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 and show it converges to a particular solution of the cell equation. In order to unify the two settings, continuous and discrete , we develop a more general formalism of short-range interactions.

Introduction

We consider in this article a Hamiltonian H(x, p) : T d × R d → R which is C 2 , periodic in x, time independent, and satisfies the following assumptions:

(L1) Positive Definiteness: H(x, p) is strictly convex with respect to p, i.e., the second partial derivative ∂ 2 H ∂p 2 (x, p) is positive definite as a quadratic form uniformly in x ∈ T d and p ≤ R, for every R > 0;

(L2) Superliner growth: H(x, p) is superlinear with respect to p, uniformly in x, that is,

lim p →+∞ inf x∈T d H(x, p) p = +∞.
We will say that H(x, p) is a Tonelli Hamiltonian. We denote by L(x, v) the Legendre-Fenchel transform of H(x, p). We call L(x, v) the Lagrangian of the system; L(x, v) is again C 2 , strictly convex with respect to v, and superlinear. A more general framework could be chosen where T d × R d is replaced by the cotangent space T * M of some compact manifold M, but this approach would increase the complexity of the notations. To illustrate the two approximation schemes we are going to present, we choose the following basic Hamiltonian

H(x, p) = 1 2 p + P 2 -K(1 -cos(2π N • x)),
where P ∈ R d , N ∈ Z d and K ∈ R are three parameters. The Lagrangian becomes

L(x, v) = 1 2 v 2 -P • v + K(1 -cos(2π N • x)).
We consider the following two equations: the PDE cell equation and the discounted PDE cell equation, H(x, du(x)) = H, (1)

δu δ (x) + H(x, d x u δ (x)) = 0, (2) 
where u(x) and u δ (x) are understood in the viscosity sense. Our main objective is to describe an ergodic approximation scheme for each equation. Equation (1) is a degenerate PDE equation of first order with two unknowns ( H, u). The constant H is unique and is called effective Hamiltonian. The function u(x) is C 0 periodic but may not be unique. Equation (2) is more regular and admits a unique C 0 periodic solution u δ (x). Equation (1) has first been studied by Lions, Papanicolaou and Varadhan [START_REF] Lions | Homogenization of Hamilton-Jacobi equations[END_REF]. A comprehensive treatment may be found in Crandall, Ishii and Lions [START_REF] Michael | Users guide to viscosity solutions of second order partial differential equations[END_REF], Bardi and Capuzzo-Dolcetta [START_REF] Bardi | Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations[END_REF] or Barles [START_REF] Barles | Solutions de viscosité des équations de Hamilton-Jacobi[END_REF]. Some recent overviews may be found in the articles [START_REF] Ishii | A short Introduction to Viscosity Solutions and the Large Time Behavior of Solutions of Hamilton-Jacobi Equations[END_REF][START_REF] Barles | An Introduction to the Theory of Viscosity Solutions for First-Order Hamilton-Jacobi Equations and Applications[END_REF].

A new approach has been initiated by Mather and Fathi [Mat91,[START_REF] Mather | Variational construction of connecting orbits[END_REF]Fat97a,[START_REF] Fathi | Solutions KAM faibles conjuguées et barrières de Peierls[END_REF][START_REF] Fathi | Weak KAM Theorem in Lagrangian Dynamics[END_REF] to solve equation (1). Fathi showed that (1) is equivalent to an additive eigenvalue problem for a semi-group of non-linear operators,

u(x) -t H = T t [u](x), ∀t > 0, ∀x ∈ R d , (3) 
T t |u](x) := inf γ∈C ac ([-t,0],R d ) γ(0)=x u(γ(-t)) + 0 -t L(γ, γ) ds , (4) 
(where the infimum is taken over absolutely continuous paths over [-t, 0] with terminal point x ∈ R d ). For Tonelli Hamiltonian, the infimum is actually attained by a C 2 curve thanks to Tonelli-Weierstrass theorem. Equation (3) is called the ergodic cell equation, T t is called the (backward) Lax-Oleinik semi-group. The unknown u(x) is called by Fathi weak KAM solution, H is as before the effective Hamiltonian. Mañé [Mn96] recognized first the importance of this constant H. After Contreras and Iturriaga [START_REF] Contreras | Global minimizers of autonomous Lagrangians. 22[END_REF], H is called the Mañé critical value: H has the explicit value (5) Equation (2) has been studied by [START_REF] Lions | Homogenization of Hamilton-Jacobi equations[END_REF][START_REF] Michael | Users guide to viscosity solutions of second order partial differential equations[END_REF][START_REF] Barles | Solutions de viscosité des équations de Hamilton-Jacobi[END_REF][START_REF] Bardi | Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations[END_REF]. The solution is unique and given explicitly by the integral formula

u δ (x) = inf γ∈C 2 ((-∞,0],R d ) γ(0)=x 0 -∞
e sδ L(γ(s), γ(s)) ds,

where the infimum is taken over C 2 paths ending at x with a uniformly bounded first and second derivative. The two equations (1) and (2) are related, but very recently, the authors of [START_REF] Davini | Convergence of the solutions of the discounted Hamilton-Jacobi equation: convergence of the discounted solutions[END_REF] showed that u δ (x), correctly normalized, converges to a selected solution u * (x) of (3), lim δ→0 u δ (x) + H δ = u * (x) (exists in the C 0 topology).

We will call this selected solution u * , the balanced weak KAM solution.

Our main objective is to develop approximation schemes that solves (1) and (2). In the first scheme, we compute an approximated effective Hamiltonian of (5) and an approximated weak KAM solution of (3). In the second scheme, we compute an approximated discounted weak KAM solution of (6) and show a similar selection principle. In both cases we discretize in time, either the semi-group (4) or the integral formula (6), and rewrite the two problems in the framework of Frenkel-Kontorova model.

The Frenkel-Kontorova model has been studied in solid state physics in 1D by [START_REF] Ya | On the theory of plastic deformation and twinning i, ii, iii[END_REF] and then more rigorously by Aubry and Le Daeron [START_REF] Aubry | The discrete Frenkel-Kontorova model and its extensions: I. exact results for the ground states[END_REF], Chou and Griffiths [START_REF] Chou | Ground states of onedimensional systems using effective potentials[END_REF], and in higher dimension by Gomes [START_REF] Diogo | Viscosity solution methods and the discrete Aubry-Mather problem[END_REF], Garibaldi and Thieullen [START_REF] Garibaldi | Minimizing orbits in the discrete Aubry-Mather model[END_REF]. Similar problems under the name of Aubry-Mather theory have been studied using transport theory by Bernard and Buffoni [START_REF] Bernard | Asymptotic analysis and singularitieselliptic and parabolic PDEs and related problems[END_REF] and Zavidovique [START_REF] Zavidovique | Strict sub-solutions and Mañé potential in discrete weak KAM theory[END_REF]. The Frenkel-Kontorova model describes the space of configurations of an infinite chain of atoms (x n ) n∈Z at the ground-level energy. In this model x n denotes the position of the n-th atom of the chain in R d , and E(x n , x n+1 ) denotes a short-range interaction between two successive atoms. The interaction E(x, y) models both the internal interaction between nearest atoms and the external interaction with the substrate. The original Frenkel-Kontorova model [START_REF] Ya | On the theory of plastic deformation and twinning i, ii, iii[END_REF] is given by

E(x, y) = 1 2 y -x 2 -P • (y -x) + K(1 -cos(2π N • x)).
In solid state physics, it is more appropriate to write the elastic interaction as 1 2 yx -P 2 instead of 1 2 yx 2 -P • (yx) where P denotes the mean distance at rest between two successive atoms of the chain. In Mather theory, P represents a cohomological term.

The main problem in the Frenkel-Kontorova model is to understand the set of configurations that minimize the total interaction n∈Z E(x n , x n+1 ) in a precise sense. Chou and Griffiths [START_REF] Chou | Ground states of onedimensional systems using effective potentials[END_REF] highlighted first the importance of the two following quantities: Ē, the effective interaction of the system (or the groundstate energy in Gibbs theory), u(x), the effective potential which is a continuous periodic function that calibrates the interaction energy. They showed that ( Ē, u) can be seen as two unknowns of a discrete additive eigenvalue equation, now called, discrete (backward) Lax-Oleinik equation,

u(y) + Ē = inf x∈R d u(x) + E(x, y) , ∀y ∈ R d . ( 8 
)
The goal of the first scheme is to show that one can solve (3) by solving (8) with the following interaction E(x, y) = L τ (x, y) and by letting τ → 0. We call discrete action,

L τ (x, y) := τL x, y -x τ , ∀τ > 0. (9) 
If ( Lτ , u τ ) is a solution of (8), one obtains in particular

lim τ→0 Lτ τ = -H, lim τ i →0
u τ i = u ( for some subsequence τ i 0).

