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Abstract— We present an adaptive observer for linear time-
varying systems whose state matrix depends on unknown
parameters. We first assume that the state matrix is affine
in these parameters. In this case, the proposed observer
generates state and parameter estimates, which exponentially
converge to the plant state and the true parameter, respectively,
provided a persistence of excitation condition holds and the
unknown parameters lie in a neighborhood of some known
nominal values. Hence, some prior knowledge on the unknown
parameters is required, but not on the state. We then modify
the adaptive observer and its convergence analysis to systems
whose state matrix is smooth, instead of being affine, in the
unknown parameters. The convergence is approximate, and no
longer exponential, in this case. An example is provided to il-
lustrate the results, for which the required distance between the
unknown parameters and their nominal values is investigated
numerically.

I. INTRODUCTION

The objective of this work is to estimate both the state and
the parameters of the system

ẋ(t) = A(t, θ)x(t) +B(t)u(t)
y(t) = C(t)x(t),

(1)

where1 x(t) ∈ Rnx is the state, u(t) ∈ Rnu is the
input, y(t) ∈ Rny is the output, θ ∈ Rnθ is the vector
of unknown constant parameters, t ≥ 0 is the time, and
nx, nu, ny, nθ ∈ Z>0. In other words, we aim at designing
an adaptive observer for system (1). This problem arises
in many practical applications, including electrochemical
batteries [13] or mechanical systems [9] to cite a couple
of examples, as soon as we need to estimate on-line both
the unmeasured state and unknown parameters of a plant for
monitoring purposes for instance.

In the majority of works on adaptive observers, the state
matrix is assumed to be fully known contrary to (1), and
the unknown parameters enter in the system through an
additional term of the form Φ(t, u(t), y(t))θ where Φ is
known. Solutions for this case can be found in e.g., [3], [4],
[20], [28]–[30]. The fact that A depends on θ in (1) is a major
difference with these references, which makes the problem
difficult because of the cross-terms involving θ and x(t).
There are nevertheless results in the literature, which propose
adaptive observers for systems with partially unknown state
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1The notation and the terminology are defined at the end of the introduc-
tion.

matrix A. In [17], several designs are given for single-input
single-output linear time-invariant (LTI) systems. In [18], it
is explained how to optimally fit a discrete-time LTI model
to any given output signals. In [21], a switched approach is
proposed for LTI systems based on linear matrix inequalities
(LMI) conditions. More recently, a generic approach for
the state and parameter estimation of nonlinear systems
was presented in [8] using a multi-observer set-up. On the
other hand, adaptive observers for systems with known state
matrices with an additive term of the form Φ(x)θ (see e.g.,
[5], [7], [11], [12]) are relevant in this context when A is
affine in θ, as a simple manipulation brings system (1) to
the right form.

In this work, we propose an approach, which relies on a
simple idea. We essentially assume that we know a state-
observer for system (1) for some known nominal param-
eter value θ0. Because θ 6= θ0, the idea is to modify
the original state-observer and design an adaptation law
to estimate θ by relying on similar techniques as in [30].
Indeed, by adding and subtracting A(t, θ0)x(t) in the first
equation in (1), we obtain ẋ(t) = A(t, θ0)x(t) +B(t)u(t) +
[A(t, θ)−A(t, θ0)]x(t). Assuming A(t, θ) is affine in θ we
can write A(t, θ)x(t) − A(t, θ0)x(t) = Λ(t, x(t))(θ − θ0),
where Λ(t, x(t)) is a time-varying matrix linear in its second
argument; this is explained in more detailed in the sequel.
Hence, ẋ(t) = A(t, θ0)x(t) +B(t)u(t) + Λ(t, x(t))(θ− θ0).
Denoting by x̂ the state estimate of the adaptive observer
to be designed and x̃ = x − x̂ the associated state esti-
mation error, we derive ẋ(t) = A(t, θ0)x(t) + B(t)u(t) +
Λ(t, x̂(t))(θ − θ0) + Λ(t, x̃(t))(θ − θ0), since Λ is linear in
its second argument. Now Λ(t, x̂(t)) is known since x̂ is the
state estimate we generate. The term Λ(t, x̂(t))(θ − θ0) is
therefore of the form Φ(t)(θ−θ0) where Φ(t) is known. We
are almost back to the same class of systems as in [30] where
the unknown parameter is θ−θ0 instead of θ, but this is fine
since we know θ0. The difference with [30] is that we have
to deal with the extra term Λ(t, x̃(t))(θ − θ0). It appears
that when ||θ − θ0|| is small, so is Λ(t, x̃(t))(θ − θ0)x̃(t)
so that stability of the estimation error may be ensured.
The point of these developments is to show that after some
simple manipulations, we can write the problem in a similar,
though different form, as in [30]. Still, the design of the
adaptive observer is not a straightforward application of [30]
and requires appropriate modifications as well as specific
assumptions. The exponential convergence of the proposed
adaptive observer is guaranteed provided a persistence of
excitation condition holds and ||θ − θ0|| is small enough.
Such an excitation condition is needed in almost all works



on adaptive observers. The fact that ||θ−θ0|| has to be small
means that the design is local in the parameter estimate, but
we are free to initialize the state estimate as we wish. It can
be noted that many estimation or identification schemes are
also local, see [18] for instance and all the works on extended
Kalman filters, see e.g., [6], [16], [24]. Afterwards, the results
are extended to the case where A is only smooth in θ, and
not necessarily affine. The adaptive observer and its analysis
are modified accordingly and an approximate convergence
property is ensured in this case.

