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Zero-temperature phase diagram for double-well type potentials in the summable variation class

We study the zero-temperature limit of the Gibbs measures of a class of long-range potentials on a full shift of two symbols {0, 1}. These potentials were introduced by Walters as a natural space for the transfer operator. In our case, they are constant on a countable infinity of cylinders, and Lipschitz continuous or, more generally, of summable variation. We assume there exists exactly two ground states: the fixed points 0 ∞ and 1 ∞ . We fully characterize, in terms of the Peierls barrier between the two ground states, the zero-temperature phase diagram of such potentials, that is, the regions of convergence or divergence of the Gibbs measures as the temperature goes to zero.

Introduction and main results

We consider the problem of convergence or divergence of Gibbs measures as the absolute temperature goes to zero. By a Gibbs measure, we mean an invariant probability µ β describing the equilibrium at temperature β -1 of one-sided configurations (x 0 , x 1 , . . .) ∈ Σ := {0, 1} N interacting according to a potential H : Σ → R as described in the thermodynamic formalism (see [START_REF] Baladi | Positive transfer operator and decay of correlations[END_REF][START_REF] Keller | Equilibrium states in ergodic theory[END_REF][START_REF] Parry | Zeta functions and the periodic orbit structure of hyperbolic dynamics[END_REF][START_REF] Ruelle | Thermodynamic formalism: the mathematical structures of equilibrium statistical mechanics[END_REF]). The invariance of the measure is defined with respect to the left shift σ : Σ → Σ, σ(x 0 , x 1 , . . .) = (x 1 , x 2 , . . .). We assume in the following that H is nonnegative, Lipschitz continuous, or more generally of summable variation. When β → +∞, the Gibbs measures tend to concentrate on the minima of H. Besides, the limit measure needs to be invariant. We assume that the only invariant ergodic probability measures included in the zerolevel set {H = 0} are exactly the two Dirac measures δ 0 ∞ and δ 1 ∞ . As the temperature goes to zero (β → +∞), two cases may happen, either the selection case where µ β converges to a convex combination c 0 δ 0 ∞ + c 1 δ 1 ∞ , or the nonselection case where, for some subsequence β k , {µ β k } has two accumulation points: µ β 2k → δ 0 ∞ and µ β 2k+1 → δ 1 ∞ . We consider in this work the smallest class of potentials where the two cases coexist.

For potentials that depend on a finite number of coordinates, namely, that are constant on a finite number of cylinder sets, the selection case always holds, over both finite alphabets [START_REF] Brémont | Gibbs measures at temperature zero[END_REF][START_REF] Leplaideur | A dynamical proof for the convergence of Gibbs measures at temperature zero[END_REF][START_REF] Chazottes | Zero-temperature limit of one dimensional Gibbs states via renormalization: The case of locally constant potentials[END_REF][START_REF] Garibaldi | Description of some ground sates by Puiseux techniques[END_REF] and countably infinite alphabets [START_REF] Kempton | Zero temperature limits of Gibbs equilibrium states for countable Markov shifts[END_REF][START_REF] Freire | Equilibrium states and zero temperature limit on topologically transitive countable Markov shifts[END_REF]. For potentials that are constant on a countable infinity of cylinders, the selection case has been proved in particular examples: see Baraviera, Leplaideur, Lopes in [START_REF] Baraviera | Selection of ground states in the zero temperature limit for a one-parameter family of potentials[END_REF], Leplaideur in [START_REF] Leplaideur | Flatness is a criterion for selection of maximizing measures[END_REF], Baraviera, Lopes, Mengue in [START_REF] Baraviera | On the selection of subaction and measure for a subclass of potentials defined by P. Walters[END_REF]. The nonselection case has been addressed more recently in [START_REF] Van Enter | Chaotic temperature dependence at zero temperature[END_REF], [START_REF] Chazottes | On the zero-temperature limit of Gibbs states[END_REF] and [START_REF] Coronel | Sensitive dependence of Gibbs measures[END_REF]. In a seminal paper [START_REF] Van Enter | Chaotic temperature dependence at zero temperature[END_REF], van Enter and Ruszel have produced an example where chaotic temperature dependence was observed, however their alphabet is the unit circle and the construction is only based on properties of the potential and not on the dynamics. Chazottes and Hochman gave in [START_REF] Chazottes | On the zero-temperature limit of Gibbs states[END_REF] examples of nonselection in any dimension D = 2 (with respect to an underlying Z D -action). In one dimension, their potential is equal to the distance to some invariant compact set that has a complex combinatorial construction. In dimension D ≥ 3, their nonselection examples come from potentials that do depend on a finite number of coordinates. Recently in [START_REF] Aubrun | Simulation of effective subshifts by two-dimensional subshifts of finite type[END_REF], Aubrun and Sablik extended [START_REF] Hochman | On the dynamics and recursive properties of multidimensional symbolic system[END_REF], which is the main ingredient in the proof of the multidimensional part of [START_REF] Chazottes | On the zero-temperature limit of Gibbs states[END_REF]. In principle, an analogous proof of the nonselection for D = 2 should also work. In [START_REF] Coronel | Sensitive dependence of Gibbs measures[END_REF], Coronel and Rivera-Letelier adapted for finite alphabets van Enter and Ruszel ideas and they ensure the existence of nonselection examples by a perturbative approach combined with entropy arguments as in [START_REF] Chazottes | On the zero-temperature limit of Gibbs states[END_REF]. Moreover, they were able to verify the nonselection case also for D = 2, without using the result of [START_REF] Aubrun | Simulation of effective subshifts by two-dimensional subshifts of finite type[END_REF], but with Lipschitz continuous potentials. Thus, for potentials that depend on a finite number of coordinates in dimension D = 2, it is an open question whether there exist examples of nonselection.

Our approach is different. We highlight the simplest class of potentials whose zero-temperature phase diagram is completely understood: it contains both the nonselection and the selection cases, with an explicit description of the limit measures in the convergent situation. We show that the criterion of nonselection or selection is given by the fact that the Peierls barriers between the two configurations 0 ∞ and 1 ∞ are both equal to zero or not.

We now detail such a class of potentials. A cylinder of length n ≥ 1 is a set C n := [i 0 i 1 . . . i n-1 ] of configurations x ∈ Σ such that the first n states x 0 , x 1 , . . . , x n-1 coincide with i 0 , i 1 , . . . , i n-1 . We say that two points x, y ∈ Σ are n-close, and we write x n = y, if x and y belong to the same cylinder of length n. Let H : Σ → R be a C 0 nonnegative potential. We say that H has summable variation if

n≥1 var(H, n) < +∞, with var(H, n) := sup |H(x) -H(y)| : x n = y . (1.1)
We restrict the potential H to a subclass of functions that are constant on a countable infinity of cylinders as described in the following assumptions. Our subclass is a particular class of Walters potentials with summable variation (see [START_REF] Walters | A natural space of functions for the Ruelle operator theorem[END_REF]). Definition 1.1. We say that H is a double-well type potential if H is nonnegative, has summable variation and is constant on the cylinders [00 n 1], [01 n 0], [11 n 0] and [10 n 1]. More precisely, there are nonnegative sequences {a 0 n }, {a 1 n } and strictly positive sequences

{b 0 n }, {b 1 n } such that 1. H(x) = a 0 n ≥ 0, if x ∈ [00 n 1], H(x) = a 1 n ≥ 0, if x ∈ [11 n 0]; 2. H(x) = b 0 n > 0, if x ∈ [01 n 0], H(x) = b 1 n > 0, if x ∈ [10 n 1]; 3. n≥1 na 0 n < +∞, n≥1 na 1 n < +∞; 4. k≥1 sup n≥0 |b 0 k -b 0 k+n | < +∞, k≥1 sup n≥0 |b 1 k -b 1 k+n | < +∞. Denote H 0 min := inf n≥1 b 0 n + n-1 k=1 a 1 k , H 0 ∞ := lim n→+∞ b 0 n + n≥1 a 1 n , H 1 min := inf n≥1 b 1 n + n-1 k=1 a 0 k , H 1 ∞ := lim n→+∞ b 1 n + n≥1 a 0 n .
As example of a double-well type potential, consider

H : Σ → [0, +∞) given by H(0 ∞ ) = 0 = H(1 ∞ ) and H(x) = ρ θ 0 (x) 0 ρ θ 1 (x) 1
if x is not a fixed point, where ρ 0 , ρ 1 ∈ (0, 1) and θ 0 , θ 1 ≥ 1 are functions such that their restrictions θ

0 | [1] , θ 1 | [0] , θ 0 | [0 n 1] , θ 1 | [1 n 0] are identically constant and satisfy inf n≥1 {θ 0 | [0 n+1 1] -θ 0 | [0 n 1] , θ 1 | [1 n+1 0] -θ 1 | [1 n 0] } > 0.
For this particular example, Gibbs measures do converge when the system is frozen as follows from our main result.

Our main theorem describes the zero-temperature phase diagram of double-well type potentials (see figure 1). The different regions of the diagram are described by a unique parameter, obtained by taking the minimum of three exponents:

γ := min 1 2 H 1 ∞ + H 0 ∞ , H 0 min + H 1 ∞ , H 1 min + H 0 ∞ . (1.2) 
Notice that γ = 0 if, and only if, H 0 ∞ = H 1 ∞ = 0 if, and only if, the three exponents coincide. By symmetry we may assume H 0 ∞ ≤ H 1 ∞ . We state the theorem in this case. If γ > 0, one exponent is irrelevant and we have:

γ = min 1 2 H 1 ∞ + H 0 ∞ , H 1 min + H 0 ∞ , since 1 2 (H 1 ∞ +H 0 ∞ ) < H 0 min +H 1 ∞ .
We introduce in that case the coincidence number κ which counts how many times the minimum is attained, that is, for

H 1 n := b 1 n + n-1 k=1 a 0 k , κ := card n ≥ 1 : 1 2 H 1 ∞ + H 0 ∞ = H 1 n + H 0 ∞ , (1.3) 
and a coefficient c, the largest solution of the equation

X 2 = κX + 1, c := κ + √ κ 2 + 4 2 . (1.4)
Our main theorem is thus stated as follows.

Theorem 1.2. Let H : Σ → R be a double-well type potential. Let µ β be the Gibbs measure of H at temperature

β -1 . Assume that H 0 ∞ ≤ H 1 ∞ . 1. If 1 2 (H 1 ∞ + H 0 ∞ ) > H 1 min + H 0 ∞ , then lim β→+∞ µ β = δ 1 ∞ . 2. If H 1 min + H 0 ∞ ≥ 1 2 (H 1 ∞ + H 0 ∞ ) > 0, then lim β→+∞ µ β = 1 1 + c 2 δ 0 ∞ + c 2 1 + c 2 δ 1 ∞ .
(1.5)

3. If H 0 ∞ = H 1 ∞ = 0, then there exists a particular choice of b 0 n , b 1 n (nec- essarily a 0 n = a 1 n = 0
) such that H is Lipschitz and µ β does not converge. More precisely, there exists a sequence

β k → +∞ such that lim k→+∞ µ β 2k = δ 0 ∞ and lim k→+∞ µ β 2k+1 = δ 1 ∞ .
(Items 1 and 2 correspond to γ > 0; item 3 corresponds to γ = 0.)

1 1+c 2 δ 0 ∞+ c 2 1+c 2 δ 1 ∞ d 2 1+d 2 δ 0 ∞+ 1 1+d 2 δ 1 ∞ H min 0 H min 1 1 2 (H ∞ 1 -H ∞ 0 ) 1 2 δ 0 ∞+ 1 2 δ 1 ∞ δ 0 ∞ δ 1 ∞ 0 Figure 1: Zero-temperature phase diagram.
The nonselection case can occur only at the origin. The formulas in the boxes are the limit measures at zero temperature. The two gray planes correspond to the cases of the coincidence of two exponents. Outside these planes the limit measures are barycenters with rational coefficients. If H 1 ∞ ≥ H 0 ∞ , then c is the coefficient given by (1.4). If H 0 ∞ ≥ H 1 ∞ , then d is the analogous coefficient.

In section 2, we give general results for potentials of summable variation. In section 3, for a double-well type potential H, we compute the measure of every cylinder using two series that capture all the complexity of the limit. In section 4, we prove the convergence of Gibbs measures when γ > 0. Finally, in section 5, we provide examples of divergence with γ = 0. Note that the symmetric case a 0 n = a 1 n and b 0 n = b 1 n gives in both cases γ > 0 or γ = 0 the convergence to 1 2 δ 0 ∞ + 1 2 δ 1 ∞ . We also show in this particular class of potentials that the dichotomy selection/nonselection in theorem 1.2 can be expressed in terms of the Peierls barrier between the two configurations 0 ∞ and 1 ∞ . The Peierls barrier is defined for any potential with summable variation by h(x, y) := lim p→+∞ lim n→+∞ S p n (x, y), where

S p n (x, y) := inf k-1 i=0 H • σ i (z) -H : k ≥ n, z ∈ Σ, z p = x, σ n (z) p = y , H := lim n→+∞ inf 1 n n-1 k=0 H • σ k (x) : x ∈ Σ .
The Peierls barrier indicates the minimal algebraic cost from x to y using a normalized potential H -H. In the particular case of double-well type potentials, we have the following result.

Corollary 1.3. Let H be a double-well type potential. Then

1. 1 2 (H 0 ∞ + H 1 ∞ ) = 1 2 h(0 ∞ , 1 ∞ ) + h(1 ∞ , 0 ∞ ) ; 2. H 0 min + H 1 ∞ = lim inf x→0 ∞ h(x, 0 ∞ ); 3. H 1 min + H 0 ∞ = lim inf x→1 ∞ h(x, 1 ∞ );
4. the nonselection happens if, and only if,

h(0 ∞ , 1 ∞ ) = h(1 ∞ , 0 ∞ ) = 0.
Note that γ may be seen as the minimum of three energy barriers:

1 2 H 0 ∞ + H 1 ∞
, the mean energy barrier of a cycle of second order between the two ground states 0 ∞ and 1 ∞ ; H 0 min + H 1 ∞ , the energy barrier of a cycle of first order at 0 ∞ ; and H 1 min + H 0 ∞ , a similar energy barrier at 1 ∞ .

Basic facts for potentials of summable variation

We gather in this section some of the main elements of ergodic optimization theory for potentials of summable variation. Ergodic optimization may be seen as a counterpart at zero temperature of thermodynamic formalism. A useful viewpoint on ergodic optimization is provided by Aubry-Mather theory. For more information, we refer the reader, for instance, to [START_REF] Garibaldi | On calibrated and separating sub-actions[END_REF][START_REF] Garibaldi | Description of some ground sates by Puiseux techniques[END_REF] and the references therein.

Definition 2.1. For H ∈ C 0 (Σ), a minimizing measure µ min is a σ-invariant probability such that H dµ min = min H dν : ν is a σ-invariant probability measure .

We call Mather set of H the invariant compact set Mather(H) := {supp(µ) : µ is minimizing}.

We call minimizing ergodic value of H the constant H := H dµ min .

We recall or extend basic results about the Peierls barrier for functions with summable variation.

Proposition 2.2. If H has summable variation, then

Mather(H) ⊂ {x ∈ Σ : h(x, x) = 0}.

(2.1)

The previous proposition follows from Atkinson's theorem [START_REF] Atkinson | Recurrence of co-cycles and random walks[END_REF] and from the existence of a continuous calibrated sub-action. Definition 2.3. We call Lax-Oleinik operator the nonlinear operator acting on continuous functions V ∈ C 0 (Σ) defined by

T [V ](y) := min{V (x) + H(x) : x ∈ Σ, σ(x) = y}, ∀ y ∈ Σ.
We call calibrated sub-action any continuous function V solution of the equation

T [V ] = V + H.
Clearly, V • σ -V ≤ H -H when V is a calibrated sub-action, which in particular ensures that h(x, x) ≥ 0 for all x ∈ Σ. Atkinson's theorem provides the opposite inequality if x ∈ Mather(H). These are the main ingredients of the proof of proposition 2.2. To obtain a calibrated subaction, we will introduce a stronger notion of regularity on C 0 (Σ). Consider thus

K := V ∈ C 0 (Σ) : ∀ n ≥ 1, var(V, n) ≤ k≥n+1 var(H, k) .
We also recall that the transfer operator is defined on the space C 0 (Σ) by

L β [Φ](x) = e -βH(0x) Φ(0x) + e -βH(1x) Φ(1x), ∀ x ∈ Σ.
The next theorem contains a version of Ruelle-Perron-Frobenius theorem and provides a calibrated sub-action in the context of potentials with summable variation, making explicit well-known connections between thermodynamic formalism and ergodic theory.

Theorem 2.4. Let H : Σ → R be a potential with summable variation.

1. The transfer operator admits a unique positive and continuous eigenfunction Φ β satisfying max Φ β = 1, which is associated with a positive eigenvalue λ β .

If

V β := -1 β ln Φ β , then V β ∈ K and min V β = 0. 3. The dual operator L * β admits a unique eigenprobability ν β . The corre- sponding eigenvalue is equal to λ β , L * β [ν β ] = λ β ν β . 4. Define µ β := Φ β ν β / Φ β dν β .
Then µ β is a σ-invariant probability measure, and any weak * accumulation point of µ β as β → +∞ is a minimizing measure.

5. There exists a sequence β k → +∞ such that (in the sup-norm topology)

{V β k } converges to a function V ∞ ∈ K with min V ∞ = 0. Moreover, any accumulation function V ∞ of {V β } as β → +∞ is a calibrated sub-action for H.
Proof. The proof of these results are standard (see [START_REF] Ruelle | Thermodynamic formalism: the mathematical structures of equilibrium statistical mechanics[END_REF][START_REF] Parry | Zeta functions and the periodic orbit structure of hyperbolic dynamics[END_REF][START_REF] Garibaldi | Description of some ground sates by Puiseux techniques[END_REF]), and hence we focus on the part leading to the existence of calibrated sub-actions. We define a nonlinear operator T β by

T β [u] := - 1 β ln L β [exp(-βu)] . Fix x 0 ∈ Σ and define K 0 := {U ∈ K : U (x 0 ) = 0}.
The set K 0 is closed in the C 0 (Σ) topology and bounded. By the unifom continuity of K and Arzelà-Ascoli theorem, the set

K 0 is compact. Besides, K 0 is convex. If x n = y, then T β [u](x) -T β [u](y) ≤ var(H, n + 1) + var(u, n + 1).
In particular var(T β [u], n) ≤ var(H, n + 1) + var(u, n + 1) and the map

Tβ [u] := T β [u] -T β [u](x 0 )
preserves K 0 . By Schauder theorem, Tβ admits a fixed point, or in an equivalent way, T β admits an additive eigenfunction

T β [U β ] = U β + Hβ , which yields L β [Φ β ] = λ β Φ β , with Φ β := e -β(U β -min U β ) , λ β = e -β Hβ .
Let Φ be another positive and continuous eigenfunction associated with some positive eigenvalue λ. We choose s, t > 0 such that sΦ β ≤ Φ ≤ tΦ β . By iterating L β , we obtain sλ n β Φ β ≤ λn Φ ≤ tλ n β Φ β . Then λ = λ β . Let s be such that min( Φ -sΦ β ) = 0. Then the identity

L β [ Φ -sΦ β ] = λ β ( Φ -sΦ β )
implies that the set arg min x ( Φ -sΦ β )(x) is invariant by σ -1 and therefore Φ = sΦ β . The uniqueness of the eigenfunction is proved.

Note that the family {V β = -1 β ln Φ β } β>0 belongs to the compact subset {V ∈ K : min V = 0}. Passing to the limit with respect to a suitable sequence

β k → +∞, we see that T [V ∞ ] = V ∞ +c for c = lim Hβ k . From min- plus algebra, it is well know that the only additive eigenvalue is c = H.
The following proposition shows how calibrated sub-actions are related with the Peierls barrier. Proposition 2.5. If H has summable variation, then the following items hold.

For every x ∈ Mather(H), as a function of its second variable, h(x, •)

belongs to K and is a calibrated sub-action.

If

V ∈ C 0 (Σ) is a calibrated sub-action, then V ∈ K and V admits a representation formula 1 V (y) = min V (x) + h(x, y) : x ∈ Mather(H) , ∀ y ∈ Σ. (2.2)
Proof. For the Lipschitz class, these results may be found in the literature (see, for instance, [START_REF] Garibaldi | On calibrated and separating sub-actions[END_REF][START_REF] Garibaldi | Description of some ground sates by Puiseux techniques[END_REF] and the references therein). All proofs may be easily extended just adapting the arguments to the regularity here considered. For the convenience of the reader, we outline the proofs of items 1 and 2. Item 2. Suppose y n = z. Denoting y 0 = y, since V is a calibrated subaction, there exists a sequence {y k } ⊂ Σ such that

V (y 0 ) = V (y k ) + k-1 i=1 [H • σ i (y k ) -H], σ(y k ) = y k-1 , ∀ k ≥ 1. (2.3) For z 0 = z, we thus consider a sequence {z k }, with σ(z k ) = z k-1 , such that z k n+k = y k for all k. Note that V (z 0 ) ≤ V (z k ) + k-1 i=1 [H • σ i (z k ) -H], ∀ k ≥ 1. (2.4)
From (2.3) and (2.4), we have var(V, n) ≤ k≥n+1 var(H, k), that is, V ∈ K.

From the inequality V • σ -V ≤ H -H, given any y ∈ Σ, we have that V (y) ≤ min{V (x) + h(x, y) : x ∈ Mather(H)}. For y 0 = y, we consider again (2.3)

. Since V (y k ) = V (y k+p )+ p-1 i=1 [H •σ i (y k+p )-H],
for all k, p ≥ 0, one may deduce that a limit x ∈ Σ of subsequence {y k j } satisfies h(x, x) = 0.

By passing to the limit in

V (y 0 ) = V (y k j ) + k j -1 i=1 [H • σ i (y k j ) -H],
we see that V (y) = V (x) + h(x, y). For all x in the same irreducible class as x (see definition 18 in [START_REF] Garibaldi | On calibrated and separating sub-actions[END_REF]), we may extend the equality V (y) = V (x) + h(x, y). As in proposition 19 in [START_REF] Garibaldi | On calibrated and separating sub-actions[END_REF], also for the summable variation case, each irreducible class is compact and invariant, so that it contains the support of at least one minimizing measure.

Item 1. It suffices to explain how to show that h(x, •), x ∈ Mather(H), is a calibrated sub-action. The argument is standard. For x ∈ Mather(H), one may use Atkinson's theorem [START_REF] Atkinson | Recurrence of co-cycles and random walks[END_REF] to obtain that, as a function of the second variable, h(x, •) is finite everywhere on Σ. Then the calibration property follows from the very definition of the Peierls barrier. For details, see [START_REF] Garibaldi | On calibrated and separating sub-actions[END_REF][START_REF] Garibaldi | Description of some ground sates by Puiseux techniques[END_REF] and the references therein.

Explicit formulas for double-well type potentials

From now on, we assume that H is a double-well type potential (see Definition 1.1). We show in lemma 3.2 that we can reduce the complexity of the notation by taking a suitable coboundary, which is constant on a countable infinity of cylinders. As the issue of selection or nonselection is independent of the cohomological class of the potential, this lemma will enable us to simplify the proof by using the following reduced assumptions. Definition 3.1. Let H be a double-well type potential. We say that H is reduced if H = 0 on [00] ∪ [START_REF] Freire | Equilibrium states and zero temperature limit on topologically transitive countable Markov shifts[END_REF]. More precisely, for every n ≥ 0,

1. H(x) = 0, if x ∈ [00] ∪ [11]; 2. H(x) = H 0 n > 0, if x ∈ [01 n 0], H(x) = H 1 n > 0, if x ∈ [10 n 1]; 3. k≥1 sup n≥0 |H 0 k -H 0 k+n | < +∞, k≥1 sup n≥0 |H 1 k -H 1 k+n | < +∞. Denote H 0 ∞ := lim n→+∞ H 0 n , H 1 ∞ := lim n→+∞ H 1 n , H 0 min := inf n≥1 H 0 n , H 1 min := inf n≥1 H 1 n . Lemma 3.2.
If H is double-well type potential, then there exists a function V : Σ → R, which is constant on a countable infinity of cylinders, such that

H := H -(V • σ -V ) is reduced. Proof. Let V (x) := +∞ k=n a 0 k + k≥1 a 1 k , if x ∈ [0 n 1] and n ≥ 1, V (x) := +∞ k=n a 1 n + k≥1 a 0 k , if x ∈ [1 n 0] and n ≥ 1. Then V • σ -V =            k≥n a 0 k -k≥n+1 a 0 k = a 0 n , on [00 n 1], k≥n a 1 k -k≥n+1 a 1 k = a 1 n , on [11 n 0], ( k≥n a 0 k + k≥1 a 1 k ) -( k≥1 a 1 k + k≥1 a 0 k ), on [10 n 1], ( k≥n a 1 k + k≥1 a 0 k ) -( k≥1 a 0 k + k≥1 a 1 k ), on [01 n 0].

And the new double-well type potential H

:= H -(V • σ -V ) becomes H(x) = 0, if x ∈ [00] ∪ [11], H(x) = H 0 n := b 0 n + n-1 k=1 a 1 k , if x ∈ [01 n 0], H(x) = H 1 n := b 1 n + n-1 k=1 a 0 k , if x ∈ [10 n 1].
From now on, H is supposed to be a reduced double-well type potential. We follow the same methods as in [START_REF] Baraviera | Selection of ground states in the zero temperature limit for a one-parameter family of potentials[END_REF] and [START_REF] Leplaideur | Flatness is a criterion for selection of maximizing measures[END_REF]. Our main goal is to find the characteristic equation of the eigenvalue λ β and the measures µ β ([0]) and µ β ( [START_REF] Atkinson | Recurrence of co-cycles and random walks[END_REF]). We also want to identify the criterion of divergence in terms of the Peierls barrier.

Since H is nonnegative and

H(0 ∞ ) = H(1 ∞ ) = 0, H has null ergodic minimizing value: H = 0. Since {0 ∞ , 1 ∞ } is the only invariant set included in {H = 0} ⊂ [00] ∪ [11] ∪ {01 ∞ , 10 ∞ }, the Mather set is reduced to the two fixed points, namely, Mather(H) = {0 ∞ , 1 ∞ }.
The next proposition gives a complete description of the Peierls barrier.

Proposition 3.3. If H is a reduced double-well type potential, then 1. h(0 ∞ , x) = 0, ∀ x ∈ [0], (in particular h(0 ∞ , 0 ∞ ) = 0); 2. h(0 ∞ , x) = inf k≥n H 0 k , ∀ x ∈ [1 n 0], (in particular h(0 ∞ , 1 ∞ ) = H 0 ∞ ); 3. lim inf x→0 ∞ h(x, 0 ∞ ) = H 0 min + H 1 ∞ ; 4. h(1 ∞ , x) = 0, ∀ x ∈ [1], (in particular h(1 ∞ , 1 ∞ ) = 0); 5. h(1 ∞ , x) = inf k≥n H 1 k , ∀ x ∈ [0 n 1], (in particular h(1 ∞ , 0 ∞ ) = H 1 ∞ ); 6. lim inf x→1 ∞ h(x, 1 ∞ ) = H 1 min + H 0 ∞ . Proof. Item 1. Clearly h(0 ∞ , x) = 0, ∀ x ∈ [0], since H ≥ 0 and H = 0 on [00]. Item 2. Let x ∈ [1 n 0] and p ≥ 1. Every z ∈ Σ satisfying z p = 0 ∞ and σ k (z) p = x belongs to [0 m 1 1 n 1 . . . 0 mr 1 nr 0], with m 1 ≥ p, n r ≥ n and k = m 1 + n 1 + • • • + n r -n. The corresponding sum k-1 i=0 [H • σ i (z) -H] is H 0 n 1 + H 1 m 2 + • • • + H 0 nr , which gives (for every m ≥ p) S p m (0 ∞ , x) = inf k≥n H 0 k , h(0 ∞ , x) = inf k≥n H 0 k . By continuity of x → h(0 ∞ , x) (see proposition 2.5), we have h(0 ∞ , 1 ∞ ) = H 0 ∞ . Item 3. On the one hand, if x ∈ [0], x = 0 ∞ and p ≥ 1, then every z satisfying z p = x and σ k (z) p = 0 ∞ has the form z = 0 m 1 1 n 1 • • • 0 mr 1 nr 0 p • • • with m i ≥ 1, n i ≥ 1 and k = m 1 + n 1 + • • • + n r . The corresponding sum k-1 i=0 [H • σ i (z) -H] is bounded from below by H 0 min + inf q≥p H 1 q and we obtain h(x, 0 ∞ ) ≥ H 0 min + H 1 ∞ .
On the other hand, for every m, n ≥ 1 and

k ≥ p ≥ m + n, S p k (0 m 1 n 0 ∞ , 0 ∞ ) = H 0 n + H 1 ∞ . These facts together imply lim inf x→0 ∞ h(x, 0 ∞ ) = H 0 min + H 1 ∞ .
The other expressions are similarly obtained by permuting 0 and 1.

We recall the notion of a Jacobian J of a probability measure ν which is not necessarily invariant by the shift σ. It is a nonnegative Borel function J : Σ → R + such that, for every bounded Borel test function f : Σ → R,

[0] f • σ(x)J(x) dν(x) = [1] f • σ(x)J(x) dν(x) = Σ f (x) dν(x).
Note that, if such a Jacobian exists, it is unique.

From now on, whenever a function f :

Σ → R is constant on a cylinder [i 0 i 1 . . . i n-1 ], we denote f (i 0 i 1 . . . i n-1 ) the constant value f | [i 0 i 1 ...i n-1 ] .
Proposition 3.4. Let H be a reduced double-well type potential. Let Φ β , ν β and λ β be the solutions of the Perron-Frobenius equation as defined in theorem 2.4. Then Φ β is constant on every cylinder [0 n 1] or [1 n 0], n ≥ 1, and ν β has constant Jacobian J β on the cylinders [0 2 ], [1 2 ], [01 n 0] and [10 n 1], n ≥ 1. More precisely,

1. Φ β (0 n 1) = k≥n exp(-βH 1 k ) λ k-n+1 β Φ β (10), Φ β (0 ∞ ) = exp(-βH 1 ∞ ) λ β -1 Φ β (10); 2. Φ β (1 n 0) = k≥n exp(-βH 0 k ) λ k-n+1 β Φ β (01), Φ β (1 ∞ ) = exp(-βH 0 ∞ ) λ β -1 Φ β (01); 3. if H 0 ∞ = H 1 ∞ = 0, then max Φ β = max{Φ β (0 ∞ ), Φ β (1 ∞ )} = 1; 4. ν β [1 n 0] = 1 λ n-1 β ν β [10], or J β (x) = λ β , ∀ x ∈ [1 2 ]; 5. ν β [0 n 1] = 1 λ n-1 β ν β [01], or J β (x) = λ β , ∀ x ∈ [0 2 ]; 6. ν β [01 n 0] = exp(-βH 0 n ) λ n β ν β [10], or J β (x) = λ β exp(-βH 0 n ) , ∀ x ∈ [01 n 0]; 7. ν β [10 n 1] = exp(-βH 1 n ) λ n β ν β [01], or J β (x) = λ β exp(-βH 1 n ) , ∀ x ∈ [10 n 1]. Proof. Part 1. The equation L β [Φ β ] = λ β Φ β implies Φ β (0 n 1) = 1 λ β Φ β (0 n+1 1) + 1 λ β exp(-βH 1 n )Φ β (10) = 1 λ 2 β Φ β (0 n+2 1) + 1 λ β exp(-βH 1 n ) + 1 λ 2 β exp(-βH 1 n+1 ) Φ β (10) = • • • = 1 λ β exp(-βH 1 n ) + 1 λ 2 β exp(-βH 1 n+1 ) + • • • Φ β (10).
A similar computation is done for Φ β (1 n 0). Part 2. For every bounded Borel function f : Σ → R, we have

1 [0] f • σ λ β exp(-βH) dν β = L β λ β 1 [0] f • σ λ β exp(-βH) dν β = f dν β .
A similar computation is done for 1 [START_REF] Atkinson | Recurrence of co-cycles and random walks[END_REF] . We thus obtain

J β (x) = λ β exp(-βH(x)) , ∀ x ∈ Σ.
In particular,

J β (x) = λ β for x ∈ [0 2 ] ∪ [1 2 ], J β (x) = λ β /exp(-βH 0 n ) for x ∈ [01 n 0], and J β (x) = λ β /exp(-βH 1 n ) for x ∈ [10 n 1]. Part 3.
With respect to the eigenmeasure, we discuss items 4 and 6; the others are similarly proved. Hence, by applying the Jacobian, just note that

ν β [10] = λ β ν β [1 2 0] = λ 2 β ν β [1 3 0] = • • • = λ n-1 β ν β [1 n 0] = λ n β exp(-βH 0 n ) ν β [01 n 0].
For every reduced double-well type potential, we define the following analytic functions that will play a fundamental role in the dichotomy:

F 0 β (λ) := k≥1 1 λ k exp(-βH 0 k ), F 1 β (λ) := k≥1 1 λ k exp(-βH 1 k ), (3.1) 
F 0 β (λ) := k≥1 k λ k exp(-βH 0 k ), F 1 β (λ) := k≥1 k λ k exp(-βH 1 k ). (3.2)
We will also keep in mind the following equalities

∀ N ≥ 0, k≥N +1 1 λ k = 1 λ N (λ -1) , k≥N +1 k λ k = N (λ -1) + λ λ N (λ -1) 2 . (3.3)
Corollary 3.5. Let H be a reduced double-well type potential. Then [START_REF] Van Enter | Chaotic temperature dependence at zero temperature[END_REF] and Φ β (10) = F 0 β (λ β )Φ β (01). By multiplying term to term, we obtain

1. F 0 β (λ β )F 1 β (λ β ) = 1 (the characteristic equation); 2. Φ β (01) = F 1 β (λ β )Φ β (10), Φ β (10) = F 0 β (λ β )Φ β (01); 3. ν β [01] = F 0 β (λ β )ν β [10], ν β [10] = F 1 β (λ β )ν β [01]. Proof. Item 1 of proposition 3.4 implies, by taking n = 1, Φ β (01) = F 1 β (λ β )Φ β
F 0 β (λ β )F 1 β (λ β ) = 1.
We also have

ν β [01] = n≥1 ν β [01 n 0] = n≥1 1 λ n β exp(-βH 0 n )ν β [10] = F 0 β (λ β )ν β [10].
Corollary 3.6. Let H be a reduced double-well type potential. Then

1. µ β [01] = µ β [10]; 2. µ β [0 n 1] µ β [01] = k≥n 1 λ k β exp(-βH 1 k ) F 0 β (λ β ), µ β [0] µ β [01] = F 1 β (λ β ) F 1 β (λ β ) ; 3. µ β [1 n 0] µ β [10] = k≥n 1 λ k β exp(-βH 0 k ) F 1 β (λ β ), µ β [1] µ β [10] = F 0 β (λ β ) F 0 β (λ β ) ; 4. µ β [01 n 0] µ β [10] = exp(-βH 0 n )F 1 β (λ β ) λ n β , µ β [10 n 1] µ β [01] = exp(-βH 1 n )F 0 β (λ β ) λ n β ; 5. µ β [0] µ β [1] = F 0 β (λ β ) F 1 β (λ β ) F 1 β (λ β ) F 0 β (λ β )
.

We know that λ β → 1 as β → +∞. In order to understand the behavior of µ β , it is fundamental to have a better Puiseux series expansion of λ β , as it is done for potentials that depend on finite number of coordinates (see [START_REF] Garibaldi | Description of some ground sates by Puiseux techniques[END_REF]). The log-scale limit, the limit of -1 β ln(λ β -1), is usually easy to obtain using a min-plus technique. This may be sufficient to show the convergence of µ β when there is no coincidence of exponents, as it happens in [START_REF] Baraviera | On the selection of subaction and measure for a subclass of potentials defined by P. Walters[END_REF]. Usually the limit is then a periodic measure. In general, the log-scale limit is not sufficient and an expansion of the form λ β = 1 + ce -βγ + o(e -βγ ) needs to be founded as in [START_REF] Baraviera | Selection of ground states in the zero temperature limit for a one-parameter family of potentials[END_REF][START_REF] Leplaideur | Flatness is a criterion for selection of maximizing measures[END_REF]. A barycenter of periodic measures with irrational coefficients may be the limit in this case. Let us recall from equation (1.2) the definition of the key parameter γ, which we call from now on the Puiseux exponent:

γ := min 1 2 H 1 ∞ + H 0 ∞ , H 0 min + H 1 ∞ , H 1 min + H 0 ∞ .
The coincidence of exponents is understood in the sense that the minimum γ may be attained several times. The following proposition gives the logscale limit of the main quantities that appear in the dichotomy. We will give better estimates in the next section.

Proposition 3.7. Let H be a reduced double-well type potential. Then

1. lim β→+∞ - 1 β ln(λ β -1) = γ; 2. lim β→+∞ - 1 β ln F 0,1 β (λ β ) = min n≥1 H 0,1 n , H 0,1 ∞ -γ ; 3. lim β→+∞ - 1 β ln F 0,1 β (λ β ) = min n≥1 H 0,1 n , H 0,1 ∞ -2γ .
Proof. Part 1. We claim that any limit point of -1 β ln(λ β -1) is finite. Recall that H is nonnegative and max Φ β = 1. Hence, given

x max β ∈ arg max Φ β , we see that λ β = L β [Φ β ](x max β ) ≤ 2. Since λ β Φ β (0 ∞ ) = L β [Φ β ](0 ∞ ) yields λ β = 1 + exp(-βH 1 ∞ )Φ β (10 ∞ )/Φ β (0 ∞ ) ≥ 1, we have the a priori estimate 1 ≤ λ β ≤ 2. Furthermore, from exp(-β max k H 0 k ) λ β -1 ≤ F 0 β (λ β ) = 1 F 1 β (λ β ) ≤ λ β -1 exp(-β max k H 1 k ) , we conclude that exp -β(max H 0 k + max H 1 k )/2 ≤ λ β -1 ≤ 1. Part 2. For some subsequence β → +∞, assume -1 β ln(λ β -1) → γ. We claim that -1 β ln F 0 β (λ β ) → min n≥1 (H 0 n , H 0 ∞ -γ)
for the same subsequence. Indeed, let > 0. We choose N ≥ 1 such that |H 0 n -H 0 ∞ | < for all n ≥ N . We split the series (3.1) in two terms. For the first term, for β large enough exp(-β( min

1≤k≤N H 0 k + )) ≤ N k=1 1 λ k β exp(-βH 0 k ) ≤ exp(-β( min 1≤k≤N H 0 k -)).
For the second term, using the estimates (3.3), for β large enough exp(-

β(γ + )) ≤ λ N β (λ β -1) ≤ exp(-β(γ -)), exp(-β(H 0 ∞ + )) λ N β (λ β -1) ≤ k>N 1 λ k β exp(-βH 0 k ) ≤ exp(-β(H 0 ∞ -)) λ N β (λ β -1) , exp(-β(H 0 ∞ -γ + 2 )) ≤ k>N 1 λ k β exp(-βH 0 k ) ≤ exp(-β(H 0 ∞ -γ -2 )).
The claim is proved by adding the two terms, changing the scale and passing to the limits as β → +∞ and → 0. Part 3. We show there is a unique limit point γ by showing that it is the unique solution of a min-plus equation. Indeed, from the characteristic equation

1 = F 0 β (λ β )F 1 β (λ β ), we obtain 0 = min n≥1 {H 0 n , H 0 ∞ -γ} + min n≥1 {H 1 n , H 1 ∞ -γ}.
This equation is equivalent to

min n≥1 H 0 n + H 1 ∞ -γ = 0 or min n≥1 H 1 n + H 0 ∞ -γ = 0 or H 0 ∞ + H 1 ∞ -2γ = 0.
We have shown that γ is the Puiseux exponent γ. Part 4. We prove item 3 similarly as in part 2. We choose > 0 and N ≥ 1 as before. The first part of the series (3.2) satisfies

lim β→+∞ - 1 β ln N k=1 k λ k β exp(-βH 0 k ) = min 1≤k≤N H 0 k .
Using again the estimate (3.3), for β large enough, the remaining part gives exp(-

β(2γ + )) ≤ λ N β (λ β -1) 2 N (λ β -1) + λ β ≤ exp(-β(2γ -)), exp(-β(H 0 ∞ -2γ + 2 )) ≤ k>N k λ k β exp(-βH 0 k ) ≤ exp(-β(H 0 ∞ -2γ -2 )).
Corollary 3.8. Let H be a reduced double-well type potential and V be a calibrated sub-action. Then V is constant on every cylinders of the form [0 n 1] and [1 n 0] where n ≥ 1. More precisely,

1. V (x) = min V (0 ∞ ), V (1 ∞ ) + inf k≥n H 1 k , ∀ x ∈ [0 n 1], 2. V (x) = min V (1 ∞ ), V (0 ∞ ) + inf k≥n H 0 k , ∀ x ∈ [1 n 0].
In particular, min V = min{V (0 ∞ ), V (1 ∞ )}. With respect to Φ β = e -βV β the eigenfunction used in theorem 2.4 to ensure the existence of calibrated sub-actions, we have the following complementary information.

If γ > 0 and

H 1 ∞ ≥ H 0 ∞ , then {V β } converges uniformly to the cali- brated sub-action V ∞ characterized by V ∞ (x) = min{H 1 ∞ -γ, inf k≥n H 1 k }, ∀ x ∈ [0 n 1], ∀ n ≥ 1, V ∞ (x) = 0, ∀ x ∈ [1].
4. If γ = 0, then {V β } converges uniformly to 0, which is the unique calibrated sub-action satisfying min V = 0.

Proof. Part 1. Items 1 to 2 are consequences of the representation formula (2.2).

Part 2. If H 1 ∞ ≥ H 0 ∞ , then H 1 ∞ + H 0 ∞ -2γ ≥ 0 ≥ H 0 ∞ -γ.
Item 1 of proposition 3.4, item 2 of corollary 3.5 and items 1 and 2 of proposition 3.7 imply lim

β→+∞ V β (0 ∞ ) -V β (01) = H 1 ∞ + H 0 ∞ -2γ ≥ 0.
From item 2 of proposition 3.4 and item 1 of proposition 3.7, we have

lim β→+∞ V β (1 ∞ ) -V β (01) = H 0 ∞ -γ ≤ 0.
Therefore, we obtain

lim β→+∞ V β (0 ∞ ) -V β (1 ∞ ) = H 1 ∞ -γ ≥ 0.
Let V ∞ be any accumulation function of {V β }. Then V ∞ is a calibrated subaction and, in particular, satisfies items 1 and 2 already proved. Thus, since min

V ∞ = 0, necessarily V ∞ (1 ∞ ) = 0 and V ∞ (0 ∞ ) = H 1 ∞ -γ,
so that the characterization given in item 3 is proved. Being the limit function uniquely defined, we have actually showed that

V β → V ∞ uniformly. Part 3. If γ = 0, then H 0 ∞ = H 1 ∞ = 0. Let V ∞ be any accumulation function of {V β }.
Then V ∞ is a calibrated sub-action. By passing to the limit as n → +∞ in items 1 and 2, we obtain

V ∞ (0 ∞ ) = V ∞ (1 ∞ ). Since min V ∞ = 0, V ∞ is
necessarily the null function. By uniqueness of the accumulation function, we have proved that V β → V ∞ uniformly.

The selection case

We assume that H is reduced and that γ > 0, which is equivalent to max{H 0 ∞ , H 1 ∞ } > 0. We also suppose that H 0 ∞ ≤ H 1 ∞ (the opposite case is similar). In particular, H 1 ∞ > 0. We know that the only accumulation points of µ β are barycenters c 0 δ 0 ∞ + c 1 δ 1 ∞ . Our goal is to find an equivalent of µ β [0]/µ β [START_REF] Atkinson | Recurrence of co-cycles and random walks[END_REF] as β → +∞ and therefore to prove the convergence of µ β .

Proof of item 1 of Theorem 1.2. Assume 1 2 H 1 ∞ +H 0 ∞ > H 1 min +H 0 ∞ . Then γ = H 1 min + H 0 ∞ > 0 since H 1 min = 0 ⇔ H 1 ∞ = 0.
We will see that it is enough to estimate the quotient of the measures at the log-scale. Proposition 3.7 implies

lim β→+∞ - 1 β ln F 0 β (λ β ) = min{H 0 min , H 0 ∞ -γ} = H 0 ∞ -γ, lim β→+∞ - 1 β ln F 0 β (λ β ) = min{H 0 min , H 0 ∞ -2γ} = H 0 ∞ -2γ, lim β→+∞ - 1 β ln F 1 β (λ β ) = min{H 1 min , H 1 ∞ -2γ}.
The estimate for F 1 β is obtained from the characteristic equation. Thus

lim β→+∞ - 1 β ln µ β [0] µ β [1] = lim β→+∞ - 1 β ln F 0 β (λ β ) F 1 β (λ β ) F 1 β (λ β ) F 0 β (λ β ) , = H 0 ∞ + min{H 1 min , H 1 ∞ -2γ} > 0.
We have proved that

µ β [0]/µ β [1] → 0 or µ β → δ 1 ∞ .
For the proof of item 2 of theorem 1.2, the previous log-scale estimate is not enough. We need to develop an analytical technique which gives equivalents of the quantities F 0,1 β (λ β ), F 0,1 β (λ β ), and λ β -1. We first need the following lemma on sequences.

Lemma 4.1. Let {H n } n≥0 be a converging sequence satisfying n≥0 sup k≥0 |H n -H n+k | < +∞. Then lim n→+∞ (H n -H ∞ ) ln(n) = 0, where H ∞ = lim n→+∞ H n . Proof. Denote K n := sup k≥0 |H n -H n+k | for all n ≥ 0. Note then that |H n -H ∞ | ≤ K n and {K n } n≥0
is a nonincreasing sequence converging to 0 such that n≥0 K n < +∞. Assume by contradiction that there exist > 0 and a subsequence N i → +∞ such that K N i ln(N i ) ≥ . Thanks to the nonincreasing property, we have

i≥1 N i+1 -N i ln(N i+1 ) ≤ 1 i≥1 N i ≤n<N i+1 K n < +∞.
We thus observe that

1 -N i /N i+1 ln(N i+1 )/N i+1 → 0 =⇒ N i N i+1 → 1,
which implies, for every i sufficiently large,

N i+1 -N i ln(N i+1 ) = N i ln(N i+1 ) N i+1 N i -1 ≥ N i+1 N i -1 ≥ ln N i+1 N i . But then i≥1 [ln(N i+1 ) -ln(N i )] < +∞ contradicts N i → +∞.
From now on, we write f (β) ∼ g(β) to indicate that the positive functions f and g are equivalent as β → +∞. Besides, as usual f (β) g(β) means that f is negligible with respect to g as β → +∞.

Proof of item 2 of theorem 1.2. Assume 0 < 1 2 H 1 ∞ + H 0 ∞ ≤ H 1 min + H 0 ∞ . Then γ = 1 2 H 0 ∞ + H 1 ∞ .
We recall that the coincidence number κ has been defined in (1.3) and the coefficient c in (1.4). We will prove the following results:

λ β = 1 + c exp(-βγ) + o(exp(-βγ)), F 0 β (λ β ) ∼ exp(-βH 0 ∞ ) λ β -1 ∼ 1 c exp β H 1 ∞ -H 0 ∞ 2 , F 0 β (λ β ) ∼ exp(-βH 0 ∞ ) (λ β -1) 2 ∼ 1 c 2 exp(βH 1 ∞ ), F 1 β (λ β ) ∼ c exp -β H 1 ∞ -H 0 ∞ 2 , F 1 β (λ β ) ∼ exp(-βH 1 ∞ ) (λ β -1) 2 ∼ 1 c 2 exp(βH 0 ∞ ). (4.1) 
Using item 5 of corollary 3.6, we will obtain µ β [0]/µ β [1] → 1/c 2 and the convergence of the Gibbs measure as in (1.5).

Part 1. We determine an equivalent of F 0 β (λ β ). If H 0 k is constant and equal to H 0 ∞ , we are done:

F 0 β (λ β ) = exp(-βH 0 ∞ ) λ β -1 and F 0 β (λ β ) = exp(-βH 0 ∞ ) (λ β -1) 2 .
We may now assume that H 0 k is not constant. Let > 0. For β large enough, there exists a smallest positive integer N β such that

β|H 0 N β -H 0 ∞ | ≥ , and β|H 0 k -H 0 ∞ | ≤ , ∀ k ≥ N β + 1. Lemma 4.1 implies that |H 0 n -H 0 ∞ | ln(n) → 0. Since |H 0 N β -H 0 ∞ | ≥ /β
, we obtain (even in the case N β is bounded with respect to β)

lim β→+∞ 1 β ln N β = 0. (4.2) 
Hence, we may show that

N β (λ β -1) exp(-βH 0 min ) exp(-βH 0 ∞ ) and λ N β β → 1. (4.3) 
For the first estimate, by taking -1 β ln on both terms and using item 1 of proposition 3.7, one has γ + H 0 min > H 0 ∞ (according to the two cases: if

H 1 ∞ > H 0 ∞ then γ > H 0 ∞ , if H 1 ∞ = H 0
∞ then H 0 min > 0). For the above limit, note that

λ β -1 exp(-βH 1 min ) ≤ 1 F 1 β (λ β ) = F 0 β (λ β ) ≤ 1 λ β -1 , λ β ≤ 1 + exp(-βH 1 min /2), λ N β β ≤ exp N β exp(-βH 1 min /2) .
As H 1 min > 0, using (4.2) one gets N β exp(βH 1 min /2) and λ

N β β → 1.
We are now able to compute an equivalent of F 0 β (λ β ). We split the series F 0 β (λ β ) in two parts and use (4.3) to obtain, for β sufficiently large,

exp(-βH 0 ∞ -) λ N β β (λ β -1) ≤ F 0 β (λ β ) ