
HAL Id: hal-01869508
https://hal.science/hal-01869508v1

Submitted on 9 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning a Set of Interrelated Tasks by Using Sequences
of Motor Policies for a Strategic Intrinsically Motivated

Learner
Nicolas Duminy, Sao Mai Nguyen, Dominique Duhaut

To cite this version:
Nicolas Duminy, Sao Mai Nguyen, Dominique Duhaut. Learning a Set of Interrelated Tasks by
Using Sequences of Motor Policies for a Strategic Intrinsically Motivated Learner. 2018 Second IEEE
International Conference on Robotic Computing (IRC), Jan 2018, Laguna Hills, France. pp.288 - 291,
�10.1109/IRC.2018.00061�. �hal-01869508�

https://hal.science/hal-01869508v1
https://hal.archives-ouvertes.fr


N. Duminy, S. M. Nguyen and D. Duhaut, "Learning a Set of Interrelated Tasks by Using Sequences of Motor Policies for a Strategic

Intrinsically Motivated Learner," 2018 Second IEEE International Conference on Robotic Computing (IRC), Laguna Hills, CA, US,

2018, pp. 288-291. doi:10.1109/IRC.2018.00061

Learning a set of interrelated tasks by using sequences of motor
policies for a strategic intrinsically motivated learner

Nicolas Duminy1 Sao Mai Nguyen2 Dominique Duhaut1

Abstract—We propose an active learning architecture for
robots, capable of organizing its learning process to achieve a
field of complex tasks by learning sequences of motor policies,
called Intrinsically Motivated Procedure Babbling (IM-PB). The
learner can generalize over its experience to continuously learn
new tasks. It chooses actively what and how to learn based by
empirical measures of its own progress. In this paper, we are
considering the learning of a set of interrelated tasks outcomes
hierarchically organized.

We introduce a framework called ”procedures”, which are
sequences of policies defined by the combination of previously
learned skills . Our algorithmic architecture uses the procedures
to autonomously discover how to combine simple skills to achieve
complex goals. It actively chooses between 2 strategies of goal-
directed exploration: exploration of the policy space or the
procedural space. We show on a simulated environment that our
new architecture is capable of tackling the learning of complex
motor policies, to adapt the complexity of its policies to the task
at hand. We also show that our ”procedures” framework helps
the learner to tackle difficult hierarchical tasks.

I. INTRODUCTION

Taking a developmental robotic approach [1], we combine
the approaches for active motor skill learning of goal-oriented
exploration and strategical learning to learn multiple complex
and interrelated tasks. Our algorithm is able to learn a map-
ping between a continuous space of parametrized tasks (also
referred to as outcomes) and a space of parametrized motor
policies (sometimes referred to as actions).

A. Active motor skill learning of multiple tasks

Classical techniques based on Reinforcement Learning [2]
[3] still need an engineer to manually design a reward func-
tion for each task. Intrinsic motivation (IM), which triggers
curiosity in humans according to developmental psychology
[4], was introduced in highly-redundant robots to make them
learn a wider range of tasks, through goal-babbling [5] [6].

However, with higher outcome space dimensionalities, their
efficiency drops [7] due to the curse of dimensionality.

B. Strategic learning

Approaches where the learner chooses both what (which
outcome to focus on) [5] and how (which strategy to use) [9]
to learn are called strategic learning [8]. They aim at enabling
an autonomous learner to self-organize its learning process.

The research work presented in this paper is partially supported by the EU
FP7 grant ECHORD++ KERAAL and by the the European Regional Fund
(FEDER) via the VITAAL Contrat Plan Etat Region

1 Nicolas Duminy and Dominique Duhaut are with Université Bretagne
Sud, Lorient, France. nicolas.duminy@telecom-bretagne.eu and
dominique.duhaut@univ-ubs.fr

2 Sao Mai Nguyen is with IMT Atlantique, Lab-STICC, UBL, F-29238
Brest, France. nguyensmai@gmail.com

The problem was introduced and studied in [8], and im-
plemented for an infinite number of outcomes and policies in
continuous spaces by the SGIM-ACTS algorithm [15]. This
algorithm organizes its learning process, by choosing actively
both which strategy to use and which outcome to focus on. It
relies on the empirical evaluation of its learning progress. It
could choose among autonomous exploration driven by IM and
low-level imitation of one of the available human teachers to
learn more efficiently. It showed its potential to learn on a real
high dimensional robot a set of hierarchically organized tasks
[11], so we inspire from it to learn complex motor policies.

