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ABSTRACT 

 

Historically, personalised medicine has been synonymous with pharmacogenomics and 

oncology. We argue for a new framework for personalised medicine analytics that 

capitalises on more detailed patient-level data and leverages recent advances in causal 

inference and machine learning tailored towards decision support applicable to critically ill 

patients. We discuss how advances in data technology and statistics are providing new 

opportunities for asking more targeted questions regarding patient treatment, and how 

this can be applied in the intensive care unit to better predict patient-centred outcomes, 

help in the discovery of new treatment regimens associated with improved outcomes, and 

ultimately how these rules can be learned in real-time for the patient. 
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INTRODUCTION 

 

In his 2015 State of the Union, President Obama announced a federal Precision Medicine 

(PM) Initiative and the National Institutes of Health (NIH) has committed $72M to support 

this endeavor [1]. This effort came along with other relevant federal initiatives for 

personalized care, such as the Patient-Centered Outcomes Research Institute (PCORI) and 

California’s Initiative to Advance Precision Medicine [2].  

The Food and Drug Administration (FDA) describes PM as providing "the right patient with 

the right drug at the right dose at the right time." [3].  Advances in PM were most 

conspicuously driven by molecular oncology and pharmacogenomics, a sub-field of 

genetics that aims at studying gene-based variability in response to treatment [4]. 

However, although it is estimated that variability of response to over 25% of common 

medications have some genetic component [4], most therapies are not refined based upon 

biomarkers. There are many situations, such as critical illnesses, where the only 

immediately accessible information involves clinical or lab measurements, with limited 

time for collecting genotyping data. Nonetheless, critically ill patients would probably 

benefit from more tailored therapies since i) they receive many invasive treatments, which 

carry potentially lethal side effects; ii) the complex underlying pathophysiology of organ 

dysfunction makes every patient almost unique.  

In such situations, there is a potential for PM beyond genomics, leveraging massive data 

from patients’ electronic medical systems and continuous monitoring. Indeed, one now has 

the possibility to characterize a critically ill patient on all his observed characteristics 

(biological, contextual, demographic, phenotypic, medical imaging) including high 

throughput waveform signals generated by continuous monitoring. However, such a new 

approach for personalized medicine requires i) the ability to stream and store large 

amount of information, ii) appropriate analytics, i.e. statistical algorithms, and iii) the 

computational power to combine these. Machine learning (ML) is a field of statistical 

learning that may be used for various applications such as prediction/classification, 

regression, clustering or dimension reduction for instance. Machine learning algorithms 

are typically separated into supervised and unsupervised techniques. In supervised learning, 

on uses a training sample to provide the algorithm with example inputs (e.g. patients’ 

characteristics) and their desired outputs (e.g., patients’ outcome), and the goal is to learn a 

general rule that maps inputs to outputs. After a training phase, the supervised learner can 

be provided with new inputs (e.g. patients’ characteristics from a new sample) and will 

produce a predicted output (e.g. a predicted outcomes). In unsupervised learning, no labels 
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(e.g. outcomes) are given to the learning algorithm, leaving it on its own to find structure in 

its input, the goal being for instance to discover hidden patterns in the data. While more 

and higher performing machine learning algorithms are constantly being developed, big 

data initiative are becoming mature enough with the emergent ability to stream and store 

large amount of medical information. Hence, the convergence of machine learning and big 

data has emerged as a crucial development that is shaping the future of personalized 

medicine and medical decision assistance in critically ill patients. 

  

We discuss below important developments in these areas. Although it seems too early at 

this stage to perform a systematic literature review on the topic, we will illustrate the 

potential of these developments for more refined patient care with selected concrete 

examples of the possibilities offered in the near future in terms of personalizing clinical 

decision in the intensive care unit (ICU) with the most recent advances in machine learning 

applied to granular patient-level characteristics.  