The discrete action associated to the basic example is given for instance by

E τ (x, y) = 1 2τ y -x 2 -P • (y -x) + τK(1 -cos(2π • x)).
We recognize the original Frenkel-Kontorova model by taking τ = 1. Notice that (3) can trivially be written as a discrete Lax-Oleinik equation with the following short-range interaction E(x, y) = E τ (x, y). We call minimal action

E τ (x, y) := inf γ∈C ac ([0,τ],R d ) γ(0)=x, γ(τ)=y τ 0 L(γ(t), γ(t)) dt, ∀τ > 0, ∀x, y ∈ R d . ( 10 
)
The infimun can be realized by some C 2 curve thanks to Tonelli-Weierstrass theorem. We will use L τ (x, y) as a numerical tool to solve (3). Several algorithms can be used to solve (8) like Ishikawa's iterative method. We will use E τ (x, y) as a theoretical tool to prove the convergence of the scheme. The goal of the second scheme is to extend in the discrete case the main result of Davini, Fathi, Iturriaga, and Zavidovique in their first paper [START_REF] Davini | Convergence of the solutions of the discounted Hamilton-Jacobi equation: convergence of the discounted solutions[END_REF]. We were aware of a second paper [START_REF] Davini | Convergence of the solutions of the discounted equation: the discrete case[END_REF] related to ours after this paper was completed. However, in the latter paper, the authors do not consider the convergence issues of the approximations scheme. We will show in particular that the solution u τ,δ of the discounted discrete Lax-Oleinik equation

u τ,δ (y) = inf x∈R d (1 -τδ)u τ,δ (x) + L τ (x, y , ∀τ > 0, ∀y ∈ R d (11) 
satisfies for every τ > 0, lim

δ→0 u τ,δ - Lτ τδ = u * τ and lim τ,δ→0 τ/δ→0 u τ,δ - Lτ τδ = u * .

Main results

The two previous short-range interactions L τ (x, y) and E τ (x, y) belong to a class of parametrized interactions that we are going to discuss. We focus on the following definition on the fact that y-x , (the sup norm), and τ should have the same order of magnitude as τ → 0: we call this property short-range.

Definition 1. We call short-range interaction, a one-parameter family of functions E τ (x, y) : R d × R d → R indexed by τ > 0 satisfying:

(H1) E τ (x, y) is continuous in (x, y) for every τ > 0;

(H2) E τ (x, y) is translational periodic for every τ > 0:

E τ (x + k, y + k) = E τ (x, y), ∀k ∈ Z d and ∀x, y ∈ R d ; (H3) E τ (x, y) is coercive for every τ > 0: lim R→+∞ inf x-y ≥R E τ (x, y) = +∞; (H4) E τ (x, y) is uniformly bounded: for every R > 0 inf τ∈(0,1] inf x,y∈R d 1 τ E τ (x, y) > -∞, sup τ∈(0,1] sup y-x ≤τR 1 τ E τ (x, y) < +∞;
(H5) E τ (x, y) is uniformly superlinear:

lim R→+∞ inf τ∈(0,1] inf x-y ≥τR E τ (x, y) x -y = +∞;
(H6) E τ (x, y) is uniformly Lipschitz: for every R > 0, there exists a constant C(R) > 0 such that, for every τ ∈ (0, 1] and for every x, y, z ∈ R d , -if yx ≤ τR and zx ≤ τR then

|E τ (x, z) -E τ (x, y)| ≤ C(R) z -y , -if z -x ≤ τR and z -y ≤ τR then |E τ (x, z) -E τ (y, z)| ≤ C(R) y -x .
We call periodic interaction associated to E τ (x, y), the doubly periodic function

E * τ (x, y) := inf k∈Z d E τ (x, y + k).
The following proposition says that the two short-range interactions L τ (x, y) and E τ (x, y) are comparable in the sense that

|L τ (x, y)-E τ (x, y)| = O(τ 2 ) uniformly on y -x = O(τ).
Proposition 2 (Comparison estimate). Let H : T d × R d → R be a Tonelli Hamiltonian and L be the associated Lagrangian.

i. The two short-range interactions (L τ (x, y)) τ>0 and (E τ (x, y)) τ>0 , defined in (9) and (10) respectively, satisfy the hypotheses (H1)-(H6).

ii. For every R > 0, there exists a constant C(R) > 0 such that, if τ ∈ (0, 1],

x, y ∈ R d satisfy yx ≤ τR, then

|E τ (x, y) -L τ (x, y)| ≤ τ 2 C(R).
We recall two important definitions associated to an interaction: the discrete Lax-Oleinik operator, and the discrete weak KAM solution. The vocabulary is chosen so that it coincides to the new terminology used by Fathi in the case of continuous time Lax-Oleinik operator.

Definition 3. Let (E τ (x, y)) τ>0 be a short-range interaction satisfying (H1)-(H3).

• We call discrete (backward) Lax-Oleinik operator,

T τ [u](y) := min x∈R d u(x) + E τ (x, y) , ∀y ∈ R d ,
acting on continuous periodic functions u ∈ C 0 (R d ).

• We call discrete (backward) weak KAM solution for E τ (x, y), any periodic continuous function u τ solution of the additive eigenvalue problem,

T τ [u τ ] = u τ + Ēτ , (12) 
for some Ēτ ∈ R.

Note that T τ has the same definition if E τ (x, y) is replaced by E * τ (x, y). We have defined two Lax-Oleinik operators: the first one in the continuous case T t in (4), using a superscript t, the second one in the discrete case T τ in (3) using a subscript τ. For the minimal action E τ (x, y) we have obviously T τ = T τ .

We recall a classical result on the existence of discrete weak KAM solutions for the Lax-Oleinik operator. Different proofs may be found as for instance in [START_REF] Roger | Convergence of iterates of a nonlinear operator arising in statistical mechanics[END_REF], [START_REF] Diogo | Viscosity solution methods and the discrete Aubry-Mather problem[END_REF] or [START_REF] Garibaldi | Minimizing orbits in the discrete Aubry-Mather model[END_REF].

Proposition 4 (Lax-Oleinik equation for short-range interactions). We consider a short-range interaction (E τ (x, y)) τ>0 satisfying the hypotheses (H1)-(H3). i. For every τ > 0, there exists a unique scalar Ēτ such that the equation T τ [u τ ] = u τ + Ēτ admits a continuous periodic solution u τ .

ii. Ēτ is called effective interaction and can be computed in many ways

Ēτ = sup u∈C 0 (T d ) inf x,y ∈ R d E τ (x, y) -[u(y) -u(x)] , = sup v∈B(R d ) inf x,y ∈ R d E τ (x, y) -[v(y) -v(x)] , = lim k→+∞ inf z 0 ,...,z k ∈ R d 1 k k-1 i=0 E τ (z i , z i+1 ). (13) 
B(R d ) denotes the space of bounded functions not necessarily periodic. Note that we could have used E * τ (x, y) instead of E τ (x, y) in one of these formulas.

The two first formulas are called the sup-inf formula and are analogue to the sup-inf formula introduced by [START_REF] Contreras | Lagrangian graphs, minimizing measures and Mañé's critical values[END_REF] for continuous-time Tonelli Hamiltonian systems. The third formula is called the mean interaction per site formula. Another characterization will be given in lemma 14.

The conclusions of proposition 4 hold for both the discrete and the minimal action. There is no reason a priori that the two effective interactions Lτ and Ēτ are comparable. The mean interaction per site formula suggests to consider minimizing paths (z 0 , • • • , z k ). The following proposition shows that the jumps z kz k-1 of such minimizing paths are uniformly comparable to τ. We will be able to apply the proposition 2 and obtain

| Lτ -Ēτ | = O(τ 2 ).
Proposition 5 (A priori compactness for short-range interactions). We consider a short-range interaction (E τ (x, y)) τ>0 satisfying the hypotheses (H1)-(H6).

i. There exist constants C, R > 0 such that, if τ ∈ (0, 1] and u τ is a discrete weak KAM solution of E τ (x, y), then

(a) u τ is Lipschitz and Lip(u τ ) ≤ C, (b) ∀y ∈ R d , x ∈ arg min x∈R d u τ (x) + E τ (x, y) ⇒ y -x ≤ τR.
ii. For every Lipschitz periodic function u, lim τ→0 T τ [u] = u uniformly. More precisely, for every constant κ > 0, there exist constants R κ , C κ > 0 such that, if u is any Lipschitz function satisfying Lip(u) ≤ κ, and τ ∈ (0, 1], then

(a) ∀y ∈ R d , x ∈ arg min x∈R d u(x) + E τ (x, y) ⇒ y -x ≤ τR κ , (b) T τ [u] -u ∞ ≤ τC κ .
Notice that the effective Hamiltonian (5) can be written in the terminology of short-range interactions using the minimal action,

-H = lim τ→+∞ 1 τ min x,y∈R d E τ (x, y).
We show more generally how to solve equation (3) and how to obtain formula (5) for any short-range interaction which is a min-plus convolution semi-group.

Definition 6.

• We call min-plus convolution of two interactions E 1 and E 2 , the interaction

E 1 ⊗ E 2 (x, y) := inf z∈R d [E 1 (x, z) + E 2 (z, y)], ∀x, y ∈ R d .
• A short-range interaction (E τ (x, y)) τ>0 is said to be a min-plus convolution semi-group if

E τ+σ = E τ ⊗ E σ , ∀τ, σ > 0.
The following observation is trivial and will not be proved.

Lemma 7. Let H be a Tonelli Hamiltonian. Then the minimal action (E τ (x, y)) τ>0 is a min-plus convolution semi-group.

The following proposition extends (3) and ( 5) for any short-range interaction which is a min-plus convolution semi-group. The proposition states there exists a common additive eigenfunction associated to a unique linear eigenvalue.