Compared to [17], our results apply to multi-input multi-
output linear time-varying systems, as opposed to single-
input single-output LTI systems, and compared to [21], we
address LTV systems and our approach relies on different
type of conditions (no LMI). The closest work in spirit,
although it is written in discrete-time for LTI models, is
the one in [18]. A key difference with [18] is that we
do not need to use projection techniques to maintain the
parameter estimate in some given set, and the estimates
we generate cannot be trapped in the border of the given
set due to projections, but always converge to the true
parameter provided, again, that ||θ − θ0|| is small enough
and a persistence of excitation holds. On the other hand, the
adaptive observer is less computationally demanding than the
supervisory observer presented in [8], which requires a large
number of observers to work, and we ensure the asymptotic
convergence of the estimation errors as opposed to a practical
property in [8]. Finally, compared to [5], [7], [11], [12]: (i)
we do not require any particular triangular or block-diagonal
structure of the system ([5], [11], [12]); (ii) we provide
results for the case where the state matrix is not affine in θ
in which case the results in [5], [7], [11] do not apply; (iii)
we do not rely on high-gain techniques ([11], [12]), which
are not known to be very sensitive to noise measurements;
(iv) the observer is of smaller dimension, which is relevant
for computational reasons ([5], [11], [12]). Also, we believe
that the way we approach the problem has its own interest,
which can be relevant for further extensions.

A similar problem is addressed in [9]. First, exponential
convergence is ensured in our case when A is affine in θ as
opposed to an ultimate boundedness property in [9]. Second,
the proposed solution is computationally lighter, since [9]
requires the use of both a state-observer for the nominal
parameter values and of an adaptive observer, while we only
need the latter.

The rest of the paper is organized as follows. The assump-
tions we make on system (1) are presented in Section II. The
main result is then given in Section III and an illustrative
example is provided in Section IV. Section V concludes the
paper. A technical lemma is provided in the appendix.
Notation and terminology. Let R := (−∞,∞), R≥0 :=
[0,∞), R>0 := (0,∞), Z≥0 := {0, 1, 2, . . .}, and Z>0 :=
{1, 2, . . .}. The notation (x, y) stands for [x>, y>]>, where
x ∈ Rn, y ∈ Rm, and n,m ∈ Z>0. The identity matrix of
size n ∈ Z>0 is denoted In or simply I when the dimension
is clear from the context. Given two matrices Q,R ∈ Rn×n,
we write Q ≤ R if R−Q is positive semi-definite, n ∈ Z>0.

The symbol ? stands for symmetric blocks in matrices. A
time-varying matrix M(t) ∈ Rn×m is said to be bounded
if there exists c ≥ 0 such that ||M(t)|| ≤ c for any t ≥ 0,
where ||M(t)|| := supx∈Rm\{0}

||M(t)x||
||x|| , || · || standing for

the Euclidean norm when the argument is a vector. We write
N(x) = O(||x||2) for N : Rn → Rm with n,m ∈ Z>0,
when there exists c ≥ 0 such that ||N(x)|| ≤ c||x||2 for
any x ∈ Rn. The set of piecewise continuous functions from
R≥0 to Rn is denoted PC(Rn), n ∈ Z>0. Let p ∈ Rn and
δ ∈ R>0 ∪ {∞}, the closed ball of radius δ centered at p is
denoted B(p, δ), with B(p, δ) = Rn when δ =∞.

II. ASSUMPTIONS

The matrices A(t, θ), B(t) and C(t) in (1) are assumed
to be continuous and bounded with respect to the time t. We
make the next assumption on how A(t, θ) depends on θ.

Assumption 1: The matrix A(t, θ) is affine in θ, in the
sense that there exist matrices A0(t), . . . , Anθ (t) ∈ Rnx×nx
such that, for any t ≥ 0, A(t, θ) = A0(t) +

∑nθ
i=1Ai(t)θi,

where θ = (θ1, . . . , θnθ ). �
When Assumption 1 is not satisfied, we may redefine the

vector of unknown parameters to enforce it, by eventually
over-parameterizing the original system. This assumption
will be relaxed in Section III-C. It is important to note
that the matrices A0(t), . . . , Anθ (t) in Assumption 1 are
known, as these can be directly derived from the expression
of A(t, θ). These matrices are continuous and bounded with
respect to the time since so is A(t, θ).

Our design implicitly relies on the knowledge of a state
observer for system (1) if θ would be known. More precisely,
we make the following assumption.

Assumption 2: There exist δ1 ∈ R>0 ∪ {∞} and K :
R≥0 × B(θ, δ1) → Rnx×ny , which is continuous and
bounded, such that for any θ0 ∈ B(θ, δ1) the origin of the
system ˙̃x(t) = [A(t, θ0)−K(t, θ0)C(t)] x̃(t) is uniformly
globally exponentially stable. �

Assumption 2 essentially means that we know a set where
parameter θ lies and, if we knew θ, we would be able to
design a state-observer for the corresponding system. More
precisely, Assumption 2 states that there exists a neigh-
borhood of parameter θ, corresponding to B(θ, δ1), such
that we can design a standard (Luenberger) state observer
with gain K(t, θ0) for any θ0 in this set, whose solutions
uniformly, globally, and exponentially converge to solutions
to (1) when θ = θ0. To see it, let ˙̂x(t) = A(t, θ0)x(t) +
B(t)u(t) + K(t, θ0)(y(t) − C(t)x̂(t)). If θ = θ0, then
the estimation error system with variable x̃ = x − x̂ is
˙̃x(t) = [A(t, θ0)−K(t, θ0)C(t)] x̃(t) as in Assumption 2.

A necessary and sufficient condition for Assumption 2 to
hold is provided next.

