the
maximizer over {1, . . . ,K} of the conditional probabilities P(Y = k|X = x). Moreover, the Bayes
classifier minimizes the misclassification error over the set of all classifiers (see e.g. Devroye et al., 1996;
Vapnik, 1998). Therefore, the performance of an arbitrary classifier g is measured by considering the
excess risk P(g(X) 6= Y ) − P(g∗(X) 6= Y ). In statistical learning, the joint distribution of (X,Y ) is
unknown. Consequently, based on the learning sample, the objective is to build an empirical classifier
ĝ such that the expectation of its excess risk tends to zero as N tends to infinity (consistency).

Within this context, the present work focuses on the case where the feature X = (Xt)t∈[0,T ] is
a diffusion process solution of some stochastic differential equation (s.d.e.) with an unknown drift
function depending on the label Y . This kind of functional random data is widely used to model
the behavior of an agent that produces real valued stochastic data features along time. Such type of
random data are used in many domains such as medical sciences (see e.g. Donnet & Samson, 2013),
physics (see e.g. Parisi & Sourlas, 1992), financial mathematics (see e.g. El Karoui et al., 1997).

We propose statistical classification strategies based on the learning sample and relying on the dif-
fusion model assumption. Naturally, our classification procedures involve drift coefficient estimators.
One specificity of the paper is that diffusions are sampled at high frequency (time step ∆) over a fixed
time interval [0, T ].

1.1. Motivation and state of the art. The classification problem for diffusion sample paths may be
regarded as a particular case of functional data analysis problems. Many methods have been developed
to solve such problems in general (see e.g. Ramsay & Silverman, 2007; Wang et al., 2015). Among all
these methodologies, we may mention k-nearest neighbors in Hilbert spaces (see Biau et al., 2005, 2010)
that could be applied to our classification problem. There is also some recent developments for related
problems such as functional random forests (Gregorutti et al., 2015), functional principal component
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2 MULTICLASS CLASSIFICATION

analysis, kernel estimators, just to mention a few of them. Recent works on depth classification for
functional data (López-Pintado & Romo, 2006; Cuevas et al., 2007; Lange et al., 2014; Kuelbs & Zinn,
2016) propose various elegant computational solutions. These methods have the strong robustness of
not specifying any model on the data, which makes them very interesting for practitioners. However,
the counterpart is that the convergence may be difficult to obtain.

Let us now talk about specific methods for our classification problem of diffusion sample paths.
Not too far from our problem, we mention Baíllo et al. (2011) that studies supervised classification
for a family of Gaussian processes and Delattre et al. (2015b) that uses mixed stochastic differential
equations in order to solve a data clustering issue. Closer to our problem Denis (2014) investigates
multiclass classification for Cox-Ingersoll-Ross processes.

To the best of our knowledge, the main theoretical contribution for the classification problem of gen-
eral diffusion sample paths discriminated by the drift function is Cadre (2013). The obtained results
focus on binary classification for continuous observations and rely on the empirical risk minimiza-
tion strategy. The author provides a consistent empirical classification rule. However, the resulting
procedure cannot be implemented in practical situations.

Note that, by itself, the interesting question of providing an estimation of the drift coefficient from
the observation of a single trajectory has been thoroughly studied. In the frequentist framework,
one can cite for example Bibby & Sørensen (1995) and Kessler et al. (1999) for martingale estimation
functions, Gobet et al. (2004) in the low frequency context. In the case of continuous ergodic diffusions,
the LAN properties are treated in Yoshida (1992); Gobet (2002). Nonparametric estimators are
proposed for example in Hoffmann (1999); Comte et al. (2007).

This work takes place in the high-frequency observation framework. The sampling interval ∆
between successive observations is assumed to tend to zero as the number of observations n tends to
infinity. The length of the observation time interval T = n∆ is supposed to be fixed and we do not
assume any stationary property for the underlying process. In this context it is well-known that a
consistent estimation of the drift from a single trajectory is impossible. However, in our framework
we take advantage of the repeated observations of the learning sample to derive consistent estimators
of the drift.

1.2. Main contribution. We provide a closed formula for the optimal Bayes classifier which yields
an explicit representation for the excess risk of a general classifier. Thus, the relation between the
conditional probabilities P(Y = k|X) and the vector b of unknown drift functions is fully explicit.
Our strategy relies on the plug-in principle (see e.g. Audibert & Tsybakov, 2007). Based on an es-
timator b̂ of b, we consider an estimator of the conditional probabilities. Then, for each estimator
b̂, we consider the empirical classifier ĝ := g

b̂
defined as the maximizer of the estimated conditional

probabilities. The major part of the paper is then devoted to show that plug-in classification pro-
cedures derived from drift coefficient estimators are indeed consistent. In particular we first exhibit
a sufficient condition on the estimator b̂ which ensures the consistency of the resulting procedure.
Secondly, we construct an estimator based on the minimization of the empirical risk over the learning
sample. We show the consistency of this new procedure. Under mild assumptions, we show that the
rate of convergence is comparable to the one obtained in Cadre (2013) but in the multiclass context
with discrete observations.

A substantial part of the paper is devoted to the study of the parametric case. We study minimum
contrast estimators of the parameters that rule the drift and show their consistency and asymptotic
normality. The resulting plug-in classification procedure is then shown to be consistent. Furthermore,
we propose to use a convex version of the empirical risk minimizer which involves convex surrogates
of the misclassification risks (see Zhang, 2004; Bartlett et al., 2006). We present here two new easily
implementable classifiers and prove their consistency.

In comparison to Cadre (2013), the present work brings three main extensions. The first one is
the generalization of the binary missclassification problem for diffusion paths to the corresponding
multiclass classification problem. The second one is the discrete setting of our framework. Closer
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to reality, we assume that the data collected are recorded at discrete times. This introduces an
additional error term due to the time step and we give the order of this additional error in the rates of
convergence. Thirdly, in the parametric setting, we exhibit procedures that are easily implementable.
We present convincing numerical results on some classical examples.

1.3. Plan of the Paper. In Section 2, we start with the presentation of our general framework and
settle the model. Section 3 is devoted to the construction of discrete observations classifiers. We
introduce the two classes of classification procedures studied in the sequel, namely the ones that are
based on a consistent estimation of the drift and those that rely on the minimization of the empirical
risk. General abstract convergence results are then derived for these procedures. In Section 4 the drift
of the underlying diffusion is taken out of a regular parametric family. First, we construct a consistent
and asymptotic normal minimum contrast estimator. Secondly, we propose a first procedure referred
as the constrained method and a second one based on a one versus all strategy. Finally, we investigate
the performances of our predictors in a simulation study presented in Section 5. The results obtained
in the paper together with opened issues and future perspectives are discussed in Section 6, whereas
the proofs are relegated to Section 7.

2. General framework

2.1. Model and assumptions. Let T > 0 be a fixed time horizon. Let (X,Y ) the generic data-
structure taking its values in XT × Y, with XT := (C([0, T ]), C) the set of real valued continuous
functions with its corresponding σ-algebra endowed by the uniform topology, Y = {1, . . . ,K}, with
K ≥ 2. Assume we are given a vector of K unknown Borel real functions b∗ = (b∗1, . . . , b

∗
K) ∈ B

(with B a set of functions), a known Borel real function σ and a starting point x0 ∈ R. The process
X = (Xt)t∈[0,T ] is assumed to come from the following diffusion model{

X0 = x0

dXt = b∗Y (Xt)dt+ σ(Xt)dWt,
(2.1)

where (Wt)t≥0 denotes a standard Brownian motion on some probability space (Ω,F ,P) and such
that the label Y is independent of (Wt)t≥0 with known distribution under P given by (pi)i∈Y . In the
sequel, (FXt )t≥0 := {σ(Xs : s ≤ t) ; t ≥ 0} denotes the natural filtration of the process X. Note that
the process X is then a mixture of Brownian motions. We make the following assumptions.

Assumption 2.1 (Ellipticity and regularity). There exist strictly positive constants σ0, σ1 such that

0 < σ0 ≤ σ(x) ≤ σ1, ∀x ∈ R.

There exists a positive constant L0 such that for each b = (b1, . . . , bK) ∈ B

sup
i∈Y
|bi(x)− bi(y)|+ |σ(x)− σ(y)| ≤ L0|x− y|, ∀(x, y) ∈ R2.

Assumption 2.1 ensures the existence and uniqueness of a strong solution for Equation (2.1) and
that E[supt∈[0,T ] |Xt|q] <∞ for any integer q ≥ 1. Furthermore, it implies that

sup
i∈Y
|bi(x)| ≤ C0(1 + |x|). (2.2)

Finally, b∗ satisfies the following condition.

Assumption 2.2 (Novikov condition).

E
[
exp

(
1

2

∫ T

0

b∗2i
σ2

(Xs)ds

)]
< +∞, i ∈ Y.

Here Novikov’s condition (Assumption 2.2) is sufficient to apply Girsanov’s theorem (see e.g. Revuz
& Yor, 2013, Chapter VIII), which is the key ingredient for the proof of Proposition 2.3.
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2.2. Online classification rule. Let 0 ≤ t ≤ T . An online classifier at time t is a measurable function
gt mapping Xt onto Y. The set of online classifiers at time t is denoted by Gt. The performance of an
online classifier gt is assessed through the misclassification risk associated to gt and defined by

R(gt) = P (gt(X) 6= Y ) .

The minimizer of R over Gt is called the Bayes classifier and is denoted by g∗t . The classifier g∗t is
characterized by

g∗t ∈ argmax
i∈Y

πt(i), π∗t (i) := P
(
Y = i|FXt

)
. (2.3)

The following proposition gives an explicit expression of the online Bayes classifier. This result is
similar to the one obtained in Cadre (2013) in the context of binary classification.

Proposition 2.3. For all t ∈ (0, T ) and each i ∈ Y we define

F it :=

∫ t

0

b∗i
σ2

(Xs)dXs −
1

2

∫ t

0

(b∗i )
2

σ2
(Xs)ds. (2.4)

The sequence of conditional probabilities satisfies

π∗t (i) = P
(
Y = i|FXt

)
= ϕi(Ft) P− a.s (2.5)

where Ft = (F 1
t , . . . , F

K
t ), and ϕi : (x1, . . . , xK) 7→ pie

xi∑K
j=1 pje

xj
are the softmax functions.

The Bayes classifier g∗t is the best possible online classifier at time t. Unfortunately, the functions
b∗i are unknown and thus it is unreachable. Proposition 2.3 is a key result and is the main ingre-
dient of all the classification procedures presented in this paper. Indeed, this result highlights the
dependencies of the optimal Bayes classifier on the unknown functions b∗i . Therefore, we naturally
focus on classification procedures ĝt based on estimators of the functions b∗i and provide a control of
the excess risk R(ĝt)−R(g∗t ). The following proposition characterizes the excess risk of an arbitrary
online classifier gt ∈ Gt.
Proposition 2.4. The online Bayes classifier g∗t defined by (2.3) satisfies, for any online classifier
gt,

R(gt)−R(g∗t ) = E

 K∑
i=1

∑
k 6=i
|π∗t (i)− π∗t (k)|1{gt(X)=k}1{g∗t (X)=i}

 . (2.6)

In the sequel, we only consider online classifier at final time T and then remove the notation
dependency on parameter T . Nevertheless, the study of the time dynamics of R(g∗t ) is an important
feature to address in a future work and is beyond the scope of this paper.

3. Classification procedure

Let (Xt)t∈[0,T ] be the solution of (2.1). We assume that the observation consists of a single dis-
cretized sample path X(ω) := (Xk∆(ω))k∈{0,...,n} with T = n∆. Through the paper, the asymptotic
is chosen to be

∆→ 0, (n→ +∞).

It is important to note that this asymptotic framework is not classical for the estimation of the drift
functions. Usually, the classical asymptotic framework in the estimation of the drift function for
solutions of stochastic differential equations is T → +∞ and ergodicity properties of the diffusion are
used in force to handle this problem. In the context of supervised learning, it is possible to assume
that the horizon T is fixed because we have at hand a learning sample of independent copies of (X,Y ).