C. Learning complex motor policies

In this article, we tackle the learning of complex motor
policies, which we define as sequences of primitive policies.

We wanted to enable the learner to decide autonomously
the complexity of the policy necessary to solve a task, so we
discarded via-points [3]. Options [12] are temporally abstract
actions built to reach one particular task. They have only been
tested for discrete tasks and actions, where a small number of
options were used, whereas our new proposed learner is to be
able to create an unlimited number of complex policies.

As we aim at learning a hierarchical set of interrelated
complex tasks, our algorithm could use this task hierarchy (as
[13] did to learn tool use with primitive policies only), and try
to reuse previously acquired skills to build more complex ones.
[14] showed that building complex actions made of lower-
level actions according to the task hierarchy can bootstrap
exploration by reaching interesting outcomes more rapidly.

We adapted SGIM-ACTS to learn complex motor policies
of unlimited size. We developed a new mechanism called
”procedures” (see Section II-B) which proposes to combine
known policies according to their outcome. Combining these,
we developed a new algorithm called Intrinsically Motivated
Procedure Babbling (IM-PB) capable of taking task hierarchy
into account to learn a set of complex interrelated tasks using
adapted complex policies. We will describe an experiment, on
which we have tested our algorithm, and we will present and
analyze the results.

II. OUR APPROACH

Inspired by developmental psychology, we propose a strate-
gic learner driven by IM. This learner discovers the task
hierarchy and reuses previously learned skills while adapting
the complexity of its policy to the complexity.

In this section, we formalize our learning problem and
explain the principles of IM-PB.



N. Duminy, S. M. Nguyen and D. Duhaut, "Learning a Set of Interrelated Tasks by Using Sequences of Motor Policies for a Strategic

Intrinsically Motivated Learner," 2018 Second IEEE International Conference on Robotic Computing (IRC), Laguna Hills, CA, US,

2018, pp. 288-291. doi:10.1109/IRC.2018.00061

A. Problem formalization

In our approach, an agent can perform policies πθ,
parametrized by θ ∈ Π. Those policies induce outcomes in
the environment, parametrized by ω ∈ Ω. The agent is then to
learn the mapping between Π and Ω: it learns to predict the
outcome ω of each policy πθ (the forward model M ), but more
importantly, it learns which policy to choose for reaching any
particular outcome (an inverse model L). The outcomes ω are
of various dimensionality and be split in task spaces Ωi ⊂ Ω.

The policies consist of a succession of primitives (encoded
by the same set of parameters θ ∈ Π) that are executed
sequentially by the agent. Hence, policies also are of different
dimensionality and are split in policy spaces Πi ⊂ Π (where
i corresponds to the number of primitives).

B. Procedures

As this algorithm tackles the learning of complex hierarchi-
cally organized tasks, exploring and exploiting this hierarchy
could ease the learning of the more complex tasks. We define
procedures as a way to encourage the robot to reuse previously
learned skills, and chain them to build more complex ones.
More formally, a procedure is built by choosing two previously
known outcomes (ti, tj ∈ Ω) and is noted ti � tj .

Executing a procedure ti � tj means building the complex
policy πθ corresponding to the succession of both policies πθi
and πθj and execute it (where πθi and πθj reach best ti and
tj respectively). As ti and tj are generally unknown from the
learner, the procedure is updated before execution (see Algo.
1) to subtasks t1 and t2 which are feasible by the learner
according to its current skill set.