Lemma 1: Under Assumption 1, Assumption 2 holds if
and only if there exists a continuous and bounded mapping
K∗ : R≥0 → Rnx×ny such that the origin of ˙̃x(t) =
[A(t, θ)−K∗(t)C(t)] x̃(t) is uniformly globally exponen-
tially stable for the (unknown) true parameter value θ. �
Proof. The necessity part immediately follows from As-
sumption 2. For the sufficiency, we consider the func-



tion W (P ∗, x̃) := x̃>P ∗x̃ where P ∗ is the solution
to −Ṗ ∗(t) = P ∗(t)

[
A(t, θ) −K∗(t)C(t)

]
+
[
A(t, θ) −

K∗(t)C(t)
]>
P ∗(t) + I. According to Theorem 4.12 in [15],

such a matrix P (·) exists on R≥0, is continuously differen-
tiable, bounded, symmetric, positive definite and there exist
aP∗ , aP∗ > 0 such that aP∗I ≤ P ∗(t) ≤ aP∗I for any
t ≥ 0. Let θ0 ∈ Rnθ and t ≥ 0. Along the solutions
to ˙̃x(t) = [A(t, θ0)−K∗(t)C(t)] x̃(t), Ẇ (P ∗(t), x̃(t)) =
−||x̃(t)||2 + 2x̃(t)>P ∗(t) [A(t, θ0)−A(t, θ)] x̃(t). Since
A(t, θ) is bounded in t and affine in θ according to Assump-
tion 1, there exists δ1 > 0 such that for any θ0 such that ||θ0−
θ|| < δ1, Ẇ (P ∗(t), x̃(t)) ≤ −1

2 ||x̃(t)||2. Consequently, the
origin of ˙̃x(t) = [A(t, θ0)−K∗(t)C(t)] x̃(t) is uniformly
globally exponentially stable according to Theorem 4.10 in
[15]. Hence, Assumption 2 holds with K(t, θ0) = K∗(t). �

Lemma 1 involves θ, which we do not know. The follow-
ing lemma provides exploitable conditions for the satisfaction
of Assumption 2.

Lemma 2: Suppose the following holds.
(i) Assumption 1 holds.

(ii) There exists δ1 ∈ R≥0 ∪ {∞} such that the pair
(A(t, θ0), C(t, θ0)) is uniformly completely observ-
able2 for any θ0 ∈ B(θ, δ1).

Assumption 2 is verified with K(t, θ0) =
P (t, θ0)C(t)>R−1(t) where P (t, θ0) is the solution
to Ṗ (t, θ0) = P (t, θ0)A(t, θ0)> + A(t, θ0)P (t, θ0) −
P (t, θ0)C(t)>R−1(t)C(t)P (t, θ0) + Q(t) with P (0) = P0,
where P0 is any symmetric, positive definite matrix, and
R(t), Q(t) are any symmetric, positive definite, continuous
and bounded matrices. �
Proof. Let θ0 ∈ B(θ, δ1). Since R(t) is positive definite
and the pair (A(t, θ0), C(t, θ0)) is uniformly completely ob-
servable, the pair (A(t, θ0), C(t, θ0)R

1
2 (t)) is also uniformly

completely observable. Moreover, the matrix W (t0, t) in
[1] is nonsingular at t0 since P0 is symmetric and positive
definite, it is therefore nonsingular at some t1 > t0 by conti-
nuity. Consequently, all the conditions of Theorem 3.1 in [1]
are verified, which ensures the uniform global exponential
stability of the origin of ˙̃x(t) = [A(t, θ)−K∗(t)C(t)] x̃(t).
Since A(t, θ0) is continuous in θ0 in view of Assumption 1,
so is P (t, θ0) according to Corollary 6 in Chapter 2 in [2].
Therefore, K(t, θ0) is continuous in θ0 for θ0 ∈ B(θ, δ1).
Boundedness of K(t, θ0) follows from the boundedness of
P (t, θ0), which is ensured in [1]. We have proved that
Assumption 2 is satisfied. �

When the matrices A and C in (1) are time-invariant,
it suffices to have the pair (A(θ0), C(θ0)) observable for
any θ0 with ||θ − θ0|| ≤ δ1 for some δ1 ∈ R>0 ∪ {∞}
to ensure Assumption 2. Indeed, in this case, Bass-Gura
formula3 leads to a gain K(θ0), which is continuous in θ0.
The same applies when L(θ0) is selected to minimize a
linear quadratic cost, i.e. when L(θ0) = P (θ0)C>R−1 and
P (θ0) is the solution to the Riccati equation P (θ0)A(θ0)>+

2See [26] for a definition of uniform complete observability as well as
conditions to ensure it.

3See Chapter 4 in [14] for instance.

A(θ0)P (θ0)−P (θ0)C>R−1CP (θ0)+Q. It suffices to select
Q and R symmetric and positive definite to ensure the
continuity of P (θ0) in θ0 according to Proposition 1 in [10],
which in turn implies the continuity of K(θ0) in θ0.

We finally make the next boundedness assumption on
system (1).

Assumption 3: There exists a hyper-rectangle X = {x =
(x1, . . . , xnx) ∈ Rnx : xi ∈ [ci, ci]} where ci ≤ ci ∈ R,
i ∈ {1, . . . , nx}, a non-empty set of inputsMu ⊂ PC(Rnu),
and a non-empty set of initial conditions SX ⊂ Rnx , such
that any solution x to system (1) initialized in SX with input
u ∈Mu satisfies x(t) ∈ X for all t ≥ 0. �

Assumption 3 means that the solutions to (1) lie in a
known compact set, which can always be embedded in a
closed hyper-rectangle, whenever its input lies in set Mu.
Note that there is no restriction of the “size” of X .