In Section 3.1, we describe the set of classifiers of interest which are based on the discrete time
observations (Xk∆)k∈{0,...,n}. In particular, we provide a control of the excess risk of these classifiers.
Section 3.2 is devoted to the presentation of general estimation procedures with several theoretical
results.
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3.1. Discrete observations classifiers. Let us define the set of discrete observations classifiers
which are based on the discrete time observations of X. For a trajectory X (driven by drift b∗ ∈ B),
any b ∈ B, we define for i ∈ Y the discrete version of F based on (Xk∆)k∈{0,...,n} and b:

F
i
b :=

n−1∑
k=0

(
bi
σ2

(Xk∆)(X(k+1)∆ −Xk∆)− ∆

2

b2i
σ2

(Xk∆)

)
, F b := (F

1
b , . . . , F

K
b ). (3.1)

Then we set πb(i) := ϕi(F b), i = 1, . . . ,K. The corresponding continuous analogs of F b (resp. πb)
is denoted by Fb (resp. πb) (so that with these notations FT = Fb∗ and π∗T = π∗). Finally, for any
function b ∈ B, we define the discrete observations classifier gb by

gb(X) := argmax
i∈Y

πb(i). (3.2)

Hereafter, we state a proposition which gives a bound for the excess risk of some discrete observations
classifier gb, and highlights the link with the discrete observations and a suitable distance between b
and b∗. We introduce the norm ‖.‖T defined for a real valued function f and a process X from model
(2.1):

‖f‖2T := sup
t∈[0,T ]

E[|f(Xt)|2].

Moreover, for a function b ∈ B, we define the ‖.‖T as ‖b‖T = max
i∈Y
‖bi‖T .

Proposition 3.1. Let b ∈ B. The discrete observations classifier gb satisfies

R(gb)−R(g∗) ≤ C
(√

∆ + ‖b− b∗‖T
)

where C is a positive constant which depends on T , K, and on the constants in the Assumptions 2.1,
2.2.

3.2. Classification procedures. It is always possible to assert the existence of a probability P̂
supporting an infinite sequence of independent copies of (X,Y ) (with its corresponding expectation
Ê).

Assume we have at our disposal a learning sample of size N denoted by DN = (X
(j)
, Y (j))j=1,...,N

which consists of independent copies of (X,Y ) under P̂. We define (Ni)i∈Y by Ni =
∑N

j=1 1{Y (j)=i}
and DNi the associated learning sub-sample.

In the sequel, the symbol P stands for total probability (over the whole sample and a new discrete
trajectory of X, which is assumed to be independent of DN ). We have P = P̂⊗ P.

Based on the observation of DN , we consider estimators b̂i of the drift functions with asymptotic
N → +∞,∆→ 0 and T fixed. We denote by →

N,∆
this asymptotic. We also write N → +∞ meaning

that Ni →∞ for all i ∈ Y. For now, we do not precise anything on the estimator b̂.

In view of (3.2), we naturally consider the classifier

g
b̂
(X) := argmax

i∈Y
π
b̂
(i). (3.3)

3.2.1. Classification procedures based on consistent drift estimation. Using the result of Proposi-
tion 3.1, we can easily deduce the following result.

Corollary 3.2. Let b̂ be an estimator of b∗ such that ‖b̂‖T <∞ and ‖b̂− b∗‖T
P−→
N,∆

0, then

Ê
[
R(g

b̂
)−R(g∗)

]
−→
N,∆

0.
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Corollary 3.2 shows that we may derive consistent classification procedures as soon as the estimator
of b̂ remains consistent w.r.t the norm ‖.‖T . In this case, the result of Proposition 3.1 ensures that,
up to a

√
∆ factor, the rate of convergence of such a discrete observations classifier is the same as the

rate of convergence of b̂ towards b∗ in ‖.‖T -norm.

3.2.2. Empirical risk minimization. Another way to obtain estimators such that the resulting discrete
observations classifiers are consistent, is to consider estimators which rely on the empirical risk min-
imization principle (see e.g. Devroye et al., 1996; Bartlett & Mendelson, 2006; Massart & Nédélec,
2006). In Cadre (2013), the empirical risk minimization procedure is used in the context of binary
classification where the features come from continuous diffusion sample paths and are discriminated
by their drift.

Following the same idea, we investigate the case where the estimator of b∗ is defined as an empirical
risk minimizer. To this end, we introduce the empirical risk of a discrete observations classifier gb by

R̂(gb) =
1

N

N∑
j=1

1
{gb(X

(j)
)6=Y (j)}

.

Now, assume that there exists a finite ε-net Bε ⊆ B with respect to the norm ‖.‖T . We define the
estimator b̂ε = (̂bε1, . . . , b̂

ε
K) as

b̂ε ∈ argmin
b∈Bε

R̂(gb). (3.4)

The following theorem gives the theoretical performances of the classification procedure g
b̂ε

through
the excess risk. In particular, we show that g

b̂ε
is consistent and derive its rate of convergence.

Theorem 3.3. The classifier defined through (3.4) satisfies

Ê
[
R(g

b̂ε
)−R(g∗)

]
≤ C

(√
log(CardBε)

N
+
(√

∆ + ε
))

where C is a positive constant which depends on T , K, and on the constants in the Assumptions 2.1,
2.2.

The upper bound of Theorem 3.3 is decomposed into an estimation error which is usual when
we deal with empirical risk minimization using ε-nets and an error of order

√
∆ coming from the

discretization error. This result shows that if ε = εN → 0 such that log(CardBεN )/N → 0, then the
classification procedure g

b̂ε
is consistent provided that ∆→ 0.

Along those lines, we provide a corollary of Theorem 3.3 which gives a classical nonparametric rate
of convergence depending only on N whenever ∆ and ε are well calibrated w.r.t. N .

To this purpose, we make an assumption on the complexity of the class of functions B: we assume
that B = (H)K and such that there exists an ε− net Hε ⊆ H, satisfying

u > 0, C > 0, log(CardHε) ≤ Cε−u. (3.5)

Corollary 3.4. Under condition (3.5), if ∆ = O
(
N−2/(2+u)

)
and ε ∝ N−1/(2+u) we have

Ê
[
R(g

b̂ε
)−R(g∗)

]
≤ O

(
1

N1/(2+u)

)
.

Note that this nonparametric rate of convergence can be reached here because some complexity
assumption on B is assumed. This rate of convergence is obtained in Cadre (2013) in the context of
binary classification with continuous time observations under the same kind of assumptions. In binary
classification, Audibert & Tsybakov (2007) shows that this rate is achieved by the plug-in classifiers
when the feature X ∈ Rd and the regression function belongs to a subset Σ of L∞ under a similar
complexity assumption on Σ.
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As an example, we provide an explicit class of functions B such that the assumption (3.5) holds.
Define ψγ(x) := C0(1 + |x|)γ where L ≥ 1 (and C0 given in Equation (2.2)). Let k ≥ 1 and γ ≥ 1 and
consider

Hk =

{
b ∈ Ck, ∃C > 0, ∀j ∈ Z, i = 0, . . . , k sup

[j,j+1[

∣∣∣∣ dibdxi
∣∣∣∣ ≤ C(|j|+ 1)γ , |b(x)| ≤ ψγ(x)

}

Then an application of the result given in Van Der Vaart & Wellner (1996) (see the proof of Theorem
2.7.1) yields the following result.

Proposition 3.5. Let k ∈ N∗. The set B = (Hk)K fulfills assumption (3.5) with u = 1/k.

Unfortunately, in general the estimator defined by (3.4) is not computable in practice. However,
in Section 4.2, we manage to built an alternative procedure which is still based on the empirical
minimization principle.

4. Case of a parametric family of drift functions

In this section, we focus on the case where the set B is a parametric family of drift functions defined
as follows

B = {(b(θi, .))i∈Y , ∀i ∈ Y, θi ∈ Θ} ,

where Θ ⊂ Rd is compact and for each θ ∈ Θ, x 7→ b(θ, x) is a real valued function which satisfies
Assumptions 2.1, 2.2. Moreover, we assume that the function b is known. For each i ∈ Y, we denote the
drift functions by b∗i (x) := b(θ∗i , x), θ∗i ∈ Θ (and π∗ = πbθ∗ ). Furthermore, for θ = (θ1, . . . , θK) ∈ ΘK ,
we denote the vector (b(θi, .))i∈Y by bθ = (bθ1 , . . . , bθK ). Finally, for θ ∈ ΘK , we also define ‖θ‖ =
maxi∈Y ‖θi‖∞. In order to derive consistent classification procedures which rely on the estimation
procedure described in Section 3.2, we add two assumptions.

Assumption 4.1. (Identifiability condition)

∀θ, θ′ ∈ Θ, E
[∫ T

0
(b(θ,Xs)− b(θ′, Xs))

2ds

]
= 0⇔ θ = θ′.

Assumption 4.2. Function b is Lipschitz-continuous with respect to θ ∈ Θ:

|b(θ, x)− b(θ′, x)| ≤ C (1 + |x|α) ‖θ − θ′‖∞ for some α ≥ 1.

The first assumption is classical when we deal with parametric estimation. The second one implies
that for θ, θ′ ∈ Θ, we have

‖b(θ, ·)− b(θ′, ·)‖T ≤ C‖θ − θ
′‖∞, (4.1)

for a constant C depending on T and α.
In Section 4.1 and in the special case where σ ≡ 1 and d = 1, we derive a classification procedure

based on a minimum contrast estimation principle for θ∗ built on a the learning sample DN , which
is shown to be consistent. Note that the problem of consistent estimators of parameters θ∗ is not
new, but in our context we drop the assumption of long time observation and take advantage of the
learning sample.

In Section 4.2 we derive an implementable classification procedure which relies on the empirical
risk minimization principle. This procedure involves a convex surrogate of the minimization problem
described in Section 3.2.
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4.1. Contrast estimator. In this section assume that σ ≡ 1 and d = 1.
We consider estimators of θ∗ defined as the minimizer of a contrast function based on the Gaussian

log-likelihood approximation from the approximated discrete-time Euler-Maruyama scheme (Kessler,
1997).

For each i ∈ Y and θ ∈ Θ, let us define L∆(DNi ; θ) as the Euler-approximation of the likelihood
function,

L∆(DNi ; θ) =

Ni∏
j=1

n−1∏
k=0

√
∆

2π
exp

−∆

2

X(j)
(k+1)∆ −X

(j)
k∆

∆
− b(θ,X(j)

k∆)

2 .

Then we naturally consider the associated contrast function given by

γNi,n(θ) :=
1

Ni

Ni∑
j=1

n−1∑
k=0

(
∆

2
b2(θ,X

(j)
k∆)− b(θ,X(j)

k∆)(X
(j)
(k+1)∆ −X

(j)
k∆)

)
. (4.2)

The minimum contrast estimator is

θ̂i ∈ argmin
θ∈Θ

γNi,n(θ). (4.3)

Let us state the asymptotic properties of the estimators θ̂i.

Theorem 4.3 (Consistency). Under Assumptions 4.1, the estimator θ̂i given by Equation (4.3) sat-
isfies,

θ̂i
P̂−→
N,∆

θ∗i .

The proof relies on consistency results for minimum contrast estimators (see e.g. Dacunha-Castelle
& Duflo, 1983) and a crucial lemma given in Yoshida (1990).

The asymptotic normality is given in the following theorem. Denote ḃ the partial derivative of b
w.r.t the parameter θ.

Theorem 4.4 (Asymptotic normality). Under Assumptions 4.1, 4.2, assume that there exists C ′ > 0
such that

∀x, y ∈ R, sup
θ∈Θ
|ḃ(θ, x)− ḃ(θ, y)| ≤ C ′|x− y|

and there exist β ≥ 1, C ′′ > 0 such that for all θ, θ′ ∈ Θ, for all x ∈ R

|ḃ(θ, x)− ḃ(θ′, x)| ≤ C ′′ (1 + |x|β) |θ − θ′|

with a constant C ′′ depending on T and β.
Then for each i ∈ Y, under the condition ∆ = o(1/N),√

Ni(θ̂i − θ∗i )
L−→
N
N

(
0,E

[∫ T

0
ḃ2(θ∗i , Xs)ds

]−1
)

where the convergence takes place under P̂.