Proposition 8. Let (E τ (x, y)) τ>0 be a short-range interaction satisfying (H1)-(H6). Assume the interaction is a min-plus convolution semi-group. Consider the equation

T τ [u] = u + τ Ē1 , ∀τ > 0, ( 14 
)
where u is a C 0 periodic function (independent of τ) and Ē1 ∈ R.

i. There exists a Lipschitz periodic function u solution of (14). Moreover

Ēτ = τ Ē1 , ∀τ > 0.
ii. Let u τ be any discrete weak KAM solution of E τ (x, y). Assume u τ i → u uniformly along a subsequence τ i → 0. Then u is a Lipschitz solution of (14).

iii.

lim τ→+∞ 1 τ min x,y∈R d E τ (x, y) = Ē1 .
We summarize in the following theorem the previous results we have obtained for any short-range interactions to the particular case of discrete and minimal actions. We show how the PDE cell equation (1) can be approximated by a discrete weak KAM solution u τ . The speed of convergence to the effective Hamiltonian H is of the order O(τ). The convergence to the viscosity solution u is obtained by taking a subsequence as τ → 0.

Theorem 9 (First approximation scheme). Let H(x, p) : T d × R d → R be a Tonelli Hamiltonian and L(x, v) be the associated Lagrangian. We consider the two equations

u τ (y) + Lτ = min x∈R d u τ (x) + L τ (x, y) , ∀y ∈ R d , ∀τ > 0, (E1) u(y) -τ H = min x∈R d u(x) + E τ (x, y) , ∀y ∈ R d , ∀τ > 0, ( E2 
)
where u τ , u are C 0 periodic functions.

i. There is a unique Lτ such that (E1) admits a solution u τ . Moreover

Lτ = lim k→+∞ inf z 0 ,...,z k ∈ R d 1 k k-1 i=0 L τ (z i , z i+1 ).
ii. There is a unique H such that (E2) admits a solution u. Moreover

-H = lim τ→+∞ 1 τ min x,y∈R d E τ (x, y).
iii. There exists a constant C > 0 such that

Lτ τ + H ≤ Cτ, ∀τ ∈ (0, 1].
iv. There exist constants C, R > 0 such that, for every τ ∈ (0, 1] and for every

solution v = u τ of (E1), or v = u of (E2), (a) Lip(v) ≤ C, in particular v ∞ ≤ C if min(v) = 0, (b) ∀y ∈ R d , if x ∈ arg min x∈R d v(x) + E τ (x, y) then y -x ≤ τR.
v. There exist a subsequence τ i → 0 and a subsequence u τ i solution of (E1) such that u τ i → u uniformly. Moreover every such u is a solution of (E2).

Theorem 9 is proved in section 3. The convergence of the discrete solution to the solution of the ergodic cell equation has been addressed by Gomes [START_REF] Diogo | Viscosity solution methods and the discrete Aubry-Mather problem[END_REF] and Camilli, Cappuzzo-Dolcetta, Gomes [START_REF] Camilli | Error estimates for the approximations of the effective Hamiltonian[END_REF], but their proofs require a particular form of the Lagrangian that we do not assume. Several other numerical schemes have been studied for computing the effective Hamiltonian, see [START_REF] Diogo | Computing the effective Hamiltonian using a variational approach[END_REF], [START_REF] Rorro | An approximation scheme for the effective Hamiltonian and applications[END_REF], [START_REF] Falcone | Optimization techniques for the computation of the effective hamiltonian[END_REF] but the properties (i)-(v) are not stated explicitly, see also [START_REF] Bouillard | Fast weak-KAM integrators for separable Hamiltonian systems[END_REF] for a mechanical Lagrangian of the form L(t, x, v) = W(v) + V(t, x).

Note that the discrete (backward) Lax-Oleinik equation ( 12) possesses a second form: the discrete forward Lax-Oleinik equation,

u τ (x) -Ēτ = max y∈R d u τ (y) -E τ (x, y) , ∀x ∈ R d .
Theorem 9 is also valid for the forward Lax-Oleinik equation with the same effective interaction Ēτ and possibly a different solution u τ that is called discrete forward weak KAM. From now on we only study the backward problem.

Our second objective is to show, by introducing a discounted factor δ in the discrete Lax-Oleinik equation ( 12), that we do not need to take a subsequence in time to obtain a solution of the PDE cell equation. A discrete version of [START_REF] Davini | Convergence of the solutions of the discounted Hamilton-Jacobi equation: convergence of the discounted solutions[END_REF] is also proved in [START_REF] Davini | Convergence of the solutions of the discounted equation: the discrete case[END_REF] but they do not study the convergence issues as τ → 0. Some related results can be found in [AAOIM14, MT14] with a different setting.

Our approach is actually more general and applies to any short-range interaction. We first extend the definition of the Lax-Oleinik operator.

Definition 10. Let (E τ (x, y)) τ>0 be a short-range interaction satisfying (H1)-(H3). We call discounted discrete Lax-Oleinik operator, the non-linear operator

T τ,δ [u](y) := inf x∈R d (1 -τδ)u(x) + E τ (x, y) , ∀y ∈ R d ,
defined for every C 0 periodic function u, for every τ > 0 and δ ∈ (0, 1]. By coerciveness the infimum is actually attained. As before we don't change T τ,δ by using the periodic interaction E * τ (x, y) instead of E τ (x, y).

It is easy to show that T τ,δ admits a unique fixed point u τ,δ that we call discounted discrete weak KAM solution. On the other hand, it is not so easy to show it possesses uniform estimates as in proposition 5, Proposition 11 (A priori compactness in the discounted case). Let (E τ (x, y)) τ>0 be a short-range interaction satisfying (H1)-(H6). Then there exist constants R > 1 and C > 0 such that, for every τ, δ ∈ (0, 1], i. T τ,δ admits a unique fixed point u τ,δ which is C 0 periodic,

u τ,δ (x) := inf (x -k ) +∞ k=0 ∈(R d ) N , x 0 =x ∞ k=0 (1 -τδ) k E τ (x -(k+1) , x -k ), ∀x ∈ R d . ii. inf x,y∈R d E τ (x, y) τδ ≤ u τ,δ ≤ sup x∈R d E τ (x, x) τδ , iii. u τ,δ is uniformly Lipschitz with Lip(u τ,δ ) ≤ C, iv. ∀y ∈ R d , x ∈ arg min x∈R d (1 -τδ)u τ,δ (x) + E τ (x, y) ⇒ y -x ≤ τR.
A configuration (x -k ) ∞ k=0 realizing the infimum in (i) is called discounted backward calibrated configuration. Such a configuration is also calibrated for the periodic interaction E * τ (x, y) instead of E τ (x, y).

As in [START_REF] Davini | Convergence of the solutions of the discounted Hamilton-Jacobi equation: convergence of the discounted solutions[END_REF] we characterize the limit of the unique fixed point of T τ,δ in terms of minimizing plan, Mañé potential. We recall these two definitions, see [START_REF] Garibaldi | Minimizing orbits in the discrete Aubry-Mather model[END_REF] for more details. We consider here the projection on T d × T d of objects that should be defined on R d × R d if cohomology is needed. Definition 12. A probability measure π defined on T d ×T d is said to be a stationary plan if pr 1 * (π) = pr 2 * (π). (We denote by pr 1 , pr 2 : T d × T d → T d , the two canonical projections).

Definition 13. We call periodic Mañé potential, the doubly periodic function

Φ * τ (x, y) := inf n≥1 inf (x 0 ,...,x n )∈(R d ) n+1 x 0 =x, x n =y n-1 k=0 E * τ (x k , x k+1 ) -Ēτ , ∀ x, y ∈ R d .
We recall how the effective Hamiltonian can be computed using stationary plan. See [BB07, GT11] for a proof.

Lemma 14. Let (E τ (x, y)) τ>0 be a short-range interaction satisfying (H1)-(H3). Let E * τ (x, y) be the associated periodic interaction. Then

Ēτ = inf T d ×T d E * τ (x, y) π(dx, dy) : π is a stationary plan .
Note that the infimum in lemma 14 can be realized by compactness. We recall several classical notions. See [START_REF] Bernard | Asymptotic analysis and singularitieselliptic and parabolic PDEs and related problems[END_REF][START_REF] Garibaldi | Minimizing orbits in the discrete Aubry-Mather model[END_REF] for two distinct approaches.

Definition 15. Let π be a stationary plan on T d × T d .

• π is said to be minimizing if it realizes the infimum in lemma 14. Define M * (E τ ) := {π : π is a minimizing plan}.

• π is said to be extremal if it is minimizing and cannot be written as a strict barycenter π = απ 1 +(1-α)π 2 of minimizing plan, π 1 and π 2 , with α ∈ (0, 1), π 1 π 2 .

• We call Mather set, the compact set in

T d × T d Mather * (E τ ) := ∪{supp(π) : π ∈ M * (E τ )}.
We call projected Mather set, the set pr 1 (Mather * (E τ )).

• We call Aubry set, the compact set in

T d × T d Aubry * (E τ ) := (x, y) ∈ T d × T d : E * τ (x, y) -Ēτ + Φ * τ (y, x) = 0 .
We call projected Aubry set, the set pr 1 (Aubry * (E τ )).

• We call Aubry class, a class of the equivalence relation on pr 1 (Aubry * (E τ )),

x ∼ y ⇐⇒ Φ * τ (x, y) + Φ * τ (y, x) = 0.
We can show (see [START_REF] Garibaldi | Minimizing orbits in the discrete Aubry-Mather model[END_REF] in the discrete setting).