III. MAIN RESULT

A. Design and analysis

Like in [25], we introduce the element-wise satura-
tion function σX : Rnx → Rnx defined as σX (x) :=
(σ1,X (x1), . . . , σnx,X (xnx)) with σi,X (xi) = xi when xi ∈
[ci, ci], σi,X (xi) = ci when xi ≤ ci and σi,X (xi) = ci
when xi ≥ ci, for any xi ∈ R, where X , ci, ci come from
Assumption 3, i ∈ {1, . . . , nx}. Based on Assumptions 1-2
and inspired by [30], we propose the adaptive observer

˙̂x(t) = A(t, θ0)x̂(t) +B(t)u(t) + Λ(t, σX (x̂(t)))θ̄(t)
+
[
K(t, θ0) + γΥ(t)Υ>(t)C>(t)Σ(t)

]
×(y(t)− C(t)x̂(t))

˙̄θ(t) = γΥ>(t)C>(t)Σ(t)(y(t)− C(t)x̂(t))

Υ̇(t) = [A(t, θ0)−K(t, θ0)C(t)] Υ(t) + Λ(t, σX (x̂(t)))

θ̂(t) = θ̄(t) + θ0,
(2)

where θ̄(t) ∈ Rnθ is the estimate of θ − θ0, θ̂(t) ∈
Rnθ is therefore the estimate of θ, Υ(t) ∈ Rnx×nθ ,
Λ(t, z) := [A1(t)z . . . Anθ (t)z] ∈ Rnx×nθ for z ∈ Rnx
with A1(t), . . . , Anθ (t) coming from Assumption 1, Σ(t) :
R → Rny×ny is any symmetric, positive definite, bounded,
continuous matrix, γ ∈ R>0, and X ⊂ Rn comes from As-
sumption 3. We have two degree of freedom when designing
(2): Σ(t) and γ. The former has to be designed to verify a
persistence of excitation condition stated next. In practice, we
typically take it diagonal. Parameter γ tunes the convergence
speed of θ̄, the bigger γ, the faster the convergence, but the
more sensitive to noise.

Remark 1: The use of the saturation function σX in (2)
is essential to guarantee the boundedness of Υ in the proof
of the next theorem, which is needed to establish the desired
convergence property. This is the main difference with [30] in
terms of design. Other differences reside in the assumptions
we rely on. �

The next theorem ensures that the state and the parameter
estimates provided by (2) exponentially converges to x and
θ, provided a persistence of condition holds and ||θ− θ0|| is
sufficiently small. Its proof is provided in Section III-B.



Theorem 1: Consider systems (1) and (2) and suppose the
following holds.

(i) Assumptions 1-3 hold.
(ii) Let δ2 ∈ R>0 ∪ {∞}, x̂0 ∈ Rnx , θ̄0 ∈ Rnθ ,

Υ0 ∈ Rnx×nθ , there exist α, T > 0, which depend
on x̂0, θ̄0,Υ0, such that, for any x(0) ∈ SX and input
u ∈Mu, any θ0 such that ||θ− θ0|| ≤ δ2, the solution
x̂, θ̄,Υ to system (2) initialized at (x̂0, θ̄0,Υ0) with
||θ0 − θ|| ≤ δ2, verifies for any t ≥ 0,

αI ≤
∫ t+T

t

Υ>(τ)C>(τ)Σ(τ)C(τ)Υ(τ)dτ. (3)

There exist δ ∈ (0,min{δ1, δ2}) and c1, c2 > 0 , which
depend on X ,Mu, x̂0, θ̄0,Υ0, such that, if ||θ − θ0|| ≤ δ,
the solution (x̂, θ̄,Υ) to (2) initialized at (x̂0, θ̄0,Υ0) and any
solution to system (1) with x(0) ∈ SX and input u ∈ Mu,
verify ||(x(t)−x̂(t), θ̂(t)−θ)|| ≤ c1e−c2t||(x(0)−x̂0, θ̂(0)−
θ)|| for any t ≥ 0. �

Item (ii) of Theorem 1 is a persistence of excitation
condition on the Υ-system, like in [30]. It actually is a
uniform persistence of excitation property, see Definition 2
in [19], as that the constants α and T are independent of
θ0, which is essential. Indeed, if the bound δ2, and thus
δ, on the norm of θ − θ0 would depend on θ0, there will
be no guarantee that we can always select θ0 sufficiently
close to θ such that ||θ − θ0|| ≤ δ. That is also the reason
why we assume the existence of the gain K(t, θ0) for any
θ0 ∈ B(θ, δ1) in Assumption 2, and not for a given θ0,
otherwise δ1 in Assumption 2 may depend on θ0 and the
same issue would arise. On the other hand, δ depends on
the initial conditions of observer (2). It is possible to ensure
that δ is uniform over these initial conditions over given sets,
when (3) holds for any initial conditions in these sets.

Property (3) is difficult to verify as it involves any θ0 in a
set, and any solution initialized in SX with input u ∈ Mu.
Even if we could verify it, that would not mean that the
estimates converge to the true values, as we also need for
that ||θ − θ0|| to be sufficiently small, which is something
we cannot check in practice. It is important to note that
this difficulty is generic to any local estimation schemes,
including works on extended Kalman filters where the initial
conditions x0 and x̂0 have to be close to each other (among
other conditions), see e.g., [6], [16], [24]. The only way to
avoid it is when we have the property that the observation
error y(t) − C(t)x̂(t) converging to zero implies that the
estimation errors x(t) − x̂(t) and θ − θ̂(t) also converging
to zero, see Section III.A in [22]. In practice, we can check
numerically on-line whether the inequality in (3) holds for
a given θ0 and a given solution x to (1), in which case the
non-satisfaction of (3) indicates that the obtained estimate
are not valid.

The fact that we need to know a set where the unknown
parameters lie is a valid assumption in various applications,
like electrochemical batteries for which the parameters are
accurately known when the battery is produced, but slowly
vary with time. Then, the interest of the adaptive observer is
to track these slow variations for monitoring purposes. If we

only have some vague knowledge about θ, we may overcome
this issue by employing a multi-observer architecture as
explained in [22].