The asymptotic variance is classically the inverse of the Fisher information for continuous diffusion
processes at finite time (see e.g. Kutoyants, 2004). The constraint N∆ = o(1) is needed to reach the
asymptotic normality in the context of discrete observations. Note that the same condition is required
in Delattre et al. (2015a) in the mixed diffusion context to estimate a distribution parameter in the
diffusion coefficient. Our estimator is also asymptotically Gaussian at the same rate

√
Ni.

We use the asymptotic properties of the estimator θ̂ to show the consistency of the classification
procedure gb

θ̂
. Applying Corollary 3.2, Theorem 4.3 and Equation (4.1) leads to the following con-

vergence.
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Proposition 4.5. Under Assumption 4.2, the predictor gb
θ̂
(3.3) satisfies

Ê
[
R(gb

θ̂
)−R(g∗)

]
−→
N,∆

0.

This result does not provide a rate of convergence. In order to obtain a more refined result one
needs to control the moments of the estimator θ̂. This problem has been investigated in the continuous
observation setting for a single trajectory (T →∞, N = 1) in Kutoyants (2004), or in Dion & Genon-
Catalot (2015) for a special drift function b(x, θ) of the multiplicative form θb(x).

In the next section, we focus on the classification procedures based on the empirical risk minimiza-
tion principle.

4.2. Empirical risk minimizer. The diffusion coefficient is no more assumed to be constant and
the dimension parameter d may be chosen greater than one.

We can apply the Proposition 3.3 to prove the consistency of the resulting classifier g
θ̂
where

θ̂ ∈ argmin
θ∈ΘN

R̂(gbθ). Nevertheless, the estimator θ̂ is the solution of a non convex minimization

problem and can be computationally intractable. To overcome this difficulty it is classical to propose
a convex surrogate of the previous minimization problem (see e.g. Zhang, 2004; Bartlett et al., 2006;
Biau et al., 2015). In this context, we focus on the following minimization problem

ĥ = argmin
h∈H

1

N

N∑
j=1

ΨY (j)(h(X(j))),

where ΨY is a real-valued function that takes a vector of RK as its argument and H is the set of score
functions. From ĥ =

(
ĥ1, . . . , ĥK

)
, we can define a classifier

ĝ = argmax
i∈Y

ĥi.

The function h returns a score for each label and naturally the chosen label is the one maximizing the
score. The consistency of the classification rules obtained in this minimization risk framework with
respect to the misclassification risk depends on the several possible choices for the function ΨY .

4.2.1. Constrained method. The constrained comparison method is dedicated to the multiclass frame-
work (see e.g. Zhang, 2004; Tewari & Bartlett, 2007; Pires et al., 2013). Let us consider the convex set
of constrained score functions H =

{
h = (h1, . . . , hK) : XT → RK ,

∑K
i=1 h

i = 0
}
. For φ : R→ R+

a convex function, the φ-risk associated to h ∈ H and the minimizer are given by

Rφ(h) = E

[
K∑
i=1

1{Y 6=i}φ
(
−hi(X)

)]
, h∗ ∈ argmin

h∈H
Rφ(h). (4.4)

This risk formulation encourages small scores for i 6= Y and, due to the sum to zero constraint, large
score for i = Y . Moreover, the empirical counterpart of Rφ(h) is

R̂φ(h) =
1

N

N∑
j=1

K∑
i=1

1{Y (j) 6=i}φ
(
−hi(X(j))

)
. (4.5)

An important property required for the function φ is the calibration property which implies the
consistency of the φ-risk.

Definition 4.6. The function φ is calibrated if for any sequence of measurable score functions hN
Rφ(hN )→Rφ(h∗) implies that R(gN )→R(g∗),

where gN := argmax
i∈Y

hiN .



10 MULTICLASS CLASSIFICATION

Hence, φ is calibrated if any consistent procedure for the φ-risk remains consistent for the misclas-
sification risk. A characterization of the calibration property may be found in Zhang (2004) :

Proposition 4.7. (Zhang (2004)) The function φ is calibrated if φ is non negative, φ′(0) exists and
φ
′
(0) < 0.

Let us consider now φ : x 7→ exp(−x) the exponential calibrated loss. In this case h∗ given by
Equation (4.4) is

h∗i(X) =
1

K

K∑
`=1

log

(
1− π∗(`)
1− π∗(i)

)
.

Therefore, for θ ∈ ΘK we should consider the score functions hθ defined for i ∈ Y by

h
i
θ(X) =

1

K

K∑
`=1

log

(
1− πbθ(`)
1− πbθ(i)

)
.

As shown in Definition 4.6, the consistency of a procedure based on the empirical minimization
of this φ-risk involves a control of the excess φ-risk over the set of all possible score functions hθ.
Unfortunately, it does not seem possible to control the φ-risk if one of the πbθ(i) is too close too 1. In
order to circumvent this difficulty, let us fix some threshold 0 < ε < 1/3. For an observed vector πbθ
and

i0 = argmax
i∈Y

πbθ(i)

we define the vector πεbθ as follows

πεbθ(i) := πbθ(i)1{πbθ (i0)<1−ε}+1{πbθ (i0)≥1−ε}

((
πbθ(i) +

πbθ(i0)− (1− ε)
K − 1

)
1{i 6=i0} + (1− ε)1{i=i0}

)
,

and we denote by πεbθ its continuous counterpart (depending hiθ with natural notations). One may
easily check that for each θ,

∑K
i=1 π

ε
bθ

(i) = 1 by construction. Then, the condition ε < 1/3 ensures
that for each i ∈ Y, πεbθ(i) ≤ 1− ε. Finally, for each θ ∈ Θ, we consider the score functions

h
ε,i
θ (X) =

1

K

K∑
`=1

log

(
1− πεbθ(`)
1− πεbθ(i)

)
. (4.6)

The resulting sets of score functions are bounded. Indeed, for each θ ∈ Θ and i ∈ Y,

|hε,iθ (X)| ≤ log

(
1

ε

)
.

We are now able to define the empirical risk threshold minimizer

θ̂ ∈ argmin
θ∈ΘK

R̂φ(h
ε
θ), (4.7)

with R̂φ given in Equation (4.5). Note that θ̂ depends on ε but for sake of simplicity the depen-
dency will only appears on the notation of the scores h, h. The following proposition establishes the
consistency of the corresponding classification strategy with respect to the φ-risk of hεθ̂.

Proposition 4.8. Assume that Θ = [0, 1]d and that there exists α > 0 such that ∆ = O(N−α). Under
Assumption 4.2, if ε = O

(
N−β

)
with 0 < β < min(1/2, α/4) then the classification procedure hεθ̂ given

by (4.6) and (4.7) satisfies,

Ê
[
Rφ(h

ε
θ̂)−Rφ(h∗)

]
−→
N

0.
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Therefore, the results of Proposition 4.8 and the calibration property ensure the consistency of the
classification procedure gb

θ̂
with respect to the misclassification risk.

Nevertheless, this result does not specify the rate of convergence of gb
θ̂
since, up to our knowledge,

there is no explicit link between the convergence rates of the excess misclassification risk and those of
the excess φ-risk.

In the Section 4.2.2, we consider another formulation of the φ-risk for which we manage to derive
a rate of convergence.

4.2.2. One-Versus-All method. Let us now study another approach based on the one-versus-all princi-
ple of Zhang (2004). Recently, this risk has also been considered in Denis & Hebiri (2017) for the con-
fidence sets aggregation. We consider the set of score functions H = {h = (h1, . . . , hK) : XT → RK}.
For φ a convex function and hθ, θ ∈ ΘK a vector of score functions, we define the following risk
function,

Rφ (h) = E

[
K∑
i=1

φ(Zih
i
θ(X))

]
, Zi = 2 1{Y=i} − 1. (4.8)

We can note that there is no sum-of-zero constraint on the vector of score function hθ here. Equa-
tion (4.8) can be rewritten as

Rφ(h) = E

[
K∑
i=1

π∗(i)φ(hiθ(X)) + (1− π∗(i)))φ(−hiθ(X))

]
.

Therefore, this formulation can be viewed as K separate binary classification problems where for each
i ∈ Y we focus on the classification problem Y = i against Y 6= i. Now we consider φ : x 7→ (1− x)2

the least squares loss. In this case, we easily deduce that

h∗i(X) = 2π∗(i)− 1, i ∈ Y.

As for the constrained comparison method, we consider the following estimator θ̂ of θ∗

θ̂ ∈ argmin
θ∈ΘK

R̂φ(hθ), h
i
θ = 2πbθ(i)− 1, i ∈ Y, (4.9)

(with R̂φ given in (4.5)). There are two advantages of considering the least squares loss with the
one-versus-all approach. The first one is that the score functions hθ are bounded and there is no need
to define a set of thresholded score functions. The second one is the Zhang’s Lemma (see Zhang, 2004)
that we state here for the least squares loss.

Lemma 4.9. For φ the least squares loss, the resulting classifier gb
θ̂
with θ̂ given in Equation (4.9),

satisfies

Ê
[
R(gb

θ̂
)−R(g∗)

]
≤ 1√

2

(
Ê
[
Rφ(h

θ̂
)−Rφ(h∗)

])1/2
.

As a consequence, using similar arguments as in proof of Proposition 4.8, one can show the consis-
tency of gb

θ̂
with respect to the misclassification excess risk provided that ∆ = O(N−α) for α > 0.

Furthermore if α ≥ 2, we derive the following rate of convergence

Theorem 4.10. Assume that Θ = [0, 1]d and that there exists α ≥ 2 such that ∆ = O(N−α). Under
Assumption 4.2, the classification procedure gb

θ̂
given by (4.9) satisfies,

Ê
[
R(gb

θ̂
)−R(g∗)

]
≤ O

(√
αd log(N)

N

)
.

We can note that up to the logarithmic factor, we obtain a rate of convergence of order of N−1/2.
Comparing to the rate provided in Corollary 3.4, this rate is better due to the lower complexity of
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the parametric model. Interestingly, if we consider θ̂ ∈ argmin
θ∈ΘN

R̂(gbθ) with ΘN a 1/N -net of ΘK ,

from Theorem 3.3, one can show that the rate of convergence is also of order N−1/2. Hence, from
a theoretical point of view, the use of convex surrogate does not degrade the performances of the
classification procedure when α ≥ 2.

5. Simulation study

In this section, we investigate the numerical performances of the proposed classification procedures
through a simulation study. The simulation scheme is presented in Section 5.1. In Section 5.2, we
evaluate the quality of the classification procedures described in Section 4 and illustrate the statistical
properties of the contrast estimator.

5.1. Description and examples. Let us describe the models under consideration for our numerical
experiments. We fix K = 3, pi = 1/K and σ = 1. We consider the following examples:

(1) Additive OU b(θ, x) = −(x− θ), x0 = 4;
(2) Multiplicative OU b(θ, x) = −θx, x0 = 4;
(3) Polynomial b(θ, x) = −(x− θ)3 − (x+ θ)3, x0 = 4.
(4) Hyperbolic b(θ, x) = −θx/

√
1 + x2, x0 = 4.

We investigate K = 3. Hence in our study the number of class K is not suppose to grow and be
large. We compare the results on the design: θ∗ = {1, 2, 4} for model 1, 2, 4, and θ∗ = {1/4, 1/2, 1}
for model 3. Models 1 and 2 are widely used in practical applications, and they satisfy all the as-
sumptions required for our theoretical results, while the model 3 does not fulfill the Assumption 2.1,
illustrating the robustness of the classification procedures. Model 4 is known as the hyperbolic model
in mathematical finance (see e.g. Eberlein et al., 1995), and it is used to model log-returns of assets
prices in stock markets.