 

7 

THE PAST AND THE PRESENT: EXAMPLES OF BIG DATA AND MACHINE 

LEARNING IN BIOMEDICINE 

THE DATA: BIG DATA AT THE BEDSIDE IN THE ICU 

 

Because the questions asked to help clinical decision in the ICU are often ambitious, e.g., 

predicting which treatment will better serve a patient in the next time interval, one 

typically expects that the amount of data required to produce a robust predictor can be 

quite large.  Recent advances in medical informatics have enabled the creation of, and 

access to big observational medical data. For instance, i2b2 (Informatics for Integrating 

Biology and the Bedside [5]), the NIH-funded National Center for Biomedical Computing, 

develops a scalable informatics framework that facilitates the use of existing clinical data 

by clinical researchers. As an illustration, the MIMIC (‘Medical Information Mart for 

Intensive Care’) project [6] started in 2001 in Boston, MA, as a single-centre database 

comprising information on ICU patients at a large tertiary care hospital. In MIMIC, 

databases are dumped off-line while bedside waveform data and derived trends are 

collected by an archiving agent over TCP/IP. As described in Figure , source data consists of 

i) bedside monitor waveforms, ii) clinical data including treatment extracted from the 

electric medical system, iii) data from hospital electronic archives, and iv) mortality data 

from the Social Security Death Index. These data are then assembled in a protected and 

encrypted central repository. The data are de-identified to produce a final set of data for 

public access and use (https://physionet.org/mimic2/).  
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FIGURE 1: SCHEMATIC DESCRIPTION OF DATA COLLECTION AND MIMIC-II DATABASE CONSTRUCTION. 

 

The Mayo Clinic has also developed a data warehouse from ICU patients’ data, called the 

METRIC (Multidisciplinary Epidemiology and Translational Research in Intensive Care 

Data Mart) Data Mart [7] with the goal to develop and validate an informatics 

infrastructure for syndrome surveillance, decision support, reporting, and modelling of 

critical illness. This open database encompasses physiologic monitoring, medication 

orders, laboratory and radiologic investigations, and physician and nursing notes. The 

University of California, Irvine Machine Learning Repository 

(http://archive.ics.uci.edu/ml/index.php) maintains datasets for the ML research 

community that includes various physiological and biological data. In addition to ICU data 

repositories developed at the hospital level, some countries have decided to develop 

system-wide databases. In the Netherlands, almost 100 ICUs are sharing their clinical date 

through a common registry [8], while the Australia and New Zealand Intensive Care Society 

(ANZICS) registry is capturing clinical data from more than 40 ICUs [9]. This list is not 

exhaustive and many other institutions, hospital groups or countries have launched their 

own data acquisition program. 



 

9 

USE OF BIG DATA FOR PERSONALIZED MEDICINE IN THE ICU 

 

Recently, there has been a worldwide effort to promote treatment personalization in the 

ICU.  PM in the ICU is based upon accounting for patient heterogeneity, including 

accounting for variation in disease risk factors, and/or heterogeneous responses to 

treatment. Identification of homogeneous subgroups of patients in terms of outcome or 

response to treatment has so far relied on a relatively small subset of clinical features or 

biomarkers. For instance, in attempts to optimize hemodynamic resuscitation, the use of 

fluid responsiveness indices including diverse functional hemodynamic parameters has 

been advocated to allow for a better tailoring of fluid administration and avoid fluid 

overloading in patients.  However, as underlined by Saugel et al. [10] goal-directed 

hemodynamic treatment strategies often use predefined fixed population-based 'normal' 

values as hemodynamic targets while hemodynamic variables have large inter-individual 

variability. Hence, in addition to functional hemodynamic parameters, these authors 

advocate for the use of more personalized hemodynamic targets identified through 

adaptive multiparametric hemodynamic. 

Biomarkers have been also studied in critical illnesses such as sepsis and acute respiratory 

distress syndrome. Simple and routinely available biomarkers, such as HbA1C, can be 

extremely useful in tailoring glycaemic control in critically ill patients [11]. Other serum 

biomarkers have been proposed to better differentiate septic patients with acute 

respiratory distress syndrome (ARDS) from those without [12], as well as ARDS from direct 

or indirect lung injury [13]. In the future, more complicated multi-parameter panels may 

prove helpful in characterizing critical illnesses, as well as optimizing subject-selection for 

clinical trials. As an example, based on the combination of vital signs, ventilator settings, 

and laboratory data including serum biomarkers, sub-phenotypes of ARDS were recently 

identified in terms of prognosis and response to specific treatments [14,15].  