Algorithm 1 Procedure modification before execution
Input: (ti, tj) ∈ Ω2

Input: inverse model L
t1 ←Nearest-Neighbour(ti)
t2 ←Nearest-Neighbour(tj )
πθ1 ← L(t1)
πθ2 ← L(t2)
return πθ = πθ1πθ2

C. Intrinsically Motivated Procedure Babbling

The IM-PB algorithm (see Algo. 2) learns by episodes,
where an outcome ωg ∈ Ω to target and an exploration strategy
σ have been selected.

In an episode under the policy space exploration strategy,
the learner tries to optimize the policy πθ to produce ωg by
choosing between random exploration of policies and local
optimization, following the SAGG-RIAC algorithm [5] (Goal-
Directed Policy Optimization(ωg)). Local optimization uses
local linear regression.

In an episode under the procedural space exploration strat-
egy, the learner builds a procedure ti � tj such as to re-
produce the goal outcome ωg the best (Goal-Directed Proce-
dure Optimization(ωg)). It chooses either random exploration
of procedures (which builds procedures by generating two
subtasks at random) when the goal outcome is far from

any previously reached one, or local procedure optimization,
which optimizes a procedure using local linear regression. The
procedure built is then modified and executed, using Algo. 1.

After each episode, the learner stores the policies and modi-
fied procedures executed along with their reached outcomes in
its episodic memory. It computes its competence in reaching
the goal outcome ωg by comparing it with the outcome
ω it actually reached (using normalized Euclidean distance
d(ω, ωg)). Then it updates its interest model according to the
progress p(ωg), which is the derivate of the competence, it has
made (including the outcome spaces reached but not targeted)
in order to choose the strategy and task in the next episode.
The interest interest(ω, σ) of each outcome added depends on
both the progress p(ω) made and the cost K(σ) of the strategy
used: interest(ω, σ) = p(ω)/K(σ). The outcomes reached and
the goal are added in their corresponding region, which is then
split when exceeding a fixed number of points to discriminate
the regions of high and low interest for the learner. The method
used is described in [15].

Algorithm 2 IM-PB
Input: the different strategies σ1, ..., σn
Initialization: partition of outcome spaces R←

⊔
i{Ωi}

Initialization: episodic memory Memo ← ∅
loop
ωg , σ ← Select Goal Outcome and Strategy(R)
if σ = Autonomous exploration of procedures strategy then

Memo ← Goal-Directed Procedure Optimization(ωg)
else
σ = Autonomous exploration of policies strategy
Memo ← Goal-Directed Policy Optimization(ωg)

end if
Update L−1 with collected data Memo
R← Update Outcome and Strategy Interest Mapping(R,Memo,ωg)

end loop

The choice of strategy and goal outcome is based on the
empirical progress measured in each region Rn of the outcome
space Ω, as in [11].

When the learner computes nearest neighbours to select
policies or procedures to optimize (when choosing local opti-
mization in any autonomous exploration strategies and when
refining procedures), it actually uses a performance metric (1)
which takes into account the cost of the policy chosen:

perf = d(ω, ωg)γ
n (1)

where d(ω, ωg) is the normalized Euclidean distance be-
tween the target outcome ωg and the outcome ω reached by
the policy, γ is a constant and n is equal to the size of the
policy (the number of primitives chained).

III. EXPERIMENT

We designed an experiment with a simulated robotic arm,
which can move and interact with objects. It can learn an
infinite number of tasks, organized as 6 types of tasks. The
robot can perform complex policies of unrestricted size.



N. Duminy, S. M. Nguyen and D. Duhaut, "Learning a Set of Interrelated Tasks by Using Sequences of Motor Policies for a Strategic

Intrinsically Motivated Learner," 2018 Second IEEE International Conference on Robotic Computing (IRC), Laguna Hills, CA, US,

2018, pp. 288-291. doi:10.1109/IRC.2018.00061

y

x

z

(x , y , z ) ₀ ₀ ₀

(x , y , z ) ₁ ₁ ₁

(x , y , z ) ₃ ₃ ₃

(x , y , z ) ₄ ₄ ₄

(x , y ) ₅ ₅

(xa, ya) 

(xb, yb) 

Fig. 1: Experimental setup: a robotic arm, can interact with the different objects in its
environment (a pen and two joysticks). Both joysticks enable to control a video-game
character (represented in top-right corner). A grey floor limits its motions and can be
drawn upon using the pen (a possible drawing is represented).