The trajectories are simulated from the Euler scheme. Note that the two first models are simulated
from the exact solution of the equation. In Figure 1, we plot some trajectories generated according to
the model 1 (Additive). At first sight, without the knowledge of the labels, it seems to be difficult to
assign a class to each trajectory. It illustrates the difficulty of this classification problem (see Table 1).

To apply the first procedure, let us give the minimum contrast estimators (4.3) in the two first
examples. For each i ∈ Y, for additive OU:

θ̂i =

∑Ni
j=1

∑n−1
k=0(X

(j)
(k+1)∆ −X

(j)
k∆ + ∆X

(j)
k∆)

Nin∆
,

and for multiplicative OU:

θ̂i = −
∑Ni

j=1

∑n−1
k=0(X

(j)
(k+1)∆ −X

(j)
k∆)X

(j)
k∆/∆∑Ni

j=1

∑n−1
k=0(X

(j)
k∆)2

.

In order to illustrate our convergence results, for each model we provide an evaluation of the
misclassification risk of the Bayes rule. At this end, we repeat B times the following steps:

i) simulate a data set DM with M = 10000 and 2500 points for each trajectory,
ii) based on DM , compute the misclassification error rate of the classifier gbθ∗ .

Finally, we compute the mean and standard deviation of the misclassification risk, the results are
reported in Table 1 with B = 100. One can see that model 1 and model 4 seem to be more tricky
for the misclassification risk. This is due to the fact that the classes generated by θ∗1 and θ∗2 are much
overlapped. On the contrary, the classification problem involved by model 2 is more easier although
the considered design is the same.
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0.00 0.25 0.50 0.75 1.00

Figure 1. Illustration of the classification problem with 3 classes (blue, green and
magenta) for the three different values of θ∗) for model Additive with n = 100, N =
100.

5.2. Numerical performances of the classification procedures. Now, for each model we evalu-
ate the misclassifcation risk of the three classification procedures presented in Section 4. The procedure
based on the contrast estimation is referred as MLE: g

θ̂
with θ̂ from Equation (4.3); the procedure which

relies on the constrained method is referred as CM g
θ̂
with θ̂ given in Equation (4.7) (with ε = 0.01);

while the procedure based on the one-versus-all strategy is referred as OVA g
θ̂
with θ̂ given in Equation

(4.9). The three procedures rely on an optimization function (in Python or R languages optim is used
with argument method "BFGS"). In the case where the MLE is an explicit estimator the procedure is
naturally fast. Other optimization functions could be used to reduce the computational cost of the
procedures in other cases.

In order to stress the robustness w.r.t the theoretical conditions between ∆, N , we consider the
following asymptotics: n ∈ {50, 250}, ∆ = 1/n, N ∈ {50, 500}.

For each classification procedure and each model, we repeat independently B times the following
steps:

i) simulate two datasets DN and DM with M = 1000. For each trajectory of the datasets,
simulate first a trajectory with 2500 points and then consider the subsampled trajectory with
n equidistant points,

ii) from DN , compute the considered classification rule g
θ̂
,

iii) evaluate the misclassification error rate of g
θ̂
from DM .

Table 2 and 3 provide the mean and standard deviation of the results. Our main observation is
that, except for model 3 with n = 50, all the classification procedures perform well. Indeed, the
evaluation of the misclassifcation risk are closed to the Bayes risk with small variances. In particular,
for N = 500, the classification procedures have similar performances. Furthermore, we can see the
influence of the sample size for the procedures CM and OVA. For instance for model 1 with n = 50,
the risk of the procedure CM is evaluated at 0.34 (with standard deviation equal to 0.04) for N = 50,
while it is evaluated at 0.31 (with standard deviation equal to 0.01) for N = 500. Interestingly, this
is not the case for MLE. Hence, it seems to be preferable to use the classification procedure MLE when
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Bayes rule
Model 1 0.31 (0.002)
Model 2 0.12 (0.003)
Model 3 0.22 (0.003)
Model 4 0.33 (0.004)

Table 1. Average and standard deviation of the misclassification error rate for the
Bayes classifier with n = 2500.

MLE CM OVA
N = 50 N = 500 N = 50 N = 500 N = 50 N = 500

Model 1 0.32 (0.02) 0.31 (0.01) 0.34 (0.04) 0.31 (0.01) 0.33 (0.05) 0.31 (0.01)
Model 2 0.12 (0.01) 0.12 (0.01) 0.13 (0.02) 0.12 (0.01) 0.13 (0.02) 0.12 (0.01)
Model 3 0.67 (0.02) 0.67 (0.01) 0.67 (0.01) 0.67 (0.01) 0.66 (0.02) 0.66 (0.01)
Model 4 0.34 (0.01) 0.33 (0.01) 0.36 (0.04) 0.33 (0.01) 0.35 (0.03) 0.33 (0.01)

Table 2. Average and standard deviation of the misclassification error rate for the
three procedures with n = 50.

MLE CM OVA
N = 50 N = 500 N = 50 N = 500 N = 50 N = 500

Model 1 0.32 (0.02) 0.31 (0.01) 0.33 (0.03) 0.31 (0.01) 0.32 (0.03) 0.31 (0.01)
Model 2 0.12 (0.01) 0.12 (0.01) 0.13 (0.02) 0.12 (0.01) 0.13 (0.02) 0.12 (0.01)
Model 3 0.23 (0.01) 0.23 (0.01) 0.24 (0.03) 0.23 (0.01) 0.22 (0.02) 0.22 (0.01)
Model 4 0.33 (0.02) 0.33 (0.01) 0.36 (0.05) 0.33 (0.01) 0.34 (0.03) 0.33 (0.01)

Table 3. Average and standard deviation of the misclassification error rate for the
three procedures with n = 250.

the sample size is moderate. Then, we can see that the parameter n plays a crucial role for model 3.
Indeed, for n = 50 all procedures have poor performances while for n = 250 the empirical risks are all
close to the Bayes classifier.

Finally, we recall that the procedure MLE relies on estimators of the design θ∗ for which we provide
consistency and asymptotic normality in Section 4. Hereafter, we briefly evaluate these properties.
Considering θ∗ = 1 for model 1, θ∗ = 3 for model 2, θ∗ = 1/2 for model 3, and θ∗ = 2 for model 4, we
evaluate the empirical quadratic risks of the estimator on B = 300 repetitions. A dataset consists of
N ∈ {50, 100, 1000} trajectories composed of n = 250 points. The results are shown in Table 4. As
expected, the evaluation of the quadratic risk (given ×102) are increasingly closed to 0 with respect
to N . At the same time, one can see that the estimates have relatively poor performances for small
N especially for model 1. We illustrate in Figure 2 the constraint N/n = o(1) required for the
asymptotic normality. The variance decreases with N and the bias decreases with n. As expected,
the best situation is to have both parameters large enough. Lastly, Figure 3 gives an illustration of
Theorem 4.4. One can see that the empirical distribution functions of

√
N
(
θ̂ − θ

)
are closed to the

Gaussian distribution function of the theoretical limit.

6. Discussion

In this paper, we provide an explicit formula for the Bayes classifier in the special setting of mul-
ticlass discretized diffusion paths discriminated by their drift functions. Section 3 is devoted to
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N = 50 N = 100 N = 1000
Model 1 θ = 1 2.26 (3.13) 0.95 (1.35) 0.10 (0.13)
Model 2 θ = 3 0.81 (1.14) 0.38 (0.50) 0.07 (0.08)

Model 3 θ = 1
2 3.80 (1.32) 3.71 (0.88) 3.67 (0.28)

Model 4 θ = 2 2.40 (3.44) 1.23 (1.73) 0.11 (0.15)

Table 4. Average and standard deviation of 102× quadratic error for the MLE esti-
mator with n = 250.

N=50 N=200 N=1000 N=10000

0.90

0.95

1.00

1.05

1.10

n=50

n=250

Figure 2. Boxplots for the MLE estimators of θ∗ = 1 in the additive OU model 1 as
a function of parameters n and N .
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Figure 3. Illustration of the asymptotic normality of θ̂. Left: estimated cumulative
distribution function of Z :=

√
N(θ̂− θ∗) (solid curve) and the theoretical one (dotted

curve). Right: histogram of Zi’s with the estimated density (solid curve) and the
theoretical one (dotted curve), with N = 1000, n = 1000.
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theoretical guarantees for two types of classification procedures. The first one relies on some con-
sistent estimator of the drift function w.r.t. the ‖‖T -norm. The second one involves the empirical
risk minimization principle. Section 4 focuses on the case of parametric drift functions. In this set-
ting, we investigate the two methods and prove their consistency. Moreover, we derive three easily
implementable algorithms: MLE, CM and OVA.

Let us make a few comments on these algorithms. Contrary to CM and OVA, MLE is studied only in
the case σ ≡ 1 and d = 1. However, note that if we assume that DN is observed until some time
horizon T ′ and a new datum X is observed until another time T with T ′ 6= T , then from Corollary
3.2 and Equation (4.1) the consistency of the MLE procedure still holds, whereas this is no more the
case for the other procedures. There are other many remaining questions of interest. We wish also
to investigate nonparametric estimators of the drift function, based on the learning sample, that are
consistent w.r.t. the ‖‖T -norm. To our knowledge, this is an open issue. Furthermore and from the
statistical learning point of view, the case where K is very large is a crucial question.

Let us now comment some of our framework assumptions. In Equation (2.1) we made two strong
assumptions: the law of Y and the diffusion coefficient σ are assumed to be known. Several strategies
may be investigated to overcome these restrictions leading to an extension of the results presented in
this paper.

The case where the distribution (pi)i∈Y is unknown is not really an issue : it is always possible
to plug an empirical estimator of the distribution (pi)i∈Y for the estimation of the softmax functions
(ϕi)i∈Y . We can then extend our results to obtain the consistency of these procedures (with possibly
different rates of convergence). Another idea would be to include the possible distributions of Y in
the empirical risk minimization as done in (Cadre, 2013).

Regarding the case where the diffusion coefficient is unknown, we believe that things are more
intricate. It is well known that the coefficient σ can be estimated in the high-frequency scheme
of observations. For example estimators studied in Genon-Catalot & Jacod (1993); Gloter (2000);
Jakobsen & Sørensen (2017) may be used. For example a strategy where an estimator of σ is plugged
in the expressions of F (3.1) could be investigated and one may hope to extend the results of this
paper in this new framework. However, the contrast function of the plug-in classification procedure
described in Section 4.1 seems more tricky to study. Note that for the empirical risk minimization
procedure, one may adapt the strategy in Cadre (2013) and circumvent this difficulty by including
(bi/σ

2)i∈Y and (b2i /σ
2)i∈Y in the minimization procedure. In the context where σ is unknown, another

challenging issue would be to consider the case where classes are discriminated by both the drift and
the diffusion coefficients. Indeed, it seems difficult to adapt directly the previous strategies that rely
heavily on Girsanov’s formula.

One may also think of generalizing the initial model. In order to cover a broader class of possible
applications, a first generalization would be to extend our results to the case of diffusions with in-
homogeneous coefficients. We believe our results extend easily to a framework where the classes are
discriminated by inhomogeneous drift functions as long as suitable assumptions are made (for e.g.
the drift functions are Lipschitz for the space variable uniformly w.r.t the time variable). With such
assumptions all the procedures of the paper remain consistent and we chose not to present them for
the sake of clarity and conciseness. However, relaxing the Lipschitz assumptions on the drift coef-
ficients or even more, allowing an inhomogeneous diffusion coefficient are important questions that
should be addressed for further investigations. Other interesting stochastic process models could be
also imagined, for example the case of jump processes discriminated either by their drift or their jump
component would be a very interesting development of this work. Indeed, in some cases the likelihood
function is available. Our work should only be considered as a first step towards the construction of
similar classification procedures for trajectories of much richer classes of stochastic processes.
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7. Proofs

This section is devoted to the proofs of the announced results.

7.1. Technical results. We give here some useful results needed in the following proofs, nevertheless
they may have an interest per se.