Lemma 16. Let (E τ (x, y)) τ>0 be a short-range interaction satisfying (H1)-(H3). Then i. Φ * τ (x, y) is continuous with respect to (x, y),

ii. pr 1 (Aubry

* (E τ )) = x ∈ T d : Φ * τ (x, x) = 0 , iii. For any Aubry class A, ∀x, y, z ∈ A, Φ * τ (x, y) + Φ * τ (y, z) = Φ * τ (x, z), iv. Mather * (E τ ) ⊂ Aubry * (E τ ), v. ∀x ∈ pr 1 (Aubry * (E τ )), y → Φ * τ (x, y) is a discrete weak KAM solution, vi. (representation formula) if u τ is any discrete weak KAM solution, then u τ (y) = min x∈pr 1 (Mather * (E τ )) {u(x) + Φ * τ (x, y)}, ∀y ∈ R d .
The following lemma gives a new type of discrete weak KAM solution. Though it is simple to prove, the lemma is new and justifies a priori the notion of balanced weak KAM solution.

Lemma 17. Let (E τ (x, y)) τ>0 be a short-range interaction satisfying (H1)-(H3). Let π be an extremal plan. Let µ = pr 1 * (π).

i. supp(µ) belongs to an Aubry class.

ii. y → Φ * τ (z, y) µ(dz) is a discrete weak KAM solution.

iii. Φ * τ (x, y) µ(dx)µ(dy) = 0.

By taking supremum or infimum of discrete weak KAM solutions, we obtain again a discrete weak KAM solution. The balanced weak KAM solution (7) is of this type.

Proposition 18. Define u * τ (x) := inf T d Φ * τ (z, x) pr 1 * (π)(dz) : π ∈ M * (E τ ) . Then i. u * τ is a discrete weak KAM solution, ii. u * τ (y) = sup w(y) : w + Ēτ = T τ [w], T d w(x) pr 1 * (π)(dx) ≤ 0, ∀π ∈ M * (E τ ) , iii. sup{ u * τ (y) pr 1 * (π)(dy) : π is an extremal plan} = 0.
u * τ is called balanced discrete weak KAM solution.

The following proposition extends to short-range interactions the main result obtained by [START_REF] Davini | Convergence of the solutions of the discounted Hamilton-Jacobi equation: convergence of the discounted solutions[END_REF] in the continuous case and by [START_REF] Davini | Convergence of the solutions of the discounted equation: the discrete case[END_REF] in the discrete case.

Proposition 19. Let (E τ (x, y)) τ>0 be a short-range interaction satisfying (H1)-(H3). Let u * τ be the balanced discrete weak KAM solution defined in proposition 18. Then,

∀τ ∈ (0, 1], lim δ→0 u τ,δ - Ēτ τδ = u * τ , in the C 0 topology.
We summarize in the following theorem the approximation scheme we have obtained in the case of the discrete action L τ (x, y).

Theorem 20 (Second approximation scheme). Let H(x, p) be a Tonelli Hamiltonian, and L(x, v) be the associated Lagrangian. Let u τ,δ and u δ be the unique C 0 periodic solutions of

u τ,δ (y) = min x∈R d (1 -τδ)u τ,δ (x) + L τ (x, y) , ∀y ∈ R d , ∀τ, δ ∈ (0, 1], (E1) u δ (y) = inf γ∈C 2 ((-t,0],R d ) γ(0)=y e -tδ u δ (γ(t)) + 0 -t e sδ L(γ(s), γ(s)) ds , ∀y ∈ R d , t > 0. (E2)
Consider the equations with C 0 periodic unknowns u τ and u, u τ (y) + Lτ = min

x∈R d u τ (x) + L τ (x, y) , ∀y ∈ R d , ∀τ ∈ (0, 1], (E3) u(y) -t H = min x∈R d u(x) + E t (x, y) , ∀y ∈ R d , ∀t > 0. (E4) i. Let δ ∈ (0, 1], x ∈ R d . Let (x τ,δ
-n ) n≥0 be a backward calibrated configuration for the equation (E3) starting at x τ,δ 0 = x. Let γ τ,δ (t) be the piecewise linear approximation satisfying γ τ,δ (-nτ) = x τ,δ -n . Then there exists a sequence τ i → 0 such that (a) γ τ i ,δ (t) → γ δ (t) uniformly on every compact subset of (-∞, 0],

(b) γ δ ∈ C 2 ((-∞, 0], R d ), γδ ∞ ≤ C, γδ ∞ ≤ C (c) u δ (x) = e -tδ u δ (γ δ (-t)) + 0 -t e sδ L(γ δ (s), γδ (s)) ds, ∀t ≥ 0.
ii. There exists constants C > 0, R > 1 such that for every τ, δ ∈ (0, 1],

(a) u τ,δ is uniformly Lipschitz with Lip(u τ,δ ) ≤ C, (b) ∀y ∈ R d , x ∈ arg min x∈R d (1-τδ)u τ,δ (x)+L τ (x, y) ⇒ y-x ≤ τR, (c) u τ,δ -u δ ∞ ≤ C τ δ and u τ,δ - Lτ τδ -u δ + H δ ∞ ≤ C τ δ .
iii. Let τ ∈ (0, 1] and u * τ be defined in proposition 18. Then Theorem 20 is proved in section 4. Item (i) shows how to obtain a C 2 minimizer in the continuous discounted case from a discrete calibrated configuration, item (ii) improves similar estimates in [Ror06, FR10, BFZ16]. Item (iii) generalizes [START_REF] Davini | Convergence of the solutions of the discounted equation: the discrete case[END_REF] and is a particular case of proposition 19, item (iv) is a corollary of (iic) and [START_REF] Davini | Convergence of the solutions of the discounted Hamilton-Jacobi equation: convergence of the discounted solutions[END_REF].

First approximation scheme

This section is devoted to the proof of theorem 9 and the necessary tools presented before. The a priori estimates in proposition 2 are easy to prove for Tonelli Hamiltonian. We recall the following result that we admit, see [START_REF] Fathi | Weak KAM Theorem in Lagrangian Dynamics[END_REF][START_REF] Mather | Action minimizing invariant measures for positive definite Lagrangian systems[END_REF] in the autonomous case, and [START_REF] Bouillard | Fast weak-KAM integrators for separable Hamiltonian systems[END_REF] in the non autonomous case for more details.

Lemma 21 (A priori compactness for minimizers). Let H(x, p) : T d × R d → R be a Tonelli Hamiltonian. For every R > 0, there exists a constant C(R) > 0 such that, for every τ > 0, x, y ∈ R d satisfying yx ≤ τR, and for every minimizer

γ : [0, τ] → R d satisfying γ(0) = x, γ(τ) = y, τ 0 L(γ(s), γ(s)) ds = E τ (x, y), we have γ ≤ C(R) and γ ≤ C(R).
Proof of proposition 2. Properties (H1)-(H6) are trivially satisfied for the discrete action L τ (x, y). Properties (H1)-(H3) and (H5) are also easy to prove for the minimal action E τ (x, y) using the superlinearity of L(x, v).

Part 1: proof of property (H4). Let τ > 0, x, y ∈ R d , yx ≤ τR. Since γ(s) := x + s y-x τ is a particular path joining x to y, we obtain sup τ>0, y-x ≤τR 

1 τ E τ (x, y) ≤ sup x∈R d , v ≤R L(x, v).
C(R) > 0 such that γ ≤ C(R). Then E τ (x, z) -E τ (x, y) ≤ τ 0 L(ξ(s), ξ(s)) -L(γ(s), γ(s)) ds ≤ C(R) z -y , where C(R) = sup x∈R d , v ≤C(R)+R DL(x, v) .
Part 3: proof of item (ii). Let R > 0 and C(R) be the constants given by lemma 21. Let τ ∈ (0, 1] and yx ≤ τR. We know that E τ (x, y) admits a C 2 minimizer γ :

[0, τ] → R d satisfying γ(0) = x, γ(τ) = y, E τ (x, y) = τ 0 L(γ, γ) ds, γ ≤ C(R) and γ ≤ C(R). Let V 0 = γ(0). Then γ(s) -x = γ(s) -γ(0) ≤ sC(R) ≤ τC(R), γ(s) -V 0 ≤ sC(R), y -x τ -V 0 ≤ τC(R) and γ(s) - y -x τ ≤ 2τC(R).
We are now in a position to compare the two actions

|E τ (x, y) -L τ (x, y)| ≤ τ 0 L(γ(s), γ(s)) -L x, y -x τ ds ≤ τ 2 C(R), with C(R) := 2 sup x∈R d , v ≤R+C(R) DL C(R).
The a priori estimates of proposition 5 are the main technical results.

Proof of proposition 5. We begin by fixing the constants C and R: let

C 1 := 2 sup τ∈(0,1], y-x ≤τ E τ (x, y) -Ēτ τ , R := inf R > 1 : inf τ∈(0,1], y-x >τR E τ (x, y) -Ēτ y -x > C 1 , (15) 
C := max C 1 , sup y-x , z-x ≤τ(R+1) E τ (x, y) -E τ (x, z) z -y .
Notice that C 1 is finite thanks to (H4), R is finite thanks to (H5) and C is finite thanks to (H6). Part 1.We show a partial proof of item (ia), namely

y -x > τ ⇒ u τ (y) -u τ (x) ≤ C 1 y -x .
Indeed, by choosing n ≥ 2 such that (n -1)τ < yx ≤ nτ and by choosing

x i = x + i n (y -x), we obtain nτ ≤ 2 y -x , u τ (x i+1 ) -u τ (x i ) ≤ E τ (x i , x i+1 ) -Ēτ , and 
u τ (y) -u τ (x) ≤ nτ sup y-x ≤τ E τ (x, y) -Ēτ τ ≤ C 1 y -x .
Part 2. We prove item (ib). Let y ∈ R d . Let x be a calibrated point for u τ , that is, x satisfies u τ (y)u τ (x) = E τ (x, y) -Ēτ .

Choose some R > 1 as in (15) and assume by contradiction that yx > τR.