Remark 2: Observer (2) can easily be shown to be robust
in the following sense, under the conditions of Theorem
1. Consider system (1) perturbed as ẋ(t) = A(t, θ)x(t) +
B(t)u(t) + wx(t), y(t) = C(t)x(t) + wz(t), where wx
and wz are disturbances and noise signals respectively.
The Lyapunov analysis in Section III-B almost immediately
allows to conclude that the estimation error system satisfies
an input-to-state stability property [27] in this case. �
provided the conditions of Theorem 1 hold.

B. Proof of Theorem 1

We introduce the estimation errors x̃ := x − x̂ and θ̃ :=
θ − θ0 − θ̄. Let x(0) ∈ Rnx , t ≥ 0 for which the solution
to (1), (2) is defined, and θ0 ∈ B (θ,min{δ1, δ2}) where
δ1, δ2 come from Assumptions 2 and item (ii) of Theorem
1, respectively. In view of (1) and (2),

˙̃x(t) = A(t, θ)x(t) +B(t)u(t)−A(t, θ0)x̂(t)−B(t)u(t)
−Λ(t, σX (x̂(t)))θ̄(t)− [K(t, θ0)
+γΥ(t)Υ>(t)C>(t)Σ(t)

]
(y(t)− C(t)x̂(t)),

(4)
we add and subtract A(t, θ0)x(t) and we obtain

˙̃x(t)=[A(t, θ0)−K(t, θ0)C(t)] x̃(t)
+ [A(t, θ)−A(t, θ0)]x(t)− Λ(t, σX (x̂(t)))θ̄(t)
−γΥ(t)Υ>(t)C>(t)Σ(t)(y(t)− C(t)x̂(t)).

(5)

In view of Assumption 1 and the definition of Λ(·, ·) given
after (2),

[A(t, θ)−A(t, θ0)]x(t) = Λ(t, x(t))(θ − θ0). (6)

We now restrict our attention to the case where x(0) ∈ SX
with u ∈ Mu. Hence, x(t) ∈ SX and x(t) = σX (x(t)) in
view of Assumption 3 and the definition of σ, respectively.
Thus [A(t, θ)−A(t, θ0)]x(t) = Λ(t, σX (x(t)))(θ − θ0).
Consequently, in view of (5),

˙̃x(t)=[A(t, θ0)−K(t, θ0)C(t)] x̃(t)
+Λ(t, σX (x(t)))(θ − θ0)− Λ(t, σX (x̂(t)))θ̄(t)
−γΥ(t)Υ>(t)C>(t)Σ(t)(y(t)− C(t)x̂(t)).

(7)

We add and subtract Λ(t, σX (x̂(t)))(θ − θ0) and we obtain,
by exploiting the linearity of Λ(·, ·) in its second argument
and using θ̃(t) = θ − θ0 − θ̄(t),

˙̃x(t)=[A(t, θ0)−K(t, θ0)C(t)] x̃(t)
+Λ(t, σX (x(t))− σX (x̂(t)))(θ − θ0)

+Λ(t, σX (x̂(t)))θ̃(t)
−γΥ(t)Υ>(t)C>(t)Σ(t)(y(t)− C(t)x̂(t)).

(8)

Like in [30], we introduce η := x̃ − Υθ̃. We deduce from



the last equation and (2),

η̇(t)=[A(t, θ0)−K(t, θ0)C(t)] x̃(t)
+Λ(t, σX (x(t))− σX (x̂(t)))(θ − θ0)

+Λ(t, σX (x̂(t)))θ̃(t)
−γΥ(t)Υ>(t)C>(t)Σ(t)(y(t)− C(t)x̂(t))

− [(A(t, θ0)−K(t, θ0)C(t)) Υ(t) + Λ(t, σX (x̂(t)))] θ̃(t)
+Υ(t)

[
γΥ>(t)C>(t)Σ(t)(y(t)− C(t)x̂(t))

]
=[A(t, θ0)−K(t, θ0)C(t)] η(t)

+Λ(t, σX (x(t))− σX (x̂(t)))(θ − θ0).
(9)

On the other hand, in view of (2) and since x̃(t) = η(t) +
Υ(t)θ̃(t),

˙̃
θ(t) = −γΥ>(t)C>(t)Σ(t)C(t)x̃(t)

= −γΥ>(t)C>(t)Σ(t)C(t)
(

Υ(t)θ̃(t) + η(t)
)
.

(10)
The dynamics of the (η, θ̃)-system in (9), (10) is the

same as in (14)-(15) in [30] up to the perturbative term
Λ(t, σX (x(t))−σX (x̂(t)))(θ−θ0) in (9). Because of the lat-
ter, we can no longer invoke cascade arguments to conclude
about the stability of the (η, θ̃)-system as in [30]. We will use
small-gain arguments instead, and the small-gain condition
will be enforced by imposing θ − θ0 to be small, which
explains why the convergence property we will guarantee is
local and not global (in general).

Let (x̂, θ̄,Υ) be the solution to system (2) initialized at
(x̂0, θ̄0,Υ0). We define P : R≥0 × Rnθ → Rnx×nx as the
solution to −Ṗ (t, θ0) = P (t, θ0) [A(t, θ0)−K(t, θ0)C(t)]+
[A(t, θ0)−K(t, θ0)C(t)]