Lemma 7.1. Let x 7→ f(x) be a continuous, real-valued function, then

∆
n−1∑
k=0

f(Xk∆)
P−→
∫ T

0
f(Xs)ds.

This is a consequence of the convergence of Riemann sums.

Lemma 7.2 (Gloter A.(2000)). If X is a diffusion process from model (2.1), for k ∈ N∗,

∀t, t+ h ∈ [0, T ], E

[
sup

s∈[t,t+h]
|Xs −Xt|k|Ft

]
≤ c(k)(1 + |Xt|k)hk/2.

This result comes from Gronwall’s Lemma and the Burkholder-Davis-Gundy inequality and is given
in Gloter (2000).

Lemma 7.3. For any bθ ∈ B (defined in Section 4),

E

[(∫ (k+1)∆

k∆
b(θ,Xk∆)− b(θ,Xs)ds

)p]
= O(∆3p/2)

for any integer p ≥ 2.

Proof of Lemma 7.3. According to Cauchy-Schwarz and Jensen’s inequality,(∫ (k+1)∆

k∆
b(θ,Xk∆)− b(θ,Xs)ds

)p
= ∆p

(
1

∆

∫ (k+1)∆

k∆
b(θ,Xk∆)− b(θ,Xs)ds

)p

≤ ∆p

(
1

∆

∫ (k+1)∆

k∆
(b(θ,Xk∆)− b(θ,Xs))

2ds

)p/2

≤ ∆p−1

∫ (k+1)∆

k∆
(b(θ,Xk∆)− b(θ,Xs))

pds.

Applying Lemma 7.2, gives

E

[(∫ (k+1)∆

k∆
b(θ,Xk∆)− b(θ,Xs)ds

)p]
≤ ∆p−1E

[∫ (k+1)∆

k∆
(b(θ,Xk∆)− b(θ,Xs))

pds

]
≤ O

(
∆3p/2

)
.

�

Lemma 7.4. Let b ∈ B. For all i ∈ Y,

E
[
|πb(i)− πb(i)|2

]
≤ C∆,

where C is a positive constant which depends on T and the constants in Assumption 2.1.
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Proof of Lemma 7.4. Let i ∈ Y. It is sufficient to prove that for any i0 ∈ Y,

Ei0
[
|F ib − F

i
b|2
]
≤ Ci0,i∆, (7.1)

for a constant Ci0,i depending only on T and the constants in Assumption 2.1. In order to prove (7.1),
one may use the same kind of arguments as in the proof of Theorem 7.11 p. 174 in Graham & Talay
(2013) (in the much more difficult context of the Euler scheme). Similar arguments will be detailed
on the following proof of Lemma 7.5.

Observe that for i, j ∈ {1, . . . ,K}, |∂jϕi| ≤ 1 and consequently ϕi is a Lipschitz function. Hence,
using (7.1) simultaneously for all i0 ∈ Y and the definitions of πb(i) = ϕi(Fb) and πb(i) = ϕi(F b), we
deduce directly the announced result. �

Lemma 7.5. Let b, b̃ ∈ B. For each i ∈ Y, the following holds

E
[
|πb(i)− πb̃(i)|

]
≤ C K

σ2
0

‖b− b̃‖T ,

where C is a positive constant which depends on T and C0.

Proof of Lemma 7.5. Since for each i, j ∈ Y, |∂jϕi| ≤ 1, we have

|πb(i)− πb̃(i)| = |ϕi(F b)− ϕi(F b̃)| ≤
K∑
j=1

|F jb − F
j

b̃
|.

Thus, let us look at the following difference for any trajectory X from (2.1) with drift b∗Y ,

|F ib − F
i
b̃| =

∣∣∣∣∣
n−1∑
k=0

(bi − b̃i)
σ2

(Xk∆)(X(k+1)∆ −Xk∆)− ∆

2

(bi
2 − b̃2i )
σ2

(Xk∆)

∣∣∣∣∣ . (7.2)

First, we use the relation
n−1∑
k=0

f(Xk∆)(X(k+1)∆ −Xk∆) =

∫ T

0
f(Xξ(s))dXs, ξ(s) = k∆, k∆ ≤ s < (k + 1)∆. (7.3)

Then we obtain:

E

[∣∣∣∣∣
n−1∑
k=0

(bi − b̃i)
σ2

(Xk∆)(X(k+1)∆ −Xk∆)

∣∣∣∣∣
]
≤ E

[∣∣∣∣∣
∫ T

0

(bi − b̃i)
σ2

(Xξ(s))b
∗
Y (Xξ(s))ds

∣∣∣∣∣
]

+E

[∣∣∣∣∣
∫ T

0

(bi − b̃i)
σ2

(Xξ(s))σ(Xξ(s))dWs

∣∣∣∣∣
]
.

The second term of the right hand side is bounded as follows,

E

[∣∣∣∣∣
∫ T

0

(bi − b̃i)
σ2

(Xξ(s))σ(Xξ(s))dWs

∣∣∣∣∣
]
≤ E

(∫ T

0

(bi − b̃i)
σ2

(Xξ(s))σ(Xξ(s))dWs

)2
1/2

= E

[∫ T

0

(bi − b̃i)2

σ4
(Xξ(s))σ

2(Xξ(s))ds

]1/2

≤
√
T

σ0
‖bi − b̃i‖T .

Besides,

E

[∣∣∣∣∣
∫ T

0

(bi − b̃i)
σ2

(Xξ(s))b
∗
Y (Xξ(s))ds

∣∣∣∣∣
]
≤

∫ T

0
E

((bi − b̃i)
σ2

(Xξ(s))

)2
1/2

E
[
(b∗Y (Xξ(s))

2
]1/2

ds
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But by Assumption 2.1, |b∗Y (x)| =
∑K

i=1 |b∗i (x)|1{Y=i} ≤ C0(1 + |x|)
∑K

i=1 1{Y=i} = C0(1 + |x|). Thus,

E

[∣∣∣∣∣
∫ T

0

(bi − b̃i)
σ2

(Xξ(s))b
∗
Y (Xξ(s))ds

∣∣∣∣∣
]

≤
∫ T

0
E

((bi − b̃i)
σ2

(Xξ(s))

)2
1/2

ds E

C2
0

(
1 + sup

s∈[0,T ]
Xs

)2
1/2

≤ C1 T

σ2
0

‖bi − b̃i‖T .

Let us now deal with the second term of Equation (7.2) with the same arguments,

E

[∣∣∣∣∣∆
n−1∑
k=0

(bi
2 − b̃2i )
σ2

(Xk∆)

∣∣∣∣∣
]
≤ 1

σ2
0

E
[∣∣∣∣∫ T

0
(bi − b̃i)(bi + b̃i)(Xξ(s))ds

∣∣∣∣] .
Then, Cauchy-Schwarz inequality leads to

E

[∣∣∣∣∣∆
n−1∑
k=0

(bi
2 − b̃2i )
σ2

(Xk∆)

∣∣∣∣∣
]
≤ 1

σ2
0

∫ T

0
E
[
(bi − b̃i)2(Xξ(s))

]1/2
E
[
(bi + b̃i)

2(Xξ(s))
]1/2

ds

≤ C2T

σ2
0

‖bi − b̃i‖T ,

which concludes the proof. �

7.2. Proofs of Section 2.

7.2.1. Proof of Proposition 2.3. The probability measure P can be decomposed in P =
∑K

i=1 piPi,
with Pi := P(.|Y = i). Denote P0 the probability measure under which (Xt)t≥0 is solution of dXt =

σ(Xt)dW̃t where W̃ is a Brownian motion under P0. Then Girsanov’s Theorem (see e.g. Jacod &
Shiryaev, 2003) implies

Φi
t :=

dPi|FXt
dP0|FXt

= exp

(∫ t

0

bi
σ2

(Xs)dXs −
∫ t

0

b2i
2σ2

(Xs)ds

)
.

Thus, for t ≥ 0, we have that

dP|FXt =

K∑
i=1

pidPi|FXt =

K∑
i=1

piΦ
i
tdP0|FXt . (7.4)

Denote

Ψi
t :=

dPi|FXt
dP|FXt

=
Φi
t dP0|FXt∑K

j=1 pjΦ
j
t dP0|FXt

=
Φi
t∑K

j=1 pjΦ
j
t

. (7.5)

Moreover, let h : {1, . . . ,K} → R a bounded function and Z an FXt -measurable bounded random
variable. We have that

E [h(Y )Z] = E [h(Y )E [Z|σ(Y )]] = E

[
K∑
i=1

h(i)1{Y=i}Ei [Z]

]

= E

[
K∑
i=1

h(i)1{Y=i}E
[
Ψi
tZ
]]

=

K∑
i=1

pih(i)E
[
Ψi
tZ
]

= E

[(
K∑
i=1

h(i)piΨ
i
t

)
Z

]
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giving

E
[
h(Y )|FXt

]
=

K∑
i=1

pih(i)Ψi
t P− a.s.

Using definition (7.5) we obtain

E
[
h(Y )|FXt

]
=

∑K
i=1 h(i)piΦ

i
t∑K

i=1 piΦ
i
t

.

Thus, for h(x) = 1{i}(x) we obtain the expected result. �

7.2.2. Proof of Proposition 2.4. Let 0 < t ≤ T . For gt ∈ Gt, we have

R(gt)−R(g∗t ) = E
[
1{gt(X)6=Y } − 1{g∗t (X)6=Y }

]
= E

 K∑
i=1

K∑
j=1

K∑
k=1

π∗t (i)
(
1{gt(X)6=i} − 1{g∗t (X)6=i}

)
1{gt(X)=k}1{g∗t (X)=j}


= E

 K∑
i=1

K∑
k 6=i

π∗t (i)1{gt(X)=k}1{g∗t (X)=i} −
K∑
k=1

K∑
i 6=k

π∗t (k)1{gt(X)=k}1{g∗t (X)=i}


= E

 K∑
i=1

K∑
k 6=i

(π∗t (i)− π∗t (k))1{gt(X)=k}1{g∗t (X)=i}


and (π∗t (i)− π∗t (k)) = |π∗t (i)− π∗t (k)| on the event {g∗t (X) = i}. �

7.3. Proofs of Section 3.

7.3.1. Proof of Proposition 3.1. According to Proposition 2.4 we get

R(gb)−R(g∗) = E

 K∑
i=1

K∑
k 6=i
|π∗(i)− π∗(k)|1{gb(X)=k}1{g∗(X)=i}


≤ 2E

[
max
i∈Y
|π∗(i)− πb(i)|1{gb(X)6=g∗(X)}

]
≤ 2

K∑
i=1

E [|π∗(i)− πb(i)|]

Since,
|πb(i)− π∗(i)| ≤ |πb(i)− πb∗(i)|+ |πb∗(i)− π∗(i)|.

(with πb∗(i) := ϕi(F b∗) given by (3.1)), then

R(gb)−R(g∗) ≤ 2

K∑
i=1

E [|πb∗(i)− π∗(i)] + 2

K∑
i=1

E [|πb(i)− πb∗(i)|] .

Lemma 7.4 and Lemma 7.5 lead to the following bound

R(gb)−R(g∗) ≤ C1

√
∆ +

C2K
2

σ2
0

‖b− b∗‖T

with C1, C2 two positive constants depending on T,C0.
�
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7.3.2. Proof of Proposition 3.5. Denote Ij = [j, j+1[. Following the proof of Van Der Vaart & Wellner
(1996) Corollary 2.7.4, we know that there exists Hk,εj an εj-net of {h|Ij , h ∈ Hk} with respect to
‖ · ‖∞:

Hk,εj = {bj,kj , kj = 1, . . . , Nεj}

with cardinal Nεj satisfying

log(Nεj ) ≤ Ck
(
Mj

εj

)1/k

, Mj = C0(1 + |j|)γ .