Then the first part of the proof may be used and we obtain the absurd inequality

C 1 y -x ≥ u τ (y) -u τ (x) > C 1 y -x .
Part 3. We end the prove of item (ia). Let y, z ∈ R d , either zy > τ and we are done by the step 1, or zy ≤ τ. Let x be a calibrated point for u τ . Then yx ≤ τR, zx ≤ τ(R + 1),

u τ (y) -u τ (x) = E τ (x, y) -Ēτ , u τ (z) -u τ (x) ≤ E τ (x, z) -Ēτ , u τ (z) -u τ (y) ≤ E τ (x, z) -E τ (x, y) ≤ C z -y .
By permuting z and y, we just have proved that Lip(u τ ) ≤ C. Part 4. We prove item (ii). Let κ > 0. We define R κ > 0 as before

R κ := inf R > 1 : inf τ∈(0,1], y-x >τR E τ (x, y) -E τ (y, y) y -x > κ .
Let u be a periodic function satisfying Lip(u) ≤ κ and y be any point in R d . Let x be a point realizing the minimum of min x u(x) + E τ (x, y) . Assume by contradiction that yx > τR κ , then on the one hand

E τ (x, y) -E τ (y, y) > κ y -x ,
and on the other hand u(x) + E τ (x, y) ≤ u(y) + E τ (y, y) and

κ y -x ≥ u(y) -u(x) ≥ E τ (x, y) -E τ (y, y),
which is impossible. We then estimate T τ [u]u ∞ . On the one hand

T τ [u](y) -u(y) ≤ E τ (y, y).
On the other hand, if x realizes the minimum of min

x∈R d [u(x) + E τ (x, y)] T τ [u](y) -u(y) = u(x) -u(y) + E τ (x, y) ≥ -κ y -x + inf x,y∈R d E τ (x, y), 1 τ T τ [u](y) -u(y) ≥ -κR κ + inf τ∈(0,1] inf x,y∈R d 1 τ E τ (x, y).
We conclude by taking

C κ := κR κ + sup τ∈(0,1] sup y∈R d 1 τ E τ (y, y) -inf τ∈(0,1] inf x,y∈R d 1 τ E τ (x, y).
Proposition 8 is new for short-range interactions. The proof we present gives another proof of the existence of Fathi's weak KAM solutions in the particular case of the minimal action.

Proof of proposition 8. Part 1. We prove property (i) for τ ∈ Q. Let be Ēτ (M) := min

M j=1 E τ (x j-1 , x j ) : x j ∈ R d ∀ M ∈ Z + .
It is enough to prove ĒNτ = N Ēτ for every positive integer N and τ > 0 not necessarily rational. We choose an integer M > 0, (z 0 , . . . , z M ) ∈ arg min

M i=1 E Nτ (z i-1 , z i ) : z i ∈ R d ,
and by min-plus convolution of E Nτ , we choose (x i,0 , . . . , x i,N ) so that

E Nτ (z i-1 , z i ) = N j=1 E τ (x i, j-1 , x i, j ), x i,0 = z i-1 and x i,N = z i . Then ĒNτ (M) = M i=1 N j=1 E τ (x i, j-1 , x i, j ) ≥ Ēτ (MN)
. By dividing by MN and by taking M → +∞, one obtains ĒNτ ≥ N Ēτ . Conversely, we choose (x 0 , . . . , x M-1 ) ∈ arg min

M-1 i=1 E τ (x i-1 , x i ) : x i ∈ R d ,
and N integer translates k j ∈ Z d , j = 1 . . . N, such that k 0 = 0 and

(x 0 + k j ) -(x M-1 + k j-1 ) ≤ 1.
We define a new chain (z 0 , . . . , z MN ) by concatenating the previous translates

z i-1+( j-1)M := x i-1 + k j-1 M, i = 1, . . . , M, j = 1, . . . , N.
Then, using the fact z jMz M-1+( j-1)M ≤ 1

N Ēτ (M -1) = N j=1 M-1 i=1 E τ (z i-1+( j-1)M , z i+( j-1)M ) ≥ N j=1 M i=1 E τ (z i-1+( j-1)M , z i+( j-1)M ) -N sup y-x ≤1 |E τ (x, y)|, N j=1 M i=1 E τ (z i-1+( j-1)M , z i+( j-1)M ) = M i=1 N j=1 E τ (z j-1+(i-1)N , z j+(i-1)N ) ≥ M i=1 E Nτ (z i-1 , z i ) ≥ ĒNτ (M).
By dividing by M and by taking M → +∞, one obtains N Ēτ ≥ ĒNτ .

Part 2. We prove an intermediate estimate, namely

sup τ>0 T τ [0] -Ēτ ≤ C,
where C is the constant given by the item (ia) of proposition 5. Let τ > 0 and N be a positive integer such that τ/N ≤ 1. Let u τ/N be a weak KAM solution of T τ/N that we normalize by min u τ/N = 0. Then

T τ/N [u τ/N ] = u τ/N + Ēτ/N , T τ [u τ/N ] = (T τ/N ) N [u τ/N ] = u τ/N + N Ēτ/N = u τ/N + Ēτ .
Since u τ/N ≤ C, we obtain

T τ [0] ≤ T τ [u τ/N ] ≤ C + Ēτ, T τ [0] ≥ T τ [u τ/N -C] = u τ/N -C + Ēτ ≥ -C + Ēτ , and finally T τ [0] -Ēτ ∞ ≤ C, for every τ > 0.
Part 3. We resume the proof of property (i) for τ Q. We choose p i , q i ∈ N, q i → +∞, such that p i < q i τ < p i + 1. Denote by σ i = p i + 1q i τ. Then T p i +1 = T σ i • T q i τ . Since T q i τ [0]q i Ēτ ∞ ≤ C, by applying T σ i , one obtains on the one hand

T p i +1 [0] -q i Ēτ ∞ ≤ C + T σ i [0] ∞ .
On the other hand

T p i +1 [0] -(p i + 1) Ē1 ∞ ≤ C, which implies (p i + 1) Ē1 -q i Ēτ ∞ ≤ 2C + sup σ∈(0,1] T σ [0] ∞ .
Notice that item (ii) of proposition 5 implies that T σ [0] ∞ is uniformly bounded for σ ∈ (0, 1]. We conclude by dividing by q i and letting q i go to infinity. Part 4. We prove item (ii). From the a priori compactness property of proposition 5, one can find a constant C > 0 such that every discrete weak KAM solutions u τ satisfies Lip(u τ ) ≤ C. Since u τ is defined up to a constant, we may assume that min(u τ ) = 0. By choosing a subsequence τ i → 0, we may assume that u τ i → u uniformly. Moreover the second part of proposition 5 implies that

T σ [v] -v ∞ ≤ σC, for every σ ∈ (0, 1] and every Lipshitz function v satisfying Lip(v) ≤ C. Let t > 0. There exist integers N i such that N i τ i ≤ t < (N i + 1)τ i . Let σ i = t -N i τ i . Then T τ i [u τ i ] = u τ i + τ i Ē1 , T N i τ i [u τ i ] = u τ i + N i τ i Ē1 , T t [u τ i ] = T t-N i τ i [u τ i ] + N i τ i Ē1 , T t [u τ i ] -u τ i -t Ē1 ∞ ≤ T σ i [u τ i ] -u τ i ∞ + σ i | Ē1 |. As σ i → 0, u τ i → u, T σ i [u] → u, and T σ i [u τ i ] -T σ i [u] ∞ ≤ u τ i -u ∞ , we obtain T t [u] = u + t Ē1 .
Part 5. We prove item (iii). We first notice min

x,y∈R d E t (x, y) = min y∈R d T t [0](y).
On the one hand,

T t [0] ≤ T t [u -min(u)] = u + t Ē1 -min(u) ≤ max(u) -min(u) + t Ē1 .
On the other hand,

T t [0] ≥ T t [u -max(u)] = u + t Ē1 -max(u) ≥ min(u) -max(u) + t Ē1 .
In particular T t [0]t Ē1 ∞ ≤ osc(u) and lim t→+∞ min x,y∈R d 1 t E t (x, y) = Ē1 .

We conclude this section by the proof of theorem 9.

Proof of theorem 9. Part 1: proof of items (i)-(ii). The discrete action L τ (x, y) and the minimal action E τ (x, y) are particular cases of short-range interactions. Item (i) is proved in proposition 4. Item (ii) is proved in proposition 8. Part 2: Proof of item (iii). Let us show there exists a constant C > 0 such that

| Ēτ -Lτ | ≤ τ 2 C, ∀τ ∈ (0, 1].
Let u τ be a discrete weak KAM solution of E τ (x, y) and (x -k ) +∞ k=0 be a calibrated configuration for u τ . Thanks to propositions 5 and 2, there exist constants R > 0 and C > 0 independent of τ such that,

x -k -x -k-1 ≤ τR, ∀k ≥ 0, |E τ (x, y) -L τ (x, y)| ≤ τ 2 C, ∀x, y satisfying y -x ≤ τR, E τ (x -k-1 , x -k ) = u τ (x -k ) -u τ (x -k-1 ) + Ēτ , L τ (x -k-1 , x -k ) ≤ E τ (x -k-1 , x -k ) + τ 2 C, 1 n n-1 k=0 L τ (x -k-1 , x -k ) ≤ Ēτ + τ 2 C(R) + 2 n u τ ∞ .
By taking the limit n → +∞, and by using the mean action per site formula, we obtain Lτ ≤ Ēτ + τ 2 C. By permuting the roles of E τ and L τ we conclude the proof of item (iii).