>
P (t, θ0) + I, with P (0, θ0) =

P0 and P0 is symmetric and positive definite. Since θ0

belongs to the closed ball B(θ, δ1), Assumption 2 holds
and A(t, θ0) − K(t, θ0)C(t) is continuous and bounded,
Lemma 1 in [19] ensures that P (t, θ0) exists for all t ≥ 0,
is continuously differentiable, bounded, symmetric, positive
definite and there exist aP , aP > 0, which are independent
of θ0, such that aP I ≤ P (t, θ0) ≤ aP I for any t ≥ 0. We
define V : (P, η) 7→ η>Pη. Let4 t ≥ 0, in view of (9) and the
definition of P (t, θ0) (we omit the time and θ0 dependencies
of the solutions), V̇ (P, η) = −||η||2 + 2η>PΛ(t, σX (x) −
σX (x̂))(θ − θ0), where x̂ = x − η − Υθ̃. The definition
of Λ(·, ·) and the fact that the matrices A1(t), . . . , Anθ (t)
are bounded according to Assumption 1 imply that there
exists a constant aΛ > 0 such that ||Λ(t, z)|| ≤ aΛ||z||
for any z ∈ Rnx . Consequently, since P ≤ aP I,V̇ (P, η) ≤
−||η||2+2aPaΛ||η||·||σX (x)−σX (x̂)||×||θ−θ0||. From the
definition of σ, ||σX (x)−σX (x̂)|| ≤ nx||x− x̂|| = nx||x̃|| ≤
nx||η||+ nx||Υ|| · ||θ̃||. Thus,

V̇ (P, η) ≤ −||η||2 + 2nxaPaΛ||η||2||θ − θ0||
+2nxaPaΛ||η|| · ||Υ|| · ||θ̃|| · ||θ − θ0||

= − [1− 2nxaPaΛ||θ − θ0||] ||η||2
+2nxaPaΛ||η|| · ||Υ|| · ||θ̃||
×||θ − θ0||.

(11)

4We can take any t ≥ 0 here as the solutions we consider are defined
for all positive times since x(t) ∈ X and in view of (2).

We now investigate the θ̃-system in (10). We need the next
claim for that purpose.

Claim 1: There exists a continuous function ν :
Rnx×nθ → [1,∞), which is independent of θ0, such that for
any continuous function x̂ : R≥0 → Rnx , the corresponding
solution Υ to the Υ-system in (2) initialized at Υ0 is such
that ||Υ(t)|| ≤ ν(Υ0) for any t ≥ 0. �
Proof of Claim 1. The result follows from Assumption 2,
Lemma 1 in [19] and the fact that Λ(t, σX (x̂)) is bounded
uniformly with respect to θ0 ∈ B(θ,min{δ1, δ2}). The fact
that the image of ν is in [1,∞) can always be ensured by
adding 1 to any bound on ||Υ(t)||. �

The matrix γΥ>(t)C>(t)Σ(t)C(t)Υ(t) is continuous and
bounded since so are C(t) by assumption, Σ(t) by de-
sign, and Υ(t) according to Claim 1 for the boundedness.
Therefore, since θ ∈ B(θ, δ2), item (ii) of Theorem 1 is
assumed to hold, Σ(t) and C(t) are bounded and Claim 1
applies, according to Lemmas 1 and 5 in [19], the solu-
tion P̃ (t) to − ˙̃

P (t) = −γP̃ (t)Υ>(t)C>(t)Σ(t)C(t)Υ(t)−[
γΥ>(t)C>(t)Σ(t)C(t)Υ(t)

]>
P̃ (t) + I, with P̃ (0) = P̃0

and P̃0 is symmetric and positive definite, exists for all t ≥ 0,
is continuously differentiable, bounded, symmetric, positive
definite and there exist aP̃ , aP̃ > 0, which are independent
of θ0, such that aP̃ I ≤ P̃ (t) ≤ aP̃ I for any t ≥ 0. Let Ṽ :

(P̃ , θ̃) 7→ θ̃>P̃ θ̃. Let t ≥ 0, in view of (10) and the definition
of P̃ (t), ˙̃

V (P̃ , θ̃) = −||θ̃||2−2γθ̃>P̃Υ>(t)C>(t)Σ(t)C(t)η.
By following similar steps as above, we derive

˙̃
V (P̃ , θ̃) ≤ −||θ̃||2 + 2γaP̃aC ||θ̃|| · ||Υ|| · ||η||, (12)

where aC > 0 is a constant such that ||C>(t)Σ(t)C(t)|| ≤
aC for all t ≥ 0, which exists since C(t) and Σ(t) are
bounded.

Define U : (P, P̃ , η, θ̃) 7→ V (P, η)+µṼ (P̃ , θ̃) with µ > 0
a constant, which will be selected below. In view of (11) and
(12), for any t ≥ 0,

U̇(P, P̃ , η, θ̃) ≤ − [1− 2nxaPaΛ||θ − θ0||] ||η||2
+2nxaPaΛ||Υ|| · ||θ̃|| · ||η|| · ||θ − θ0||
−µ||θ̃||2 + 2µγaP̃aC ||θ̃|| · ||Υ|| · ||η||.

(13)
According to Claim 1, ||Υ|| ≤ ν(Υ0), thus

U̇(P, P̃ , η, θ̃) ≤ − [1− 2nxaPaΛ||θ − θ0||] ||η||2
+2nxaPaΛν(Υ0)||θ̃|| · ||η|| · ||θ − θ0||
−µ||θ̃||2 + 2µγaP̃aCν(Υ0)||θ̃|| · ||η||

= −
〈

(||η||, ||θ̃||),M(||η||, ||θ̃||)
〉
,

(14)
where M :=

(
M11 M12

? M22

)
with M11 := 1 −

2nxaPaΛ||θ − θ0||, M12 := −nxaPaΛν(Υ0)||θ − θ0|| −
µγaP̃aCν(Υ0) andM22 := µ. MatrixM is positive definite
if and only if

1− 2nxaP aΛ||θ − θ0|| > 0
[1− 2nxaP aΛ||θ − θ0||]µ
−
[
nxaP aΛν(Υ0)||θ − θ0||+ µγaP̃ aCν(Υ0)

]2
> 0.