A. Simulation setup

Fig. 1 shows the experimental setup (delimited by
(x, y, z) ∈ [−1; 1]

3). The learning agent is a planar robotic
arm of 3 joints (each link measures 0.33), with the based
anchored in the center of the horizontal plan. It can rotate
around the z-axis and change its vertical position. The robot
can grab objects by hovering its arm tip (blue in Fig. 1) close
to them, which position is noted (x0, y0, z0). It interacts with:

• Pen: position noted (x1, y1, z1), can be moved and draw
on the floor, broken if forcing to much on the floor;

• Floor which limits motions to z > −0.2;
• Drawing: last continuous line made when the pen moves

on the floor, delimited by first (xa, ya) and last (xb, yb)
point, if the pen is functional;

• Joysticks: two joysticks can be moved inside their own
cubic-shape volume and control a video-game character,
released otherwise, normalized positions respectively at
(x3, y3, z3) and (x4, y4, z4);

• Video-game character: on a 2D-screen set by the joysticks
refreshed only at the end of a primitive policy execution
for manipulated joystick, position (x5, y5) set by joystick
1 x-axis and joystick 2 y-axis respectively.

The robot can one object at once. Touching an other breaks
it, releasing both objects. It always starts from the same
position before executing a policy, and primitives are executed
sequentially without getting back to this initial position. Whole
complex policies are recorded with their outcomes, but each
step of the complex policy execution is recorded as well.

B. Experiment variables

1) Policy spaces: The motions of each of the three joints
of the robot are encoded using a one-dimensional Dynamic
Movement Primitive (DMP). We are using the original form
of the DMP from [16] and we keep the same notations. Each
of these one-dimensional DMP ai (ordered by joint from
base to tip) is encoded using its end position g(i), and three
basis functions for the forcing term, parametrized by their

weights (ω
(i)
0 , ω

(i)
1 , ω

(i)
2 ). A primitive motor policy is simply

the concatenation of those DMP parameters and the fixed
vertical position of the arm during the motion z:

θ = (a0, a1, a2, z) (2)

ai = (ω
(i)
0 , ω

(i)
1 , ω

(i)
2 , g(i)) (3)

When combining two or more primitive policies
(πθ0 , πθ1 , ...), in a complex policies πθ, the parameters
(θ0, θ1, ...) are simply concatenated together from the first
primitive to the last.

2) Task spaces: The task spaces the robot learns are hierar-
chically organized and defined as: Ω0 = {(x0, y0, z0)}, Ω1 =
{(x1, y1, z1)}, Ω2 = {(xa, ya, xb, yb)}, Ω3 = {(x3, y3, z3)},
Ω4 = {(x4, y4, z4)} and Ω5 = {(x5, y5)}.

C. Evaluation method

To evaluate our algorithm, we created a benchmark linearly
distributed across the Ωi, of 27,600 points. The evaluation
consists in computing mean Euclidean distance between each
of the benchmark outcomes and their nearest neighbour in the
learner dataset. This evaluation is repeated regularly.

Then to asses our algorithm efficiency, we compare its
results of algorithms: RandomPolicy (random exploration of
Π) , SAGG-RIAC (exploration of Π guided by IM), Random-
PB (random exploration of policies and procedures), IM-PB
(exploration of the procedural space and the policy space,
guided by IM).

Each algorithm was run 5 times for 25,000 iterations (com-
plex policies executions). The meta parameter was: γ = 1.2.