Genomics was also proposed to better characterize complex ICU syndromes such as sepsis. 

Gene expression profiling has been proposed as a way to differentiate inflammation status 

from septic and non-septic origin [16], or to separate different subtypes of sepsis or septic 

shocks [17–19]. Genotyping has also proven useful to predict favourable or unfavourable 

outcomes in sepsis [20] or ARDS [21], and the response to a variety of therapeutics [22,23]. 

Although genomics and other omics technologies (proteomics, metabolomics, etc.) may 

open new paths towards better understanding of the heterogeneity across critically ill 

patients, their use in daily clinical practice remains limited. This is essentially due to the 
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fact that diagnostic tests in the ICU need to be easily deployable at the point-of-care, when 

genotyping technologies are still too slow.  

Beyond omics, there is yet another promising approach to PM in the ICU, based on 

leveraging massive data from electronic medical systems (including biology and imaging) 

and continuous waveform monitoring.  As stated by Levin et al. [24], 5-lead EKG waveform 

sampling generates in 2 hours 37MB of data. Since the human genome contains 

approximately 1.5 GB, 54 hours sampling of a 5-lead EKG waveform generates as much raw 

data as contained in the human genome. With the cost related to data storage falling, the 

opportunity to harvest these data for research and PM is becoming a practical reality. As 

recently emphasized in both the Johns Hopkins magazine [25] and Harvard Business 

Review [26], big data and ML will be useful in the near future to make wiser medical 

decisions at the individual level because i) large amount of data is necessary for each 

patient to precisely characterize each of them; ii) large sample sizes are needed to observe 

a sufficiently large number of patients with similar characteristics, and therefore to allow 

estimation of treatment effects within more narrowly defined clusters, iii) the human brain 

cannot quickly process high throughput signals such as continuous EKG, whereas modern 

ML algorithms can. Thus, ML may be used in this context to process in real-time not only a 

large amount of data but also high-fidelity signals and to extract an information of reduced 

dimension that may be integrated and interpreted by doctors to make better medical 

decisions. How this can be done using a statistical framework is discussed and illustrated 

using a non-exhaustive list of examples in next section. 

MACHINE LEARNING FOR PREDICTIVE ANALYTICS AND DECISION SUPPORT IN THE ICU 

 

PREDICTIVE ANALYTICS 

Predictive analytics is usually defined as the branch of advanced analytics, which is devoted 

to making predictions about future events. In the medical setting, the goal is usually to 

answer the question “will my patient experience the event of interest in the future?”. 

Predictive analytics is often opposed to prescriptive analytics which goal is to answer the 

question of “what should I do in a given patient?”. Prescriptive analytics will be discussed in 

more details in a specific section on how to assist medical decision. 

Predictive analytics uses many modelling techniques including ML to analyse current data 

and make predictions about future patient health given current and past states. Over the 

past decades, there have been multiple attempts to predict diverse outcomes in critically ill 

patients, such as ICU mortality, 30-day readmission [27,28], or the risk cardiovascular 

decompensation using ML [29]. Based on MIMIC-II, recent studies have shown that new 
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generation ML algorithms can substantially improve the prediction of hospital mortality in 

critically ill patients over current commonly used instruments [30,31]. Large scale 

repositories such as MIMIC-II were also used to predict more specific outcomes such as i) 

the optimal duration for a trial of intensive care in patients with active cancer and septic 

shock [32], ii) the need to perform an endoscopy or a surgical treatment in patients 

admitted for gastrointestinal bleeding or iii) the likelihood that a new laboratory test 

would substantially differ from the last determination with the goal to reduce unnecessary 

blood draws [33]. Most of these studies did not include continuous physiological signals 

such as heart rate or blood pressure for prediction.  

 

PREDICTION FROM CONTINUOUS MONITORING 

Recently, ML algorithms were also proposed to analyse continuous signals provided by 

monitoring systems. Moss et al. [34] used continuous EKG to better predict patient 

deterioration defined as unanticipated death or ICU transfer. They showed that adding 

continuous EKG to discrete vital signs and laboratory results substantially improves the 

prediction performance. Accordingly, the data from monitoring systems were also used to 

predict cardiorespiratory insufficiency in different settings such as the operating room, the 

ICU or step-down units [29,35–37]. In addition, the use of continuous monitoring 

information as well as clinical data has been successful in predicting diagnoses in the 

emergency department (ED) and ICU [38–40].  

Continuous monitoring signals were also used to develop automated prediction tools of 

acute events such as hypotensive episode in critically ill patients. Jiang et al. [41] used a 

Probability Distribution Patterns Analysis (PDPA) method to extract relevant information 

from time series of continuous blood pressure. Subsequently, they used a ML approach 

combining Genetic Algorithm (GA) and Support Vector Machine (SVM) to select the vital 

features for effective classification. When applied to a large validation cohort, the obtained 

accuracy for hypotension classification and forecasting was of 80.8%, sensitivity of 78.2%, 

specificity of 81.5%. Edwards LifeSciences (Irvine, California, USA) has developed, 

embedded into a monitor and commercialized a hypotension prediction algorithm called 

Acumen Hypotension Probability Index ® (HPI). The underlying machine algorithm was 

trained once on a population of patients including 13,000 hypotensive events (defined as a 

mean arterial pressure < 65mmHg) and 12,000 non-hypotensive events. The signal used to 

train the algorithm was the continuous invasive blood pressure waveform. Although this 

algorithm can be described as a static learner since it does not retrain using new batches of 

data, it actualizes its prediction every 20 seconds based on the evolution of the blood 
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pressure waveform signal.  Clinical evaluation of the Acumen Hypotension Probability 

Index ® are currently ongoing in the operating room and in critically patients. 

Outside the ICU, ML applications have also gained interest to classify medical images such 

as mammograms and MRIs [42]. In the aforementioned applications, and beyond, ML 

algorithms are not interpretable in the sense that one cannot fathom how a trained ML 

algorithm derives a result such as a score, an index [29,35–37] or a more complex output. 

In addition, even when the model itself produces interpretable results, e.g., the coefficients 

produced by a logistic regression model as used to derive the HPI [43], the features 

themselves included as predictors in the model (e.g. interactions or high-order terms) 

might not be clinically interpretable. In a recent effort to circumvent this weakness and 

translate trained ML algorithms into clinically meaningful models, van Poucke et al.[44] 

have developed a specific open and code-free environment to provide visual tools and 

scalable predictive analytics for clinical research. In the same vein, Che et al. [45] proposed 

deep learning algorithms, which have shown a wide range of success across many fields, 

that are more interpretable for wide clinical adoption. Variable importance measures [46] 

can also provide complementary information that may help end users better understand 

the relative importance of a particular variable (or group of variables) and thus mitigate 

the limitation in terms of direct interpretability of flexible learning tools that yield black-

box predictions. 

THE FUTURE : GOING FROM USING FIXED DATA TO LEARNING “ON THE FLY” 

 

In the former section we have discussed how ML algorithms can exploit big data to assist 

medical decision-making (e.g., by predicting a wide range of outcomes in critically ill 

patients). However, as recently emphasized by Lee et al. [47], it should be feasible, in the 

era of digital healthcare, to dynamically personalize decision support by identifying and 

analysing similar past patients, in a way that is analogous to personalized product 

recommendation in e-commerce. Nevertheless, most of the existing clinical applications of 

ML were obtained using static population-wide prediction models, i.e. ML algorithms first 

trained on a large population of patients and subsequently used to predict the outcome in a 

different sample. Recent advances in ML methods will allow for i) realtime time processing 

and learning through stream data analytics platform, such as the one proposed by Bai et al. 

[48]; ii) continuous learning from time series at the patient level, thus providing more 

personalized predictions; iii) prescriptive analytics. Such an automated technology 

deployable at the bedside is the path for the ultimate goal, i.e. personalized point-of-care 

decision support tools. We illustrate here how new statistical tools capitalizing on recent 
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advances in statistics and ML may be used to further leverage the data generated in the ICU 

and achieve the above three-fold ambitious objective. 

 

STATISTICAL METHODS FOR ONLINE LEARNING 

Reinforcement learning and reinforcement deep learning have showed great performance in 

situations where the machine can rely on essentially infinitely many experiments (e.g., in chess 

or go, where the machine plays against itself) and/or massive amounts of data (e.g., billions of 

e-purchases, huge corpuses of text)[49]. However, theoretical arguments suggest that 

despite its extreme versatility, deep learning might not do as well in finite sample and for 

data and problems related to precision medicine [50]. Because of i) the complex and 

heterogeneous nature of healthcare data in electronic medical records, ii) the potentially 

massive number of variables and iii) the relatively limited sample size, learning procedures 

that balance variance and bias more parsimoniously are needed. Thus, more general 

approaches are necessary that do not rely on single algorithms/learners to develop a 

prediction or prescriptive function. 

SUPER LEARNING 

As an alternative, a recent ensemble ML algorithm called Super Learning (SL) [51] 

guarantees prediction optimality. SL uses cross-validation to build an optimal meta-

algorithm from a user-supplied library consisting of individual ML algorithms. Thus, one 

does not need to choose a specific ML algorithm. Instead, one has to provide a library of 

candidate ML algorithms and to let the Super Learner (SL) identify the optimal algorithm 

data-adaptively. Theoretical results show that the meta-algorithm resulting from this 

stacking procedure performs as well as the so-called oracle algorithm, defined as the 

problem-specific best ML algorithm in the library.  

In practice, the user provides SL with a library encompassing a wide range of ML 

algorithms. The library typically includes both rigid algorithms based on low-dimensional 

parametric models (such as a linear regression with few predictors) on one side of the 

spectrum and, on the other side, very flexible ML algorithms (such as neural networks). Not 

only will the SL identify the optimal algorithm data-adaptively, but it will also build a 

unique meta-algorithm defined as a weighted combination of the individual algorithms in 

the library. Learned from the data, each weight reflects the empirical performance of the 

corresponding algorithm in such a way that, overall, algorithms that perform best are given 

larger weights. As mentioned earlier, studies have shown for instance that SL can 

substantially improve the prediction of hospital mortality in critically ill patients [30,31] by 

learning from independent data. But, it is often the case that one wants to learn from data 
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which are not independent, like for instance from a single trajectory/time series obtained 

by monitoring a single patient. By doing so, the algorithm should i) constantly improve its 

prediction performance by integrating new pieces of information and ii) progressively 

tailor a single patient since it is learning for its own history, thereby achieving one of the 

goals of acute care personalized medicine.  

ONLINE SUPER LEARNING 

Online ML, sometimes referred to as stream analytics, is a method of ML where data accrue 

and are used sequentially to update the current trained algorithm. Online ML is usually 

opposed to batch learning which generates the best predictor by learning on the entire 

training data set at once and then, this predictor is used to predict from new batches of 

data. It is important to note that batch learning algorithms are sometimes misleadingly 

referred to as online predictors (as opposed to online learners) since the initial predictor 

can be used several times to update the prediction, but without any further learning 

sequence. The Acumen Hypotension Probability Index from Edwards (Irvine, California, 

USA) referenced earlier in the paper, is an example of online predictor (but not online 

learner since the prediction algorithm is not automatically updated when plugged in to a 

new patient). 

The concept of SL naturally lends itself to that of Online Super Learning (OSL). The 

theoretical, and practical, performances are essentially preserved. Carrying out OSL 

consists in i) providing a library of individual ML algorithms; ii) training each of them on an 

initial batch of data; iii) evaluating the performances of all the algorithms based on a new 

batch of data, and deriving from them either the current best algorithm or the current best 

combination of the algorithms; iv) sequentially updating the initial SL by exploiting 

successive, mutually exclusive new batches of data as in (ii) (substituting “updating” for 

“training”) and (iii). Separating training data from testing data (here, sequentially) is 

crucial. It is as an instantiation of the cross-validation principle for time (and/or space) 

structured data. 

We illustrate the concept of OSL with a schematic example. The goal is to predict future 

diastolic blood pressure (DBP) 1 minute in the future based on the history of DBP of the 

patient up to that point, using the MIMIC-II dataset [6]. Though of limited clinical 

significance, this illustration provides a simple example of how algorithms can be 

developed to learn from the history of a patient to develop accurate clinical prediction for 

anticipatory clinical care.  
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Formally, let consider a time series data structure �� ≡ ���, ���	 ∈ � where �� is a 

response variable and �� is the vector of covariates, with observations indexed by time �. 

The parameter of interest for a forecasting method with horizon 
 is: 

���� ���, ������ ≡ ����� + 
�|�� ���, ������  

where E is the conditional expectation of the outcome Y, ��� ���, ������ represents the 

history of both a set of covariates �� ��� = ���0�, ��1�, … , ����� and the outcome process 

����� = ���0�, ��1�, … , �����.  

In words, this parameter is the mean of the outcome, δ units of time after time t, 

considering the history of the covariates W and the outcome Y up to time t.  

One could either fit this based only upon the data available on a single patient (the 

longitudinal source of information) or using data across previous patients (the transversal 

source of information). The specific cross-validation procedure used for online will then 

depends on what one is trying to optimize (prediction for a single patient or average 

performance across many patients for instance).  

Though one could use a wide variety of online algorithms, for this illustration the library 

specifically contained only four versions of the Long Short Term Recurrent Neural Network 

(LSTRNN) [52] algorithm, each controlled by different tuning parameters. In the present 

example, the optimal combination of the four versions of LSTRNN included in the SL library 

is updated in time with new batches of validation data. 

Figures 2 and 3 illustrate how, in order to predict the outcome ��in some time interval 

based on current history of observations �� ���, �����, one can use OSL. This can be expended 

by creating many intervals on the same patient so that the model is moving forward in time 

and thus constantly refining from an initial start.  
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FIGURE 2: ILLUSTRATION OF THE DIFFERENT PHASES OF THE PROCEDURE. THE BLUE LINE INDICATES THE TRAINING SET, THE 

RED THE ACTUAL OUT-COME SERIES AND THE GREEN (AFTER THE LAG) THE PREDICTION OF DBP BASED ON THE HISTORY 

PRECEDING THE GAP. 

 

FIGURE 3: ZOOM ON THE SIMILARITY BETWEEN PREDICTED AND ACTUAL DIASTOLIC BLOOD PRESSURE. 

METHODS FOR ASSISTING CLINICAL DECISION 

The ability to better predict an outcome at the patient level, as described in the former 

section can be useful for clinicians, but even more useful would be to predict future 

scenarios under different treatment regimens. Indeed, such information would help the 
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clinician to decide which treatment option is most relevant at the patient level.  As an 

illustration, in the situation where a hypotensive episode is predicted as described above, 

prescriptive analytics should help the clinician to answer the question “will the patient be 

responsive to fluid?” To do so, the algorithm needs to be previously trained on 

observations under the 2 treatment options (e.g. fluid versus no fluid). 

The causal inference framework is very useful to identify the difference of outcome under 

two potential treatments or exposure and thus help the clinician to choose the one 

associated with the most favourable outcome. To do so, one trains an algorithm to predict 

the outcome based on the actual treatment and adjusting for all potential confounders. 

Then, for each individual, the prediction can be updated considering 2 potential situations, 

i.e., the patient receives the treatment and the patient does not receive it. The difference in 

outcome between these 2 potential situations can be used to identify the best treatment 

option. This “substitution-estimator” approach, which relies on the definition of 

counterfactual treatments and outcomes, is derived from the causal inference theory [53]. 

At the population level, the typical causal quantity of interest is often the average treatment 

effect of one treatment against the other, which can be simply obtained by averaging the 

difference in potential outcomes at the individual level across all subjects in the population. 

Another interesting quantity is the variability of the difference in potential outcomes at the 

individual level across all subjects in the population, which reflects the heterogeneity in 

response to the treatment among patients. If the latter quantity is non-null, one might be 

interested in identifying which characteristics are associated with response to the 

treatment, in order for the clinician to better tailor his/her therapeutic decision. Whatever 

the causal quantity, the use of appropriate causal inference techniques can be very useful to 

ensure that conclusions drawn can indeed answer the scientific question actually of 

interest. In some sense, one can argue that data science, to go from pure prediction to 

explanation, must be informed by the causal inference framework. 

Similar to predicting patient outcomes via an algorithm being updated by patient historical 

data, recent efforts have also lead to generalizing such online approaches to predicting 

treatment effect in real-time. Online prescriptive analytics is an extreme form of these 

efforts, where the goal is to learn causal quantities and high-dimensional parameters at the 

patient's level based on streaming monitoring data. We have already given a sense of how 

ML algorithms can be adapted for online and real-time learning to specific patients. 

Likewise, it appears that an online version of targeted minimum loss estimators [54,55] can 

be elaborated to estimate and infer in real-time causal quantities such as treatment effect 

at the patient level. Targeted minimum loss estimation (TMLE) refers to a broad estimation 

framework that facilitates the construction of robust, asymptotically efficient estimators 
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with desirable finite-sample properties translating into lower bias and variance in finite 

samples [55] [56]. TMLE is a multi-step procedure and relies on estimates of different 

portions of the data distribution. In the simplest case of a binary outcome and exposure, in 

order to estimate the average treatment effect (ATE), TMLE uses information in the 

estimated treatment prediction model, g(a|W) = P(A=a|W) to update the initial estimator of 

the outcome prediction model: Q(A,W) = E (Y|A,W). The updating step is used to achieve a 

targeted bias reduction for the parameter of interest, i.e. the ATE. Another virtue is that 

TMLE will be consistent if either the outcome prediction model or the exposure mechanism 

is estimated consistently. For TMLE, the word online refers to the facts that online ML is 

carried out and that the additional targeting step is online too. This extension comes at a 

price; the theoretical requirements are stronger when inferring from a single time series at 

the individual level than from independent data at the population level. The conditional 

independence, and existence of common underlying model over time are minimal 

requirements for identifiability of causal effects.  

CONCLUSION AND PERSPECTIVES 

Unlike pharmacogenomics, the vision of personalized medicine proposed in this article 

leverages the emergence of big medical data to appropriately estimate treatment effect at 

the patient level. This paradigm relies on several components, including big data 

acquisition and storage, online ML and robust statistical estimation that were made 

available thanks to the recent innovation in both data science, ML and statistics. Moving 

from predictive to prescriptive analytics, i.e., from predicting the future to accurately 

predicting the impact of competing medical decision, implies additional difficult challenges. 

The first one is to improve data quality and standardization. Indeed, issues involving data 

inaccuracy, including the problem of noise for continuous physiological signal monitoring, 

and lack of data remain substantial concerns. Therefore, it is critical to pursue our efforts in 

terms of signal processing, while at the same time insisting on the education of healthcare 

professionals to systematically check signal quality at the bedside. A second substantial 

challenge is to quantify how uncertain predictions are. Indeed, providing the clinician with 

a measure of uncertainty is important for him/her to integrate this piece of information 

into his/her decision process.  

Mirroring the extraordinary penetration of artificial intelligence in every facet of our daily 

life, expectations are very high regarding the potential of ML and big data to improve 

patient care. However, because of poor interoperability between platforms, legal barriers 

and questions of data reliability, only a small fraction of the gigabytes of data generated in 

the ICUs are accessible for research. Thus, the true promise of data analytics in critically ill 

patients will come when big data generated from bedside monitors and electronic medical 
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records will be made available and when ML algorithms will be placed into a statistical 

framework able to produce trustworthy estimations and confidence regions. In addition, 

cloud computing as well as innovative techniques implemented for distributed computing 

now enable hospitals to access such technology without the need for local complex IT 

systems. This should ultimately make possible the deployment of online learners, possibly 

embedded into the clinical monitoring devices at the bedside (such as the architecture 

described in Figure 4). This is the true promise of acute care personalized medicine, and 

the time is right to reach for this promise.
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FIGURE 4: FORTHCOMING ARCHITECTURE FOR PERSONALIZED ONLINE PREDICTIVE AND PRESCRIPTIVE ANALYTICS IN 

ACUTE CARE. 
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