Let ε > 0. Set εj = εmax(1, |j|)1+γ+k = ε|j| (with k ≥ 1 and γ ≥ 1), and

Hε :=

∑
j∈Z

bj,kj1Ij , kj ∈ {1, . . . Nεj}


Let b ∈ Hk, there exist bj,kj ∈ Hk,εj such that supIj |b− bj,kj | < εj , then

E

b−∑
j∈Z

bj,kj1Ij

2

(Xt)

 ≤
∑
j∈Z

ε2
j P(Xt ∈ [j, j + 1[).

Besides for q = 4 + 2γ + 2k, and j 6= {−1, 0},

P(Xt ∈ [j, j + 1[) = E
[

1

|Xt|q
|Xt|q1{Xt∈[j,j+1[}

]
≤

E[supt∈[0,T ] |Xt|q]
|j|q ∧ |j + 1|q

.

Thus as ε0 = ε−1 = ε, it comes

E

 sup
t∈[0,T ]

b−∑
j∈Z

bj,kj1Ij

2

(Xt)

 ≤
∑
j≥1

ε2
j E[supt∈[0,T ] |Xt|q]
|j|q ∧ |j + 1|q

+ 2ε ≤ Cε

where C is a positive constant.
Note that there exists j0 (depending on ε) such that for all |j| ≥ j0, εj > Mj and consequently, for

all |j| ≥ j0, one may take Nεj = 1. Hence with this choice,

CardHε =
∏
j∈Z

Nεj ,

and

log(CardHε) ≤ Ckε−1/k
∑
j∈Z

|j|γ/k

|j|(k+γ+1)/k
≤ Cε−1/k

where C is a positive constant (depending on k). �

7.3.3. Proof of Proposition 3.3. Consider bε such that maxi ‖b∗i − bεi‖T ≤ ε. Similarly as in Proof 7.3.1
we obtain:

Ê [R(gbε)−R(g∗)] ≤ 2
K∑
i=1

E [πbε(i)− πb∗(i)] + 2
K∑
i=1

E [πb∗(i)− π∗(i)]

≤ C(
√

∆ + ε)
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where C is a positive constant depending on T,C0, σ0. Then, it comes, by definition of estimator b̂ε,

R(g
b̂ε

)−R(g∗) ≤ R(g
b̂ε

)−R(gbε) + C(∆ + ε)

≤ R(g
b̂ε

)− R̂(g
b̂ε

) + R̂(g
b̂ε

)−R(gbε) + C(
√

∆ + ε)

≤ R(g
b̂ε

)− R̂(g
b̂ε

) + R̂(gbε)−R(gbε) + C(
√

∆ + ε)

≤ 2 max
b∈Bε
|R̂(gb)−R(gb)|+ C(

√
∆ + ε).

Moreover, according to Hoeffding’s inequality it comes

P̂

(
max
b∈Bε
|R̂(gb)−R(gb)| ≥ t

)
≤ min(1, 2CardBε exp(−2Nt2)).

Finally, integrating the last equation it comes:

Ê

[
max
b∈Bε
|R̂(gb)−R(gb)|

]
≤

∫ ∞
0

min(1, exp(log(2CardBε)))− 2Nt2)dt

≤
∫ ∞

0
exp

(
−(2Nt2 − log(2CardBε))+

)
dt

=

√
log(2CardBε)

2N
+

∫
t≥

√
log(2CardBε)

2N

exp
(
−(2Nt2 − log(2CardBε))

)
dt

≤
√

log(2CardBε)
2N

+

√
π

2
√

2N

using
∫∞

0 e−u
2
du =

√
π/2. Gathering the results we obtain

E
[
R(g

b̂ε
)−R(g∗)

]
≤
√

log(2CardBε)
2N

+

√
π

2
√

2N
+ C(

√
∆ + ε) ≤ 2

√
log(2CardBε)

2N
+ C(

√
∆ + ε)

(since there are at least two elements in Bε). �

7.4. Proofs of Section 4.

7.4.1. Proof of Theorem 4.3. Let us remind a generalised version of a key result, from Dacunha-
Castelle & Duflo (1983) for example or Guyon (1995).

Lemma 7.6. Consider θ̂N,n = argmin
θ∈Θ

γN,n(θ), with γN,n a contrast process. If

(1) Θ ⊂ R compact, θ ∈ int(Θ)

(2) The contrast function θ → γN,n(θ) is continuous P̂−a.s., and θ → γ(θ, θ∗) is a continuous
contrast function which has a unique minimum in θ∗.

(3) γN,n(θ) + c(θ∗)
P̂−→
N,n

γ(θ, θ∗).

(4) ∃εk → 0, ∀k, lim
N,n

P̂

(
sup

|α−β|≤k−1

|γN,n(α)− γN,n(β)| ≥ εk

)
= 0

then

θ̂N,n
P̂−→ θ∗.

Proof. Denote
ωN,n(1/k) = sup

|θ−θ′|≤k−1

{|γN,n(θ′)− γN,n(θ)|}.
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Let a > 0. The function γ satisfies γ(θ∗, θ∗) = 0 and by continuity, there exists ε > 0 such that on
Θ \ I the function γ(θ∗, ·) is bounded from below by 2ε where I = [θ∗ − a, θ∗ + a].

Let k large enough such that εk < ε. Since Θ is a compact set, we may consider a finite recovering
of Θ \ I by Mk intervals Ii = [θi − k−1, θi + k−1]. When θ ∈ Ii:

γN,n(θ) ≥ γN,n(θi)− |γN,n(θi)− γN,n(θ)|,
inf

θ∈Θ\I
γN,n(θ) ≥ inf

1≤i≤Mk

γN,n(θi)− wN,n(1/k)

and thus

{θ̂N,n /∈ [θ∗ − a, θ∗ + a]} ⊆
{

min
θ∈Θ\I

γN,n(θ) < γN,n(θ∗)

}
⊆
{

inf
1≤i≤Mk

γN,n(θi)− γN,n(θ∗)− ωN,n(1/k) < 0

}
.

Finally, for all η > 0,

P̂(θ̂N,n /∈ I) ≤ P̂(wN,n(1/k) > η) + P̂

(
inf

1≤i≤Mk

(γN,n(θi)− γN,n(θ∗)) ≤ η
)
.

But we know that the first term of the right hand side goes to 0, and as previously

inf
1≤i≤Mk

(γN,n(θi)− γN,n(θ∗))
P̂→

N,n→∞
γ(θ∗, θi) ≥ 2ε

thus, choosing η = ε in the previous

P̂(|θ̂N,n − θ∗| ≥ a) →
N,n→∞

0.

�

In the following we consider that we are in the class number i estimating θ∗i from the Ni trajectories,
and the index i is omitted (and P̂, Ê refer to the class i of the learning sample).

Let us remind that

γN,n(θ) :=
1

N

N∑
j=1

n−1∑
k=0

∆

2
b2(θ,X

(j)
k∆)− b(θ,X(j)

k∆)(X
(j)
(k+1)∆ −X

(j)
k∆).

For θ ∈ Θ we denote

γN (θ) :=
1

N

N∑
j=1

{
1

2

∫ T

0
b2(θ,X(j)

s )ds−
∫ T

0
b(θ,X(j)

s )dX(j)
s

}
thus

γN,n(θ) = γN (θ) +R1,N,n −R2,N,n (7.6)
with

R1,N,n :=
1

N

N∑
j=1

{∫ T

0
b(θ,X(j)

s )dX(j)
s −

(
n−1∑
k=0

b(θ,X
(j)
k∆)(X

(j)
(k+1)∆ −X

(j)
k∆)

)}
=:

1

N

N∑
j=1

R
(j)
1,n

R2,N,n :=
1

N

N∑
j=1

{
1

2

∫ T

0
b2(θ,X(j)

s )ds−

(
1

2

n−1∑
k=0

∆b2(θ,X
(j)
k∆)

)}
=:

1

2N

N∑
j=1

R
(j)
2,n.

Moreover,

γN (θ) =
1

N

N∑
j=1

{
1

2

∫ T

0
b2(θ,X(j)

s )ds−
∫ T

0
b(θ,X(j)

s )[b(θ∗, X(j)
s )ds+ dW (j)

s ]

}
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and under our assumptions we have

Ê

[∣∣∣∣∫ T

0
b(θ,X(j)

s )b(θ∗, X(j)
s )ds

∣∣∣∣] <∞ Ê

[∣∣∣∣∫ T

0
b2(θ,X(j)

s )ds

∣∣∣∣] <∞,
thus the Law of Large Number implies that

γN (θ)
P̂→

N→∞

1

2
Ê

[∫ T

0
b2(θ,Xs)ds

]
− Ê

[∫ T

0
b(θ,Xs)b(θ

∗, Xs)ds

]
=: Γ(θ, θ∗). (7.7)

Now,

R
(j)
1,n

=

∫ T

0
b(θ,X(j)

s )dX(j)
s −

n−1∑
k=0

b(θ,X
(j)
k∆)(X

(j)
(k+1)∆ −X

(j)
k∆)

=

∫ T

0
b(θ,X(j)

s )
(
b(θ∗, X(j)

s )ds+ dW (j)
s

)
−
n−1∑
k=0

b(θ,X
(j)
k∆)

[∫ (k+1)∆

k∆
b(θ∗, X(j)

s )ds+W
(j)
(k+1)∆ −W

(j)
k∆

]

=:

∫ T

0
H(j)
s,ndW

(j)
s + ρ(j)

n

with

H(j)
s,n :=

n−1∑
k=0

1]k∆,(k+1)∆](s)(b(θ,X
(j)
k∆)− b(θ,X(j)

s )).

The first term of the right hand side is

ρ(j)
n =

n−1∑
k=0

∫ (k+1)∆

k∆
b(θ,X

(j)
k∆)b(θ∗, X(j)

s )ds−
∫ T

0
b(θ,X(j)

s )b(θ∗, X(j)
s )ds

=
n−1∑
k=0

∫ (k+1)∆

k∆
b(θ∗, X(j)

s )(b(θ,X
(j)
k∆)− b(θ,X(j)

s ))ds

then according to the assumptions on b we get

Ê[|ρ(j)
n |] ≤ Ê

[
n−1∑
k=0

∫ (k+1)∆

k∆
C

(
1 + sup

s∈[0,T ]
|X(j)

s |

)
|X(j)

k∆ −X
(j)
s |ds

]

≤ Ê

[
C(1 + sup

s∈[0,T ]
|X(j)

s |)2

]1/2

Ê

(n−1∑
k=0

∫ (k+1)∆

k∆
|X(j)

k∆ −X
(j)
s |ds

)2
1/2

with

Ê

(n−1∑
k=0

∫ (k+1)∆

k∆
|X(j)

k∆ −X
(j)
s |ds

)2
 ≤ Ê

[(
1

T

∫ T

0
|X(j)

ξ(s) −X
(j)
s |ds

)2
]

≤ T Ê

[
1

T

∫ T

0
|X(j)

ξ(s) −X
(j)
s |2ds

]
≤ CT∆

with ξ is defined by Equation (7.3). We have obtained

Ê|ρ(j)
n | ≤ CT

√
∆.
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(where the constants C can change from a line to another). Then similarly, the martingale term is
controlled

Ê

[∣∣∣∣∫ T

0
H(j)
s,ndW

(j)
s

∣∣∣∣] ≤ (Ê [ ∫ T

0

(
H(j)
s,n

)2
ds

])1/2

≤ CT
√

∆.

Then, R(j)
2,n =

∑n−1
k=0

∫ (k+1)∆
k∆

(
b2(θ,X

(j)
k∆)− b2(θ,X

(j)
s )
)
ds and we obtain

Ê
[∣∣∣R(j)

2,n

∣∣∣] ≤ n−1∑
k=0

∫ (k+1)∆

k∆
C
√

∆ = CT
√

∆

using assumptions on b, which do not depend on N . Thus, we have shown that

γN,n(θ) +
1

2
Eθ∗

[∫ T

0
b2(θ∗, Xs)ds

]
→

N→∞,n→∞
Γ(θ, θ∗) +

1

2
Eθ∗

[∫ T

0
b2(θ∗, Xs)ds

]
=

1

2
Eθ∗

[∫ T

0
(b(θ∗, Xs)− b(θ,Xs))

2ds

]
=: γ(θ, θ∗). (7.8)

To end the proof let us look at the following random variable

ωN,n(ε) = sup
|α−β|<ε

{|γN,n(α)− γN,n(β)|}.