Part 3: Proof of item (iv). It follows directly from the a priori compactness property of proposition 5.

Part 4: Proof of item (v). We will use two Lax-Oleinik operators: T τ , the discrete Lax-Oleinik operator associated to L τ , and T τ , the Lax-Oleinik semigroup associated to E τ . We claim there exists a constant C > 0 such that, for every small τ > 0, for every discrete weak KAM solution u for L τ ,

T τ [u] -T τ [u] ∞ ≤ τ 2 C.
Indeed, we know from propositions 5 and 2, there exist positive constants R and C such that, for every τ ∈ (0, 1], for every discrete weak KAM solution

u for L τ , -Lip(u) ≤ C, u ∞ ≤ C, -∀y ∈ R d , x ∈ arg min x∈R d u(x) + L τ (x, y) ⇒ y -x ≤ τR, -∀y ∈ R d , x ∈ arg min x∈R d u(x) + E τ (x, y) ⇒ y -x ≤ τR, -T τ [u] -u ∞ ≤ τC, -for every x, y, y -x ≤ τR ⇒ E τ (x, y) -L τ (x, y)| ≤ τ 2 C.
On the one hand, for every y and x ∈ arg min x∈R d u(x) + L τ (x, y) ,

T τ [u](y) ≤ u(x) + E τ (x, y) ≤ u(x) + L τ (x, y) + τ 2 C, T τ [u](y) ≤ T τ [u](y) + τ 2 C. On the other hand, if x ∈ arg min x∈R d u(x) + E τ (x, y) , T τ [u](y) = u(x) + E τ (x, y) ≥ u(x) + L τ (x, y) -τ 2 C, T τ [u](y) ≥ T τ [u](y) -τ 2 C.
The claim is proved. Since Lip(u) is uniformly bounded independently of τ for any discrete weak KAM solution u for L τ , we may choose a sequence of times τ i → 0 and discrete weak KAM solutions u i for L τ i such that u i → u uniformly for some periodic Lipschitz function u. Let t > 0 be fixed, and N i be integers such that N i τ i ≤ t < (N i + 1)τ. The non-expansiveness property of the Lax-Oleinik operator implies

T t [u] -T N i τ i [u i ] ∞ ≤ T t-N i τ i [u] -u ∞ + u -u i ∞ → 0. The previous claim T τ i [u i ] -T τ i [u i ] ∞ ≤ τ 2 i C and the estimate | Ēτ i -Lτ i | ≤ τ 2 i C, proved in item (iii) of theorem 9, imply T τ i [u i ] -u i -τ i Ē1 ∞ ≤ τ 2 i 2C.
By iterating this inequality, one obtains

T N i τ i [u i ] -u i -N i τ i Ē1 ∞ ≤ N i τ 2 i 2C ≤ tτ i 2C. Since u i + N i τ i Ē1 → u + t Ē1 , one get T t [u] = u + t Ē1 , ∀t > 0.

Second approximation scheme

This section is devoted to the proof of theorem 20. Our approach follows the article [START_REF] Davini | Convergence of the solutions of the discounted Hamilton-Jacobi equation: convergence of the discounted solutions[END_REF] to identify the selected discrete weak KAM solution but with a slightly more precise description using Aubry classes and extremal plans.

We first improve the a priori estimates of proposition 5 to the discounted case.

Proof of proposition 11. Part 1. The operator T τ,δ is contracting in C 0 norm, i.e.

T τ,δ [u] -T τ,δ [v] ∞ ≤ (1 -τδ) u -v ∞ , ∀ u, v ∈ C 0 (T d ).
Moreover, T τ,δ preserves the ball u ∞ ≤ C 0 δ where

C 0 := sup τ∈(0,1] sup x∈R d E τ (x, x) τ , -inf x,y∈R d E τ (x, y) τ .
Indeed, we have

T τ,δ [u](y) ≤ (1 -τδ) max(u) + max x∈R d E τ (x, x), T τ,δ [u](y) ≥ (1 -τδ) min(u) + min x,y∈R d E τ (x, y), u ∞ ≤ C 0 δ ⇒ T τ,δ [u] ∞ ≤ (1 -τδ) u ∞ + τC 0 ≤ C 0 δ .
In particular T τ,δ admits a unique fixed point u τ,δ which is inside B(0, C 0 δ ). We have proved item (i). The fixed point satisfies

u τ,δ (y) = min x∈R d (1 -τδ)u τ,δ (x) + E τ (x, y) , ∀y ∈ R d .
By iterating backward, one obtains the explicit formula for u τ,δ .

Part 2. We prove item (iii). We use the same reasoning as in the proof of proposition 5. We claim that for every point x, y satisfying yx ≥ τ, we have

|u τ,δ (y) -u τ,δ (x)| ≤ C 1 y -x , with C 1 := sup τ∈(0,1] sup y-x ≤2τ E τ (x, y) τ + C 0 .
Indeed, choose n ≥ 1 so that nτ < yx ≤ (n + 1)τ and define x i = x + i n (yx). By applying n times the inequality

u τ,δ (x i+1 ) -u τ,δ (x i ) ≤ E τ (x i , x i+1 ) + τδ u τ,δ ∞ ≤ τC 1 we obtain u τ,δ (y) -u τ,δ (x) ≤ C 1 y -x .
Define R using the uniform super-linearity (H5) by

R := inf R > 1 : inf τ∈(0,1] inf y-x ≥τR E τ (x, y) -C 0 τ y -x > C 1 .
We prove by contradiction that every x ∈ arg min x {(1-τδ)u τ,δ (x)+E τ (x, y) satisfies yx ≤ τR. If not yx > τR > τ, u τ,δ (y)u τ,δ (x) ≤ C 1 yx and by definition of R, we have

u τ,δ (y) -u τ,δ (x) ≥ E τ (x, y) -τδ u τ,δ ∞ ≥ E τ (x, y) -τC 0 > C 1 y -x .
We obtain a contradiction, therefore yx ≤ τR and the proof of item (iii) is complete.

Part 3. We prove item (iv). If z-y ≤ τ and x is a point realizing the minimum in the definition of u τ,δ (y), We have obtained in particular, z 0 ∈ B(x, ), z m ∈ B(y, ), z n ∈ B(x, ), and

u τ,δ (z) -u τ,δ (y) ≤ E τ (x, z) -E τ (x, y) ≤ C z -y ,
Φ * τ (z 0 , z m ) + Φ * τ (z m , z n ) ≤ n-1 k=0 φ • σk (ω) + [u τ (z n ) -u τ (z 0 )] = O( ).
Letting → 0, we obtain Φ * τ (x, y) + Φ * τ (y, x) = 0 or x ∼ y. Part 3: proof of item (ii). Let A be the Aubry class containing supp(µ) and z ∈ A arbitrarily fixed. Then, as a function of y,

Φ * τ (z, y) µ(dz) = Φ * τ (z, z) µ(dz) + Φ * τ (z, y), ∀y ∈ R d
is a discrete weak KAM solution thanks to item (v) of lemma 16.

Part 4: proof of item (iii). For every x, y ∈ A, Φ * τ (x, y) + Φ * τ (y, x) = 0. We conclude by integrating with respect to µ(dx)µ(dy).

Proof of proposition 18. Part 1. We use the notations of part 1 in the proof of lemma 17. We claim that the infimum in the definition of u * τ can be realized at an extremal plan. Let π be a minimizing plan realizing the infimum. Let P be a σ-invariant measure on Ω such that pr 1,2 * ( P) = π. Then P is minimizing. Let P(dx) = Pω (dx) P(dω) be an ergodic decomposition. Define π ω := pr 1,2 * ( Pω ). Since Pω is ergodic, π ω is an extremal plan. Moreover, for x fixed, π(dx, dy) = Ω π ω (dx, dy) P(dω),

u * τ (x) = Ω T d Φ * τ (z, x) pr 1 * (π ω )(dz) P(dω), u * τ (x) = T d Φ * τ (z, x) pr 1 * (π ω )(dz), P(dω) a.e., u * τ (x) = inf T d Φ * τ (z, x) pr 1 * (π)(dz) : π ∈ M * (E τ
) and is extremal .

Part 2: proof of items (i). It follows from the fact that u * τ is obtained as an infimum of discrete weak KAM solutions thanks to part 1 and item (ii) of lemma 17.

Part 3: proof of item (ii),(iii). They follow from item (iii) of lemma 17.