IV. RESULTS

Fig. 2: Evaluation of all algorithms (standard deviation shown in caption)

Fig. 2 shows the global evaluation of all tested algorithms,
which is the mean error made by each algorithm to reproduce
the benchmarks with respect to the number of complete
complex policies tried. Random-PB and IM-PB owing to
procedures have lower errors than the others even since the
beginning. Indeed, they perform better than their downgrades
without procedures, RandomPolicy and SAGG-RIAC.

On each individual outcome space (Fig. 3), IM-PB outper-
forms the other algorithms. The comparison of the learners
without procedures (RandomPolicy and SAGG-RIAC) with
the others shows they learn less on any outcome space but
Ω0 (reachable using single primitives, with no subtask) and
especially for Ω1, Ω2 and Ω5 which were the most hierarchical



N. Duminy, S. M. Nguyen and D. Duhaut, "Learning a Set of Interrelated Tasks by Using Sequences of Motor Policies for a Strategic

Intrinsically Motivated Learner," 2018 Second IEEE International Conference on Robotic Computing (IRC), Laguna Hills, CA, US,

2018, pp. 288-291. doi:10.1109/IRC.2018.00061

Fig. 3: Evaluation of all algorithms per outcome space (for Ω0, all evaluations are
superposed)

in this setup. So the procedures helped when learning any
potentially hierarchical task in this experiment.

We wanted to see if our IM-PB learner adapts the complex-
ity of its policies to the working task. We draw 1,000,000 goal
outcomes for each of the Ω0, Ω1 and Ω2 subspaces (chosen
because they are increasingly complex) and we let the learner
choose the known policy that would reach the closest outcome.
Fig. 4 shows the results of this analysis.

Fig. 4: Number of policies selected per policy size for three increasingly more complex
outcome spaces by the IM-PB learner

As we can see on those three interrelated outcome subspaces
(Fig. 4), the learner is capable to adapt the complexity of its
policies to the outcome at hand. It chooses longer policies
for Ω1 and Ω2 (size 3 and 4 compared to size 1 for Ω0).
Our learner is capable to correctly limit the complexity of
its policies instead of being stuck into always trying longer
and longer policies. However, the learner did not increase its
policies complexity from Ω1 to Ω2, as we hoped.

V. CONCLUSION AND FUTURE WORK

With this experiment, we show the capability of IM-PB to
tackle the learning of a set of multiple interrelated complex
tasks. It successfully uses complex motor policies to learn a
wider range of tasks. Though it was not limited in the size of
policies it could execute, the learner shows it could adapt the
complexity of its policies to the task at hand.

The procedures greatly improved the learning capability of
autonomous learners, as we can see by the difference between
the Random-PB and IM-PB learners and the RandomPolicy
and SAGG-RIAC ones. Our IM-PB shows it is capable to
use procedures to exploit both the task hierarchy of this
experimental setup and previously learned skills.

However this new framework of procedures could be better
exploited, if it could be recursive (defined as a binary tree
structure), allowing the refinement process to select lower-
levels procedures as one of the policy component. This process
could also be used inside the strategical decisions made by the
learner when selecting what and how to learn. This strategical
choice could also be recursive, allowing the learner to optimize
both components of a procedure at once, instead of using the
current one-step refinement process.

Also, the procedures are here only combinations of two
subtasks, it could be interesting to see if the process can extend
to combinations of any number of subtasks.

Finally, proving the potency of our IM-PB learner on a
real robotic setup could show its interest for actual robotic
application. We are currently designing such an experiment.

REFERENCES

[1] M. Lungarella, G. Metta, R. Pfeifer, and i. G. Sandin, “Developmental
robotics: a survey,” Connection Science, vol. 15, no. 4, pp. 151–190,
2003.

[2] E. Theodorou, J. Buchli, and S. Schaal, “reinforcement learning of
motor skills in high dimensions: a path integral approach,” in robotics
and automation (icra), 2010 ieee international conference on, 2010, pp.
2397–2403. [Online]. Available: http://www-clmc.usc.edu/publications/
T/theodorou-ICRA2010.pdf

[3] F. Stulp and S. Schaal, “Hierarchical reinforcement learning with move-
ment primitives,” in Humanoids, 2011, pp. 231–238.