Let η > 0, we have from the triangular inequality

{ωN,n(ε) > η} ⊆ {sup
α∈Θ
|γN,n(α)| > η/4} ∪ { sup

|α−β|<ε
|γ(α, θ∗)− γ(β, θ∗)| > η/2}

thus, it is enough to study the convergence in probability of the random variable sup
α∈Θ
|γN,n(α)| in

order to verify the remaining condition 4) of Lemma 7.6 since θ → γ(θ, θ∗) is continuous on Θ.

The verification of the remaining condition 4) will follow from the application of Lemma 3.1. in
Yoshida (1990) (with k = 1, p = ` = 2 and T = {N,n}) considering

fN,n(θ) := γN,n(θ) + c(θ∗)− γ(θ, θ∗).

Indeed, using assumption (4.2) on function b and standard arguments as previously, one can check
that fN,n fulfills the assumptions of this lemma, namely :

- Ê[(fN,n(α)− fN,n(β))2] ≤ C|α− β|2

- Ê[fN,n(θ)2] ≤ C

- fN,n(θ)
P̂θ∗→ 0

Using the uniform continuity of γ(·, θ∗), we thus verify the condition 4) of Lemma 7.6 by taking a
sequence εk → 0 such that {sup|α−β|<k−1 |γ(α, θ∗) − γ(β, θ∗)| > εk} = ∅. The statement of Theorem
4.3 follows then by application of Lemma 7.6. �

7.4.2. Proof of Theorem 4.4. We follow the scheme of proof of Dacunha-Castelle & Duflo (1983)
Chapter 3.
Here the derivative are the derivative according to θ∗.

γ̇N,n(θ̂) = 0 = γ̇N,n(θ∗) + (θ̂ − θ∗)γ̈N,n(θ̃)

with θ̃ some point between θ̂ and θ∗. This yields to
√
N(θ̂ − θ∗) = −

γ̇N,n(θ∗)

γ̈N,n(θ̃)

√
N. (7.9)
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Let us study first the denominator. We have
√
Nγ̇N,n(θ∗) =

√
Nγ̇N (θ∗) +

√
NṘ1,N,n +

√
NṘ2,N,n

where R1,N,n, R2,N,n are given by (7.6). Precisely,

γ̇N (θ∗) =
1

N

N∑
j=1

∫ T

0
ḃ(θ∗, X(j)

s )
[
b(θ∗, X(j)

s )ds− dX(j)
s

]
= − 1

N

N∑
j=1

∫ T

0
ḃ(θ∗, X(j)

s )dW (j)
s

then we obtain

−
√
Nγ̇N (θ∗) →

N→∞
N
(

0,Var
(∫ T

0
ḃ(θ∗, Xs)dWs

))
= N

(
0,E

[∫ T

0
ḃ2(θ∗, Xs)ds

])
(7.10)

where the convergence in distribution takes places under P̂. Moreover, as previously, (see proof Section
7.4.1),

Ê[Ṙ1,N,n] =
1

N

N∑
j=1

Ê

([
n−1∑
k=0

ḃ(θ∗, X
(j)
k∆)(X

(j)
(k+1)∆ −X

(j)
k∆)

]
−
∫ T

0
ḃ(θ∗, X(j)

s )dX(j)
s

)
≤ C
√

∆

and the same for Ṙ2,N,n, thus
√
NÊ(Ṙ1,N,n + Ṙ2,N,n) goes to zero if N∆→ 0 as soon as x 7→ ḃ(θ∗, x)

is Lipschitz.

Finally, let us study γ̈N,n(θ̃) given by

γ̈N,n(θ̃) = γ̈N (θ̃) + R̈1,N,n(θ̃) + R̈2,N,n(θ̃)

with

γ̈N (θ̃) = − 1

N

N∑
j=1

∫ T

0
b̈(θ̃, X(j)

s )dW (j)
s +

1

N

N∑
j=1

∫ T

0
ḃ2(θ̃, X(j)

s )ds.

According to the Lipschitz-assumption of function ḃ(·, x), have :

1

N

N∑
j=1

∫ T

0
ḃ2(θ̃, X(j)

s )ds =
1

N

N∑
j=1

∫ T

0
ḃ2(θ̃, X(j)

s )− ḃ2(θ∗, X(j)
s )ds+

1

N

N∑
j=1

∫ T

0
ḃ2(θ∗, X(j)

s )ds

≤ C
1

N

N∑
j=1

∫ T

0
(1 + |X(j)

s |β)ds |θ̂ − θ∗|+ 1

N

N∑
j=1

∫ T

0
ḃ2(θ∗, X(j)

s )ds

(where C depends on the Lipschitz constant of θ 7→ ḃ(θ, ·): C ′′). Then as Ê[|θ̂ − θ∗|] → 0 (from
Theorem 4.3) and as the expectation of the second term goes to E

[∫ T
0 ḃ2(θ∗, Xs)ds

]
, then we have

Ê[γ̈N (θ̃)]→ E
[∫ T

0
ḃ2(θ∗, Xs)ds

]
.

This proves the attended result. �

7.4.3. Proof of Proposition 4.8. In order to prove the consistency of the procedure we establish the
following results. In the sequel, we denote

h∗ := hθ∗ .

The following notations are recalled:

hθ∗ = (h1
θ∗ , . . . , h

K
θ∗), h

i
θ∗(X) =

1

K

K∑
`=1

log

(
1− πbθ∗ (`)
1− πbθ∗ (i)

)
,
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also

hε,iθ (X) =
1

K

K∑
`=1

log

(
1− πεbθ(`)
1− πεbθ(i)

)
,

with

πεbθ(i) := πbθ(i)1{πbθ (i0)<1−ε}+1{πbθ (i0)≥1−ε}

((
πbθ(i) +

πbθ(i0)− (1− ε)
K − 1

)
1{i 6=i0} + (1− ε)1{i=i0}

)
.

Lemma 7.7. For 0 < ε < 1
3 , and let i0 = argmax

i∈Y
πθ∗(i) one has

Rφ(hεθ∗)−Rφ(hθ∗) ≤
3

2
KP (πθ∗(i0) ≥ 1− ε) .

Proof of Lemma 7.7. By definition of the φ-risk Rφ given in Equation (4.4), we have

Rφ(hεθ∗)−Rφ(hθ∗) =
K∑
i=1

E
[
(1− πθ∗(i))

(
exp(hε,iθ∗ (X))− exp(hiθ∗(X))

)]
=

K∑
i=1

E
[
(1− πθ∗(i))

(
exp(hε,iθ∗ (X))− exp(hiθ∗(X))

)
1{πθ∗ (i0)≥1−ε}

]
≤

K∑
i=1

E
[
(1− πθ∗(i)) exp(hε,iθ∗ (X))1{πθ∗ (i0)≥1−ε}

]
.

On the set {πθ∗(i0) ≥ 1− ε}, by definition we have πεθ∗(i0) = 1− ε then πεθ∗(i) ≤ ε for i ∈ Y. Then,
we have

hε,i0θ∗ (X) =
1

K

∑
i∈Y

log

(
1− πεθ∗(i)

ε

)
≤ log

(
1

ε

)
.

Then, for i 6= i0, πεθ∗(i) ≤ ε and for ` 6= i, 1− πεθ∗(`) ≤ 0, thus

hε,iθ∗ (X) ≤ log

(
1

1− πεθ∗(i)

)
≤ log

(
1

1− ε

)
.

Hence, we get
(1− πθ∗(i0)) exp(hε,i0θ∗ (X))1{πθ∗ (i0)≥1−ε} ≤ 1

and for i 6= i0

(1− πθ∗(i)) exp(hε,iθ∗ (X))1{πθ∗ (i0)≥1−ε} ≤ 3/2.

Therefore combined the previous inequalities, we obtain that

Rφ(hεθ∗)−Rφ(hθ∗) ≤
3

2
KP (πθ∗(i0) ≥ 1− ε) .

�

Moreover, the following holds for the empirical score function given in Equation (4.6).

Lemma 7.8. Let 0 < ε < 1
3 . The following holds

|Rφ(h
ε
θ∗)−Rφ(hεθ∗)| ≤

CK
√

∆

ε2
.

where C is a positive constant depending on T and C0.
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Proof of Lemma 7.8. From the definition of hεθ given by Equation (4.6) we have for i ∈ Y, |hε,iθ (X)| ≤
log
(

1
ε

)
, |hε,iθ (X)| ≤ log

(
1
ε

)
. Let us study the difference:

|Rφ(h
ε
θ∗)−Rφ(hεθ∗)| = E

[
K∑
i=1

1{Y 6=i}

(
φ(−hε,iθ (X))− φ(−hε,iθ (X))

)]
The function φ is L−Lipschitz with constant L ≤ 1

ε , then it comes

|Rφ(h
ε
θ∗)−Rφ(hεθ∗)| ≤

1

ε
E

[
K∑
i=1

1{Y 6=i}

∣∣∣hε,iθ (X)− hε,iθ (X)
∣∣∣] ,

and then the Mean Value Theorem ensures that

|Rφ(h
ε
θ∗)−Rφ(hεθ∗)| ≤

2

ε2

K∑
i=1

E|πεbθ∗ (i)− π
ε
bθ∗

(i)|.

Now denote i0 = argmax
i∈Y

πθ∗(i) and i
′
0 = argmax

i∈Y
πθ∗(i). We observe that if πεbθ∗ (i

′
0) < 1 − ε and

πεbθ∗ (i0) ≥ 1− ε then:

|πεbθ∗ (i0)− πεbθ∗ (i0)| ≤ |πbθ∗ (i0)− (1− ε)| ≤ |πbθ∗ (i0)− πbθ∗ (i0)|

and if i 6= i0

|πεbθ∗ (i)− π
ε
bθ∗

(i)| ≤
∣∣∣∣πbθ∗ (i)− (πbθ∗ (i) +

πbθ∗ (i0)− (1− ε)
K − 1

)∣∣∣∣
≤ |πbθ∗ (i)− πbθ∗ (i)|+

1

K − 1
|πbθ∗ (i0)− (1− ε)|

≤ |πbθ∗ (i)− πbθ∗ (i)|+
1

K − 1
|πbθ∗ (i0)− πbθ∗ (i0)|.

Using similar arguments, we obtain the same bound in the other configurations. Therefore, we get
K∑
i=1

E[|πεbθ∗ (i)− π
ε
bθ∗

(i)|] ≤ 3
K∑
i=1

E[|πbθ∗ (i)− πbθ∗ (i)|],

and thus

|Rφ(h
ε
θ∗)−Rφ(hεθ∗)| ≤

6

ε2

K∑
i=1

E|πbθ∗ (i)− πbθ∗ (i)|. (7.11)

Hence, applying Lemma 7.4, in Inequality (7.11), we obtain the desired result. �

Now, we establish the consistency of our procedure. Denote by BN the 1
N1+(α/2) -net of ΘK w.r.t

the L∞ norm ‖.‖. Since Θ = [0, 1]d, we have CardBN ≤ CNKd(1+(α/2)).

Let θ̃ = argmin
θ∈ΘK

Rφ

(
h
ε
θ

)
. From the definition of θ̃, Rφ(h

ε
θ̃)−Rφ(h

ε
θ∗) < 0, then

Rφ(h
ε
θ̂)−Rφ(hθ∗) ≤ Rφ(h

ε
θ̂)−Rφ(h

ε
θ̃) +Rφ(h

ε
θ∗)−Rφ(hεθ∗) +Rφ(hεθ∗)−Rφ(hθ∗).