(15)

The first inequality above is ensured as long as ||θ− θ0|| is
sufficiently small, in particular we assume that ||θ − θ0|| <



1

4nxaPaΛ
so that 1 − 2nxaPaΛ||θ − θ0|| > 1

2 . The second

inequality also holds with ||θ − θ0|| sufficiently small, by

taking µ <
1

2
(
γaP̃aCν(Υ0)

)2 ; note that the denominator is

well-defined since ν(Υ0) ≥ 1 in view of Claim 1. As a result,
there exists δ ∈ (0,min{δ1, δ2}), which is independent of θ0,
such that ||θ − θ0|| ≤ δ implies the existence of ε > 0 such
that, for t ≥ 0,

U̇(P, P̃ , η, θ̃) ≤ −ε||(η, θ̃)||2. (16)

Since min{aP , µaP̃ }||(η, θ̃)||
2 ≤ U(P, P̃ , η, θ̃) ≤ (aP +

µaP̃ )||(η, θ̃)||2, we deduce that (η(t), θ̃(t)) exponentially
converges to 0 as t → ∞. More precisely, there exist
c′1, c

′
2 > 0, which depend on X ,Mu, x̂0, θ̄0,Υ0, such

that ||(η(t), θ̃(t))|| ≤ c′1e−c
′
2t||(η(0), θ̃(0)||. Moreover, since

||x̃(t)|| ≤ ||η(t)||+ ||Υ(t)|| · ||θ̃(t)|| ≤ ||η(t)||+ν(Υ0)||θ̃(t)||
according to the definition of η and Claim 1, we deduce that
there exist c1, c2 > 0, which depend on X ,Mu, x̂0, θ̄0,Υ0,
such that ||(x̃(t), θ̃(t))|| ≤ c1e

−c2t||(x̃(0), θ̃(0))||, which
ends the proof.

C. When A(t, θ) is not affine in θ

We study the case where A(t, θ) is smooth in θ but not
necessarily affine in θ, as required in Assumption 1. Let t ≥
0, θ ∈ Rnθ and denote A(t, θ) = [aij(t, θ)](i,j)∈{1,...,nx}2 .
The Taylor expansion of each aij with respect to θ gives

aij(t, θ) = aij(t, θ0) +
∂aij
∂θ

(t, θ0)(θ − θ0) + ρij(t, θ, θ0)

where5 ρij(t, θ, θ0) = O(||θ − θ0||2). As a result,

A(t, θ) = A(t, θ0) +

nθ∑
i=1

Ai(t, θ0)(θi − θ0,i) +R(t, θ, θ0),

(17)
where θ = (θ1, . . . , θnθ ), θ0 = (θ0,1, . . . , θ0,nθ ),
Ak(t, θ0) :=

[
∂aij
∂θk

(t, θ0)
]

(i,j)∈{1,...,nx}2
for k ∈

{1, . . . , nθ}, R(t, θ, θ0) := [ρij(t, θ, θ0)](i,j)∈{1,...,nx}2 .
In view of (17), we modify the observer in (2) as

˙̂x(t) = A(t, θ0)x̂(t) +B(t)u(t) + Λ(t, θ0, σX (x̂(t)))θ̄(t)
+
[
K(t, θ0) + γΥ(t)Υ>(t)C>(t)Σ(t)

]
×(y(t)− C(t)x̂(t))

˙̄θ(t) = γΥ>(t)C>(t)Σ(t)(y(t)− C(t)x̂(t))

Υ̇(t) = [A(t, θ0)−K(t, θ0)C(t)] Υ(t) + Λ(t, θ0, σX (x̂(t)))

θ̂(t) = θ̄(t) + θ0,
(18)

where Λ(t, θ0, z) :=
[
A1(t, θ0)z . . . Anθ (t, θ0)z

]
for z ∈

Rnx . The other matrices and parameters are selected as in
(2).

Proposition 1: Consider systems (1) and (18). Suppose
the following holds.

(i) Assumptions 2 and 3 hold.
(ii) Item (ii) of Theorem 1 holds along the solutions to (1)

and (18).

5We can write that ρij(t, θ, θ0) = O(||θ − θ0||2) even though ρij
depends on the time t, since A(t, θ) is assumed to be bounded with respect
to the time, see Section II.

There exist δ, c1, c2, c3 > 0, which depend on
X ,Mu, x̂0, θ̄0,Υ0 such that, if ||θ − θ0|| ≤ δ, the
solution (x̂, θ̄,Υ) to (18) initialized at (x̂0, θ̄0,Υ0) and
any solution to system (1) with x(0) ∈ X and input
u ∈ Mu are such that ||(x(t) − x̂(t), θ̂(t) − θ)|| ≤
c1e
−c2t||(η(0), θ̃(0))||+ c3||θ − θ0||2. �

Sketch of proof. The proof follows the same steps as the
proof of Theorem 1. Let t ≥ 0 and θ0 ∈ B (θ,min{δ1, δ2})
where δ1, δ2 come from Assumptions 2 and item (ii) of
Theorem 1, respectively. We first notice that instead of (6),
we have [A(t, θ)−A(t, θ0)]x(t) =

∑nθ
i=1Ai(t, θ0)(θi −

θ0,i)x(t) + R(t, θ, θ0)x(t) = Λ(t, θ0, x(t))(θ − θ0) +
R(t, θ, θ0)x(t) in view of (17) and the definition of Λ. Thus,
by following the proof of Theorem 1, we obtain the next
equation instead of (9) for t ≥ 0, x(t) ∈ X with u ∈Mu,

η̇(t) = [A(t, θ0)−K(t, θ0)C(t)] η(t)
+Λ(t, θ0, σX (x(t))− σX (x̂(t)))(θ − θ0)
+R(t, θ, θ0)x(t),

(19)
and (10) still holds.