Proof of proposition 19. Part 1. Let C be the constant given by proposition 5. We claim that for every τ, δ ∈ (0, 1],

u τ,δ - Ēτ τδ ∞ ≤ C.
Let u τ be some discrete weak KAM solution. Let be y ∈ arg max

y∈R d u τ,δ (y) - Ēτ τδ -u τ (y) .
As a fixed point of T τ,δ , the discounted discrete solution satisfies for every x,

u τ,δ (y) - Ēτ τδ -u τ (y) ≤ (1 -τδ) u τ,δ (x) - Ēτ τδ -u τ (x) + E τ (x, y) -u τ (y) + u τ (x) -Ēτ -τδu τ (x).
Let x be a backward calibrated point for y with respect to u τ Then, by definition of y, we have

u τ,δ (x) - Ēτ τδ -u τ (x) ≤ u τ,δ (y) - Ēτ τδ -u τ (y), u τ,δ (y) - Ēτ τδ -u τ (y) ≤ -u τ (x), u τ,δ (y) - Ēτ τδ ≤ osc(u τ ) ≤ C.
On the other hand, let y be a point realizing the minimum of u τ,δ (y) -Ēτ τδu τ (y) and x be a discounted backward calibrated point for y, that is satisfying

u τ,δ (y) = (1 -τδ)u τ,δ (x) + E τ (x, y).
Then similar to what we have done in part 1, we obtain

u τ,δ (y) - Ēτ τδ -u τ (y) = (1 -τδ) u τ,δ (x) - Ēτ τδ -u τ (x) + E τ (x, y) -u τ (y) + u τ (x) -Ēτ -τδu τ (x). As E τ (x, y) -u τ (y) + u τ (x) -Ēτ ≥ 0, we obtain u τ,δ (y) -Ēτ τδ -u τ (y) ≥ -u τ (x) or u τ,δ (y) -Ēτ τδ ≥ -osc(u τ ) ≥ -C. Part 2. We claim that for every τ, δ ∈ (0, 1], π ∈ M * (E τ ), µ = pr 1 * (π), T d u τ,δ (x) - Ēτ τδ dµ(x) ≤ 0.
By definition of the discounted discrete solution u τ,δ , we have

u τ,δ (y) ≤ (1 -τδ)u τ,δ (x) + E * τ (x, y), ∀x, y ∈ R d .
By integrating the previous inequality, we obtain

T d u τ,δ (y) µ(dy) ≤ (1 -τδ) T d u τ,δ (x) µ(dx) + T d ×T d E * τ (x, y) π(dx, dy).
The last integral is equal to Ēτ and τδ T d u τ,δ (x) µ(dx) ≤ Ēτ . Part 3. Let τ > 0 be fixed. Let δ i → 0 be a sequence converging to 0. For every δ i , let (x i -k ) +∞ k=0 be a discounted backward calibrated configuration,

u τ,δ i (x i -k ) = (1 -τδ i )u τ,δ i (x i -k-1 ) + E τ (x i -k-1 , x i -k
). Let π i be the probability measure on T d × T d defined by

π i := k≥0 τδ(1 -τδ) k δ (x i -k-1 ,x i -k ) .
We claim that every weak * accumulation measure π of {π i } ∞ i=1 is a minimizing plan. Assume that π i → π as i → ∞ to simplify the notations.

We first prove that π is a stationary plan. Let ϕ : T d → R be a continuous function, then

T d ×T d ϕ(y) π i (dx, dy) = k≥0 τδ i (1 -τδ i ) k ϕ(x i -k ) = τδ i ϕ(x i 0 ) + (1 -τδ i ) k≥0 τδ i (1 -τδ i ) k ϕ(x i -k-1 ) = τδ i ϕ(x i 0 ) + (1 -τδ i ) T d ×T d ϕ(x) π i (dx, dy).
We complete the proof by letting δ i → 0. We next prove that π is minimizing:

T d ×T d E * τ (x,y) π i (dx, dy) = k≥0 τδ i (1 -τδ i ) k E * τ (x i -k-1 , x i -k ) = k≥0 τδ i (1 -τδ i ) k u τ,δ i (x i -k ) -(1 -τδ i )u τ,δ i (x i -k-1 ) = τδ i u τ,δ i (x i 0 ).
We conclude the proof thanks to part 1 which implies τδ i u τδ i → Ēτ uniformly. Part 4. Since Lip(u τ,δ ) and u τ,δ -Ēτ τδ ∞ are uniformly bounded with respect to δ, there exists a sub-sequence δ i → 0 and a C 0 periodic function u τ such that,

u τ,δ i - Ēτ τδ i → u τ , in the C 0 -topology.
Proof of item (i) of theorem 20. Part 1. Let τ > 0, and {x τ,δ n } n≤0 be a discounted backward calibrated configuration for the discrete action L τ ending at x. We note

v τ,δ n := 1 τ x τ,δ n+1 -x τ,δ n , ∀n ≤ -1.
We show in this part there exists a constant C > 0, independent of n, δ and x, such that v τ,δ n -v τ,δ n-1 ≤ Cτ for all n ≤ -1. Let x n := x τ,δ n and v n := v τ,δ n . By the definition of calibration we have

u τ,δ (x n+1 ) = (1 -τδ)u τ,δ (x n ) + L τ (x n , x n+1 ) = (1 -τδ) 2 u τ,δ (x n-1 ) + (1 -τδ)L τ (x n-1 , x n ) + L τ (x n , x n+1 ) ≤ (1 -τδ)u τ,δ (x) + L τ (x, x n+1 ), ∀x ∈ R d ≤ (1 -τδ) 2 u τ,δ (x n-1 ) + (1 -τδ)L τ (x n-1 , x) + L τ (x, x n+1 ), ∀x ∈ R d .
In other words {x τ,δ n } n≤0 is minimizing in the following sense

(1 -τδ)L τ (x n-1 , x n ) + L τ (x n , x n+1 ) ≤ (1 -τδ)L τ (x n-1 , x) + L τ (x, x n+1 ), ∀x ∈ R d ,
and satisfies the discounted discrete Euler-Lagrange equation

(1 -τδ) ∂L τ ∂y (x n-1 , x n ) + ∂L τ ∂x (x n , x n+1 ) = 0 ⇐⇒ (1 -τδ) ∂L ∂v (x n-1 , v n-1 ) - ∂L ∂v (x n , v n ) + τ ∂L ∂x (x n , v n ) = 0 ⇐⇒ 1 τ ∂L ∂v (x n , v n ) - ∂L ∂v (x n-1 , v n-1 ) = ∂L ∂x (x n , v n ) -δ ∂L ∂v (x n-1 , v n-1 ). ( 16 
)
Proposition 11 shows there exists R > 0 such that v τ,δ n ≤ R, ∀n ≤ -1. The property of positive definiteness (L1) implies the existence of a constant α(R) > 0 such that, for every

x ∈ R d , v ∈ R d satisfying v ≤ R, ∂ 2 L ∂v∂v (x, v).(h, h) ≥ α(R) h 2 , ∀h ∈ R d .
By integrating over t ∈ [0, 1] the term d dt ∂L ∂v x n-1 + t(x nx n-1 ), v n-1 + t(v nv n-1 ) and by taking the scalar product with (v nv n-1 ), one obtains

α(R) v n -v n-1 ≤ ∂L ∂x∂v x n -x n-1 + τ ∂L ∂x + δ ∂L ∂v
where all norms • are taken over T d × v ∈ R d : v ≤ R . As x nx n-1 ≤ τR thanks to item (iib) of proposition 11, one obtains v nv n-1 ≤ τC, for some constant C > 0, uniformly in n, δ and x.

Indeed using the notations in part 3, we have for every n ≤ -1,

u i (x) = (1 -τ i δ) -n u i • γ i (nτ i ) + -1

k=n

(1 -τ i δ) -k-1 τ i L γ i (kτ i ), V i (kτ i ) .

Let t < 0 be fixed, n ≤ 0 be such that (n -1)τ i ≤ t < nτ i . Then

I := -1 k=n (1 -τ i δ) -k-1 τ i L γ i (kτ i ), V i (kτ i ) - 0 nτ i
e sδ L(γ i (s), V i (s)) ds can be bounded from above by the following three terms I 1 , I 2 , I 3 (1 -τ i δ) -k ≤ τ i L .

I 1 = -1 k=n (1 -τ i δ) -k-1 (k+1)τ i kτ i L γ i (kτ i ), V i (kτ i ) -L(γ i (s), V i (s)) ds ≤ R ∂L ∂x τ i δ , I 2 = -1 k=n (1 -τ i δ) -k-1 -(1 -τ i δ) -k (k+1)τ i kτ i L(γ i (s), V i (s)) ds ≤ τ i L 1 -(1 -τ i δ) -n ≤ τ i L ,
We finally obtain

I ≤ R ∂L ∂x τ i δ + 2τ i L ,
and the claim is proved by letting τ i → 0, since nτ i → t, u i → u uniformly on R d , and both γ i → γ x δ and V i → γx δ uniformly on any compact set of (-∞, 0]. Part 5. We claim that u(x)e -tδ u(xtv) ≤ 0 -t e sδ L(x + sv, v) ds, ∀x ∈ R d , ∀t ≥ 0, ∀v ∈ R d .

We choose as before n ≤ 0 such that (n -1)τ i ≤ t < nτ i . Let x i k := xkτ i v, ∀k ∈ {n, . . . , -1, 0}. By definition of u i = u τ i ,δ , we have

u i (x) ≤ (1 -τ i δ) -n u i (x i n ) + -1 k=n (1 -τ i δ) -k-1 τ i L(x i k , v).
Then the expression | -1 k=n (1-τ i δ) -k-1 τ i L(x i k , v)-0 nτ i e sδ L(x+ sv, v) ds| is estimated in the same way as before, and the claim is proved. Part 6. By approximating any C 2 path picewise linearly, we obtain that, for any γ ∈ C 2 ((-∞, 0], R d ) ending at γ(0) = x, u(x)e -tδ u(γ(-t)) ≤ 0 -t e sδ L(γ(s), γ(s)) ds, ∀x ∈ R d , ∀t ≥ 0, ∀v ∈ R d .

We just have proved that u is unique given by (6), and that γ x δ is a C 2 minimizer by Tonelli Weierstrass theorem.

Proof of item (iic) of theorem 20. We first show u τ,δ -u δ ≤ C τ δ . Thanks to item (i), there exists a constant C 1 > 0 such that, for every x ∈ R d , there exists a C 1,1 curve γ x δ : (-∞, 0] → R d , satisfying γ x δ (0) = x, γx δ ≤ C 1 and Lip(γ x δ ) ≤ C 1 uniformly on (-∞, 0], and

u δ (x) = 0 -∞
e sδ L(γ x δ (s), γx δ (s)) ds.

Let x -k := γ x δ (-kτ), v -k := (x -k+1x -k )/τ, for every k ≥ 0. Then

u τ,δ (x) ≤ k≥0 (1 -τδ) k L τ (x -k-1 , x -k ),
(1 -τδ)u τ,δ (x)u δ (x) ≤ 

u τ,δ (x) -u δ (x) ≤ 2 L ∞ τ + DL ∞ C 1 τ δ ≤ 2 L ∞ + DL ∞ C 1 τ δ := C τ δ .
We next show u τ,δu δ ≥ -C τ δ . Let x ∈ R d and {x -k } k≥0 a discounted backward calibrated configuration for L τ starting at x, then

u τ,δ (x) = k≥0 (1 -τδ) k L τ (x -k-1 , x -k ).
Let γ : (-∞, 0] → R d be the piecewise linear path interpolating the points x -k at the times -kτ. Then, property (6) implies

u δ (x) ≤ 0 -∞
e sδ L(γ(s), γ(s)) ds.

Using item (iib) of proposition 11, we notice that for every s ∈ [-(k + 1)τ, -kτ],

γ(s) -x -k-1 ≤ x -k -x -k-1 ≤ Rτ, γ(s) = (x -k -x -k-1 )/τ := v -k-1 , |L(x -k-1 , v -k-1 ) -L(γ(s), γ(s))| ≤ ∂L ∂x ∞ Rτ,
(where ∂L ∂x ∞ is computed by taking the supremum of ∂L ∂x (x, v) over x ∈ R d and v ≤ R). Let C 3 := inf x,v∈R d L(x, v). Then item (ii) of proposition 11 implies

u τ,δ (x) -u δ (x) ≥ C 3 -L - ∂L ∂x ∞ R τ δ := -C τ δ .

-

  , γ) ds .

  τ , in the C 0 topology. iv. Let u * be the solution of (E4) defined by (7). Then lim τ→0, δ→0 τ/δ→0 u τ,δ -Lτ τδ = u * , in the C 0 topology.

Let τ > 0

 0 and x, y ∈ R d . By superlinearity, L(x, v) ≥ v -C for some constant C > 0. Then τ 0 L(γ(s), γ(s)) ds ≥ yx -τC for every absolutely continuous path γ : [0, τ] → R d satisfying γ(0) = x and γ(τ) = y. One obtains inf τ>0, x,y∈R d 1 τ E τ (x, y) ≥ -C. Part 2: proof of property (H6). Let τ ∈ (0, 1], x, y, z ∈ R d such that y-x ≤ τR and zx ≤ τR. By Tonelli-Weierstrass, there exists a C 2 minimizer γ : [0, τ] → R d starting at x, ending at y, and satisfying τ 0 L(γ(s), γ(s)) ds = E τ (x, y). Define the path ξ : [0, τ] → R d by ξ(s) = γ(s) + s z-y τ . By lemma 21, there exists a constant

  whereC := max C 1 , sup τ∈(0,1] sup y-x , z-x ≤τ(R+1) E τ (x, z) -E τ (x, y) yx .By Atkinson's theorem [Atk76], since φ d π = 0, for a.e. z ∈ Bx , ∃0 < m < n, s.t. σm (z) ∈ By , σn (z) ∈ Bx , and 0 ≤ n-1 k=0 φ • σk (z) < .

  -(1 -τ i δ) -k L(γ i (s), V i (s)) ds

  τδ) k+1e sδ L(x -k-1 , v -k-1 ) (x -k-1 , v -k-1 ) -L(γ δ (s), γδ (s)) ds. For every s ∈ [-(k + 1)τ, -kτ], γ δ (s)x -k-1 ≤ C 1 τ, γδ (s)v -k-1 ≤ C 1 τ, |L(x -k-1 , v -k-1 ) -L(γ δ (s), γδ (s))| ≤ DL ∞ C 1 τ,(where DL ∞ is computed by taking the supremum of DL(x, v) ∞ over x ∈ R d and v ≤ C 1 ). Moreover

  Let L ∞ be the supremum of L(x, v) over x ∈ R d and v ≤ C 1 . Then item (ii) of proposition 11 implies
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Proof of lemma 17. Let π be an extremal plan, and µ = pr 1 * (π). Part 1. Let be Ω := (T d ) N , σ : Ω → Ω be the left shift, and pr 1,2 : Ω → T d ×T d be the projection onto the first two coordinates. We claim there exists an ergodic σ-invariant probability measure π defined on Ω which projects onto π by pr 1,2 and minimizes Êτ (x) := E * τ (x 0 , x 1 ), ∀x = (x 0 , x 1 , . . .) ∈ Ω. Let π(dx, dy) = µ(dx)P(dy|x) be a regular family of disintegrated measures of π along the projection pr 1 . Define the Markov measure on Ω by

Then P is a σ-invariant probability measure which projects onto π and minimizes Êτ . Let P(dx) = Ω Pω (dx) P(dω) be an ergodic decomposition of P (see [Mn87, Theorem 6.1]). We claim that ω → pr 1,2 * ( Pω ) is a.e. constant. By contradiction there would exist ϕ ∈ C 0 (T d × T d ) and a constant a ∈ R such that Then π 1 and π 2 are distinct minimizing plans and π = P( B)π 1 + P( Bc )π 2 , with P( B) ∈ (0, 1) non-trivial, which contradicts the fact that π is extremal. We have obtained for almost every ω, pr 1,2 ( Pω ) = π and Pω is ergodic.

Part 2: proof of item (i). We have shown from part 1 there exists an ergodic σ-invariant measure π on Ω such that pr 1 * (π) = µ, where pr

Then Bx , By are open sets and have positive measures for π. Choose a discrete weak KAM solution u τ and define

We first prove that u τ is a discrete weak KAM solution. On the one hand, by letting δ i → 0 in

one obtains u τ (y)u τ (x) ≤ E τ (x, y) -Ēτ , for every x, y ∈ R d . On the other hand, for every y, there exists

Proposition 11 implies there exists a constant R > 0, independent of δ, such that yx i ≤ τR. By taking possibly a sub-sequence, one may assume x i → x for some x ∈ R d . One then obtains u τ (y)u τ (x) = E τ (x, y) -Ēτ . The proof is finished.

We next prove that u τ = u * τ given by proposition 18. Let π ∈ M * (E τ ) and µ = pr 1 * (π). By letting δ i → 0 in part 2, one obtains

Conversely, let w be a discrete weak KAM solution satisfying T d w d pr 1 * (π) ≤ 0 for every π ∈ M * (E τ ). Let y ∈ R d and for every δ i , (x i -k ) k≥0 be a discounted backward calibrated configuration starting at y = x i 0 . Then

) -Ēτ ≥ 0, by iterating these inequalities, one obtains

where π i is the probability measure defined in part 3. As π i converges to a minimizing plan π, one obtains u τ (y)-w(y) ≥ -T d w d pr 1 * (π) ≥ 0 and therefore u τ ≥ u * τ . Since u * τ is the only accumulation point of u τ,δ -Ēτ τδ , the proof of proposition 19 is complete.

The only results in theorem 20 to be proved are items (i) and (iic). Items (iia)-(iib) are particular cases of proposition 11. Item (iii) is a particular case of proposition 19. Item (iv) is a consequence of item (iic) and the existence of the balanced weak KAM solution (7).

Part 2. Let γ x τ,δ : (-∞, 0] → R d be the piecewise affine path interpolating the points x n at time nτ. We show that γ x τ,δ is Lipschitz uniformly in n, δ and {x τ,δ n } n≤0 . To simplify we write γ = γ x τ,δ . Let s < t < 0. Either s, t belong to the same interval ((n -1)τ, nτ]. As γ is affine with speed bounded by R, we obtain γ(t) -γ(s) ≤ |t -s|R. Or s, t belong to different intervals. By introducing the points x n corresponding to the intermediate times s ≤ nτ ≤ t, one obtains again the same estimate. Part 3. We choose a subsequence τ i → 0 and a discounted backward calibrated configuration {x i n } n≤0 such that γ i := γ x τ i ,δ → γ x δ uniformly on any compact interval of (-∞, 0] for some Lipschitz function γ x δ . We claim there exists a uniformly Lipschitz function

Let T ⊂ (-∞, 0) be a countable dense subset. Let be

By compactness of the ball {v : v ≤ R}, by taking a subsequence if needed, we may assume V i (t) → V(t) exists for every t ∈ T . Let s < t < 0 and m ≤ n be non positive integers such that (m -1)τ i ≤ s < mτ i and (n -1)τ i ≤ t < nτ i . Part 1 implies,

By letting τ i → 0, one obtains V(t) -V(s) ≤ |t -s|C for every s, t ∈ T . Let V : (-∞, 0) → R d be the unique Lipschitz extension of V. Then V i (t) → V(t) for every t ∈ (-∞, 0). Since 0 t V i (s) ds = x -γ i (t), ∀t < 0, the claim is proved and γ x δ is a C 1,1 path. Part 4. Item (iia) of proposition 11 shows there exists a constant C > 0 such that Lip(u τ i ,δ ) ≤ C. By taking a subsequence if necessary, we may assume that u i := u τ i ,δ → u uniformly for some Lipschitz function u. We claim that u(x)e tδ u(γ x δ (t)) = 0 t e sδ L(γ x δ (s), γx δ (s)) ds, ∀x ∈ R d , ∀t ≤ 0.