[4] E. Deci and R. M. Ryan, Intrinsic Motivation and self-determination in
human behavior. New York: Plenum Press, 1985.

[5] A. Baranes and P.-Y. Oudeyer, “Intrinsically motivated goal exploration
for active motor learning in robots: A case study,” in Intelligent Robots
and Systems (IROS), 2010 IEEE/RSJ International Conference on, oct.
2010, pp. 1766 –1773.

[6] M. Rolf, J. Steil, and M. Gienger, “Goal babbling permits direct learning
of inverse kinematics,” IEEE Trans. Autonomous Mental Development,
vol. 2, no. 3, pp. 216–229, 09/2010 2010.

[7] A. Baranes and P.-Y. Oudeyer, “Active learning of inverse models
with intrinsically motivated goal exploration in robots,” Robotics and
Autonomous Systems, vol. 61, no. 1, pp. 49–73, 2013.

[8] M. Lopes and P.-Y. Oudeyer, “The Strategic Student Approach
for Life-Long Exploration and Learning,” in IEEE Conference on
Development and Learning / EpiRob, San Diego, États-Unis, Nov.
2012. [Online]. Available: http://hal.inria.fr/hal-00755216

[9] Y. Baram, R. El-Yaniv, and K. Luz, “Online choice of active learning
algorithms,” The Journal of Machine Learning Research,, vol. 5, pp.
255–291, 2004.

[10] S. M. Nguyen, A. Baranes, and P.-Y. Oudeyer, “Bootstrapping in-
trinsically motivated learning with human demonstrations,” in IEEE
International Conference on Development and Learning, Frankfurt,
Germany, 2011.

[11] N. Duminy, S. M. Nguyen, and D. Duhaut, “Strategic and interactive
learning of a hierarchical set of tasks by the Poppy humanoid robot,”
in 2016 Joint IEEE International Conference on Development and
Learning and Epigenetic Robotics (ICDL-EpiRob), Sep. 2016, pp. 204–
209.

[12] R. S. Sutton, D. Precup, and S. Singh, “Between mdps and semi-mdps:
a framework for temporal abstraction in reinforcement learning,” Artif.
Intell., vol. 112, pp. 181–211, August 1999. [Online]. Available:
http://dx.doi.org/10.1016/S0004-3702(99)00052-1

[13] S. Forestier and P.-Y. Oudeyer, “Curiosity-driven development of tool
use precursors: a computational model,” in 38th Annual Conference of
the Cognitive Science Society (CogSci 2016), 2016, pp. 1859–1864.

[14] A. G. Barto, G. Konidaris, and C. Vigorito, “Behavioral hierarchy:
exploration and representation,” in Computational and Robotic Models
of the Hierarchical Organization of Behavior. Springer, 2013, pp.
13–46. [Online]. Available: http://link.springer.com/chapter/10.1007/
978-3-642-39875-9 2



N. Duminy, S. M. Nguyen and D. Duhaut, "Learning a Set of Interrelated Tasks by Using Sequences of Motor Policies for a Strategic

Intrinsically Motivated Learner," 2018 Second IEEE International Conference on Robotic Computing (IRC), Laguna Hills, CA, US,

2018, pp. 288-291. doi:10.1109/IRC.2018.00061

[15] S. M. Nguyen and P.-Y. Oudeyer, “Active choice of teachers, learning
strategies and goals for a socially guided intrinsic motivation learner,”
Paladyn Journal of Behavioural Robotics, vol. 3, no. 3, pp. 136–146,
2012. [Online]. Available: http://dx.doi.org/10.2478/s13230-013-0110-z

[16] P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal, “Learning and
generalization of motor skills by learning from demonstration,”
in Robotics and Automation, 2009. ICRA’09. IEEE International
Conference on. IEEE, 2009, pp. 763–768. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=5152385