Let x belong to SX with input u ∈Mu, and (x̂, θ̄,Υ) be
the solution to system (2) initialized at (x̂0, θ̄0,Υ0). Let t ≥
0. The same Lyapunov analysis as in the proof of Theorem 1,
leads to the next equation instead of (16) when ||θ−θ0|| ≤ δ
for some δ > 0

U̇(P, P̃ , η, θ̃) ≤ −ε||(η, θ̃)||2 + 2ηTP (t, θ0)R(t, θ, θ0)x.
(20)

Since P (t, θ0) ≤ aP I, R(t, θ, θ0) =
[ρij(t, θ, θ0)](i,j)∈{1,...,nx}2 and ρij(t, θ, θ0) = O(||θ−θ0||2),
and x(t) ∈ X according to Assumption 3, there exists a ≥ 0
such that 2||P (t, θ0)R(t, θ, θ0)x|| ≤ a||θ − θ0||2. Hence,

U̇(P, P̃ , η, θ̃) ≤ −ε||(η, θ̃)||2 + a||η|| · ||θ − θ0||2
≤ −ε||(η, θ̃)||2 + a||(η, θ̃)|| · ||θ − θ0||2

(21)
from which we deduce, using a||(η, θ̃)|| · ||θ − θ0||2 ≤
ε
2 ||(η, θ̃)||

2 + 2
εa

2||θ − θ0||4,

U̇(P, P̃ , η, θ̃) ≤ − ε2 ||(η, θ̃)||
2 + 2

εa
2||θ − θ0||4. (22)

Since min{aP , µaP̃ }||(η, θ̃)||
2 ≤ U(P, P̃ , η, θ̃) ≤

(aP + µaP̃ )||(η, θ̃)||2, we deduce from (22) by applying
the comparison lemma (see Lemma 3.4 in [15]) that
||(η(t), θ̃(t))|| ≤ c1e

−c2t||(η(0), θ̃(0))|| + c3||θ − θ0||2 for
some c1, c2, c3 > 0. The desired result for x̃ then follows
by noting x̃ = η + Υθ̃ and that Υ is bounded according to
Claim 1. �

As already mentioned, Assumption 2 implies that we know
a state observer for system (1) when θ = θ0. If we would
implement this classical (non-adaptive) observer on system
(1) with θ 6= θ0, the state estimate would converge to x up to
an error of the order of ||θ−θ0||, and, trivially, the parameter
estimation error would be θ − θ0. Proposition 1 shows that
these properties can be improved by employing the adaptive
observer (18), which provides estimates with errors of the
order of ||θ−θ0||2, after a sufficiently long time. We are not



Fig. 1. Coupled mass-spring system.

able to ensure the asymptotic convergence of the estimates
of the true values, contrary to Section III-A, because of the
perturbative term R(t, θ, θ0) in (17).

IV. ILLUSTRATIVE EXAMPLE

Consider the mass-spring system with two elements de-
picted in Figure 1. The system is be modeled by (1)
with: x = (x1, x2, x3, x4) ∈ R4, where x1, x3 are the
displacements of the first and the second mass from their
equilibrium and x2, x4 are the velocity of the first and the
second mass, respectively; u is in the input applied to the
second mass; y = (x1, x2) ∈ R2, which means that only the
variables of the first mass are measured. The state matrix

is A =


0 1 0 0

− k1+θ
m1

− b1
m1

θ
m1

0
0 0 0 1
θ
m2

0 − k2+θ
m2

− b2
m2

, m1 = 100 and

m2 = 100 are the masses, k1 = 5 and k2 = 10 are the
spring stiffness as shown in Figure 1, θ > 0 is the stiffness
of the middle spring, which is assumed to be unknown and
b1 = 0.1 and b2 = 0.4 are the damping coefficients. Matrix

B is (0 0 0 1
m2

)> and C =

(
1 0 0 0
0 1 0 0

)
. Assumption

1 holds with A0 =


0 1 0 0
− k1
m1

− b1
m1

0 0
0 0 0 1
0 0 − k2

m2
− b2
m2

 and

A1 =


0 0 0 0
− 1
m1

0 1
m1

0
0 0 0 0
1
m2

0 − 1
m2

0

. Assumption 2 is verified

as (A,C) is observable as θ 6= 0. Taking u(t) = 10 sin(10t)
for any t ≥ 0, Assumption 3 is satisfied since the infinity
norm of this input is bounded and A is Hurwitz.

We have designed the adaptive observer as in (2) with
γ = 103, Σ(t) = 103 and K such that the eigenvalues of
A−KC are (−1,−1.5,−2,−2.5). We have run simulations
with θ = 15, and we have considered different values of θ0,
x(0), x̂(0), θ̄(0) and Υ(0). Figures 2 and 3 show that the state
and parameter estimates do track the state and parameter of
system (1), respectively, when θ0 = 20, x(0) = (1, 0, 2, 0),
x̂(0) = (0, 0, 0, 0), θ̄(0) = 0 and Υ0 = 0. We have then
varied the latter. Simulations suggest that the convergence
of the adaptive observer may be independent of the initial
conditions of x, x̂, θ̄ and Υ: only θ0 seems to matter.
The asymptotic convergence of the estimation errors is seen
whenever θ0 ∈ [θ− 11, θ+ 75]. This means that θ0 does not
need to be very close to θ for the adaptive observer to work
for this example.

Fig. 2. Norm of the state estimation error.

Fig. 3. Parameter θ, θ0 and the estimate θ̂.

V. CONCLUSION

We presented an adaptive observer for linear time-varying
system whose state matrix A(t, θ) depends on unknown
parameters. When A(t, θ) is affine in θ, the proposed scheme
ensures the exponential convergence of the estimates to the
true values provided some initial guess of the unknown
parameter is sufficiently closed to the latter and a persis-
tence of excitation holds. When A(t, θ) is only smooth in
θ, a modified version of the observer has been proposed,
which ensures the approximate convergence to zero of the
estimation errors.
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