Applying Lemma 7.7 and 7.8 leads to

Rφ(h
ε
θ∗)−Rφ(hεθ∗) +Rφ(hεθ∗)−Rφ(hθ∗) ≤

CK
√

∆

ε2
+

3

2
P (πθ∗(i0) ≥ 1− ε) .

Therefore, it remains to control Rφ(h
ε
θ̂)−Rφ(h

ε
θ̃). Let θN ∈ BN such that ‖θ̂−θN‖ ≤ 1

N1+(α/2) . Denote

Dθ := Rφ(h
ε
θ)−Rφ(h

ε
θ̃), D̂θ := R̂φ(h

ε
θ)− R̂φ(h

ε
θ̃).
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0 ≤ Rφ(h
ε
θ̂)−Rφ(h

ε
θ̃) ≤ max

θ∈BN
|Dθ − D̂θ|+ |Rφ(h

ε
θ̂)−Rφ(h

ε
θN

)|+ |R̂φ(h
ε
θ̂)− R̂φ(h

ε
θN

)|. (7.12)

Now, we bound each term of the previous inequality. Since, for each i ∈ Y, |hε,iθ (X)| ≤ log
(

1
ε

)
and

since the function φ is L−Lipschitz with constant L ≤ 1
ε , we have that for each j ∈ {1, . . . , N} and

θ ∈ BN ∣∣∣∣∣
K∑
i=1

1{Y (j) 6=i}φ
(
−hε,iθ

(
X

(j)
))
−

K∑
i=1

1{Y (j) 6=i}φ
(
−hε,i

θ̃

(
X

(j)
))∣∣∣∣∣ ≤ 2K log(1/ε)

ε
.

Therefore, from Hoeffding’s inequality, we deduce (as in Section 7.3.3), the following bound

Ê

[
max
θ∈BN

|Dθ − D̂θ|
]
≤ 8K

√
log(CardBN )

ε2N
log

(
1

ε

)
. (7.13)

Let us study the term |Rφ(h
ε
θ̂) − Rφ(h

ε
θN

)|. Using same arguments as in Lemma 7.8 (see Equa-
tion (7.11)), we have

Ê
[
|Rφ(h

ε
θ̂)−Rφ(h

ε
θN

)|
]
≤ 6

ε2

K∑
i=1

E
[
|πb

θ̂
(i)− πbθN (i)|

]
.

From Lemma 7.5 and by definition of θN , we obtain

Ê
[
|Rφ(h

ε
θ̂)−Rφ(h

ε
θN

)|
]
≤ CK2

ε2N1+(α/2)
, (7.14)

where C is a positive constant depending on T , σ0, and C0.

To conclude the proof it remains to control the term |R̂φ(h
ε
θ̂)−R̂φ(h

ε
θN

)|. The empirical risk R̂φ and θ̂
depend on DN then this control requires a different approach. Let j ∈ {1, . . . , N}, we denote by Êj the
expectation integrated with respect to (X

(j)
, Y (j)). Conditional on (X(1), Y (1)), . . . , (X(j−1), Y (j−1)),

(X(j+1), Y (j+1)), . . . , (X(N), Y (N)), using similar arguments as in Lemma 7.8, we get

Êj

[∣∣∣∣∣
K∑
i=1

1{Y (j) 6=i}φ
(
−hε,i

θ̂

(
X

(j)
))
−

K∑
i=1

1{Y (j) 6=i}φ
(
−hε,iθN

(
X

(j)
))∣∣∣∣∣
]
≤ 6

ε2

K∑
i=1

Êj

[
|πjb

θ̂
(i)− πjbθN (i)|

]
.

Denote for each i, and θ ∈ ΘK , ∆
(j)
k X := X

(j)
(k+1)∆ −X

(j)
k∆,

πjbθ(i) = φi

(
F θ

(
X

(j)
))

, F
i
θ(X

(j)
) =

n−1∑
k=0

b
(
θi, X

(j)
k∆

)
σ2(X

(j)
k∆)

(
∆

(j)
k X

)
− ∆

2

b2(θi, X
(j)
k∆)

σ2(X
(j)
k∆)

.

Applying Cauchy-Schwartz Inequality, we obtain

Êj

∣∣∣∣∣
n−1∑
k=0

b(θ̂i, X
(j)
k∆)− b(θN,i, X(j)

k∆)

σ2(X
(j)
k∆)

(
∆

(j)
k X

)∣∣∣∣∣ ≤
n−1∑
k=0

√√√√Êj

[
(b(θ̂i, X

(j)
k∆)− b(θN,i, X(j)

k∆))2

σ4(X
(j)
k∆)

]
Êj

[(
∆

(j)
k X

)2
]
.

Since as ‖θ̂ − θN‖ ≤ 1
N1+(α/2) the first expectation in the r.h.s. is bounded, then Lemma 7.2 controls

the second term. Finally, we get

Êj

[∣∣∣∣∣
n−1∑
k=0

b(θ̂i, X
(j)
k∆)− b(θN,i, X(j)

k∆)

σ2(X
(j)
k∆)

(
∆

(j)
k X

)∣∣∣∣∣
]
≤ 1

σ2
0

CT

N1+(α/2)
√

∆
.
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Furthermore,

Êj

[∣∣∣∣∣
n−1∑
k=0

∆
b2(θ̂i, X

(j)
k∆)− b2(θN,i, X

(j)
k∆)

σ2(X
(j)
k∆)

∣∣∣∣∣
]
≤ CT
σ2

0N
1+(α/2)

.

Combining the previous inequalities, we obtain

Ê
[
|R̂φ(h

ε
θ̂)− R̂φ(h

ε
θN

)|
]
≤ CT

K2

√
∆ε2N1+(α/2)

. (7.15)

With the bounds from Lemma 7.7, 7.8, and Equations (7.13), (7.14), (7.15) we obtain an upper
bound for Ê

[
Rφ(h

ε
θ̂)−Rφ(hθ∗)

]
. Now to ensure the convergence it is sufficient to choose ε = O(N−β)

with 0 < β < min(1/2, α/4) (as ∆ = O(N−α)). This concludes the proof. �

7.4.4. Proof of Theorem 4.10. For each h ∈ H = {h = (h1, . . . , hK) : XT → RK} being a vector of
score functions, we define lh(Z,X) =

∑K
i=1 φ(Zih

i(X)) with φ : x 7→ (1 − x)2 the least squares loss
and Zi = 2 1{Y=i} − 1 for each i ∈ Y. First, we prove the following Lemma

Lemma 7.9. Let h ∈ H, such that ‖h‖∞ ≤ 1. The following holds

E
[(
lh(Z,X)− lhθ∗ (Z,X)

)2] ≤ 16K (Rφ(h)−Rφ(hθ∗)) .

Proof. Note that for each i ∈ Y, we have |Zi| = 1 and

φ(Zih
i(X))− φ(Zih

i
θ∗(X)) = (hi(X)− hiθ∗(X))(hi(X) + hiθ∗(X)− 2Zi). (7.16)

Hence, from Cauchy-Schwarz Inequality, as |Zi| = 1 and |hi(X)| ≤ 1, we have

E
[(
lh(Z,X)− lhθ∗ (Z,X)

)2] ≤ K

K∑
i=1

E
[(
φ(Zih

i(X))− φ(Zih
i
θ∗(X)

)2]
≤ 16K

K∑
i=1

E
[
(hi(X)− hiθ∗(X))2

]
.

Now since E [Zi|X] = 2πθ∗(i)− 1 = hiθ∗(X), we deduce from (4.8) and (7.16) that

Rφ(h)−Rφ(hθ∗) =
K∑
i=1

E
[
(hi(X)− hiθ∗(X))2

]
,

which gives the result. �

Now, we consider θ̃ := argmin
θ∈ΘK

Rφ
(
hθ
)
and we introduce

Dθ := Rφ(hθ)−Rφ(h
θ̃
)), D̂θ := R̂φ(hθ)− R̂φ(h

θ̃
)). (7.17)

Then
Rφ
(
h
θ̂

)
−Rφ(hθ∗) ≤ Dθ̂

+Rφ
(
h
θ̃

)
−Rφ(hθ∗).

Observing that
Rφ
(
h
θ̃

)
−Rφ(hθ∗) ≤ Rφ

(
hθ∗
)
−Rφ(hθ∗) ≤ CTK

√
∆, (7.18)

we deduce
Rφ
(
h
θ̂

)
−Rφ(hθ∗) ≤ Dθ̂

+ CTK
√

∆. (7.19)

We now proceed to bound D
θ̂
. Since θ̂ = argmin

θ∈ΘK
R̂φ(h̄θ), we see that D̂

θ̂
≤ 0. In particular, we have

the decomposition

D
θ̂
≤ D

θ̂
− 2D̂

θ̂
= (D

θ̂
−DθN ) + (2D̂θN − 2D̂

θ̂
) + (DθN − 2D̂θN ). (7.20)
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Now, for α ≥ 2, we denote by BN the 1/N (1+α/2)-net of ΘK w.r.t ‖.‖. Similarly to the proof of
Proposition 4.8 given in Section 7.4.3, we have

E
[
|Rφ(h

θ̂
)−Rφ(hθN )|

]
≤ CTK

2

N1+(α/2)
and E

[
|R̂φ(h

θ̂
)− R̂φ(hθN )|

]
≤ CTK

2

N1+(α/2)
√

∆
.

Therefore, from Equation (7.19) and the decomposition (7.20),

Ê
[
Rφ
(
h
θ̂

)
−Rφ(hθ∗)

]
≤ CTK

2

N1+(α/2)
+

CTK
2

N1+(α/2)
√

∆
+ CTK

√
∆ + Ê

[
max
θ∈BN

(
Dθ − 2D̂θ

)]
.

To conclude the proof, it remains to control the last term in the r.h.s. We have that for u ≥ 0

Ê

[
max
θ∈BN

(
Dθ − 2D̂θ

)]
≤ u+

∫ +∞

u
P̂

(
max
θ∈BN

(
Dθ − 2D̂θ

)
≥ t
)
dt.

In order to control the deviations of maxθ∈BN

(
Dθ − 2D̂θ

)
, we observe that from Lemma 7.9, for each

θ ∈ ΘK ,

E
[(
lhθ(Z,X)− lh

θ̃
(Z,X)

)2
]
≤ 2E

[(
lhθ(Z,X)− lhθ∗ (Z,X)

)2
+
(
lh
θ̃
(Z,X)− lhθ∗ (Z,X)

)2
]

≤ 32K
(
Rφ(hθ)−Rφ(hθ∗)

)
+ 32K

(
Rφ(h

θ̃
)−Rφ(hθ∗)

)
.

Hence, from Equation (7.18) and the definition of Dθ, we deduce for t ≥
√

∆,

E
[(
lhθ(Z,X)− lh

θ̃
(Z,X)

)2
]
≤ CTK

(
Dθ +

√
∆
)
≤ CTK (Dθ + t) . (7.21)

Using the fact that for each θ, ‖hθ‖∞ ≤ 1 and that φ is L−Lipschitz with constant L = 4, from
Bernstein’s Inequality, we get for t ≥ 0,

P̂

(
max
θ∈BN

(
Dθ − 2D̂θ

)
≥ t
)
≤

∑
θ∈BN

P̂
(

2Dθ − 2D̂θ ≥ t+Dθ

)

≤
∑
θ∈BN

exp

 −N(t+Dθ)
2/8

E
[(
lhθ(Z,X)− lh

θ̃
(Z,X)

)2
]

+ (t+Dθ)(4K/3)

 .

Thus, from Equation (7.21), for t ≥
√

∆, we get

P̂

(
max
θ∈BN

(
Dθ − 2D̂θ

)
≥ t
)
≤ Card (BN ) exp

(
−NCT t

K

)
.

Finally, since ∆ = O (N−α) with α ≥ 2, for N large enough we have that
√

∆ ≤ K log (Card (BN ))

NCT
.

Hence, with u =
K log (Card (BN ))

NCT
, we obtain for N large enough

Ê

[
max
θ∈BN

(
Dθ − 2D̂θ

)]
≤ CK log (Card (BN ))

N
,

which concludes the proof. �
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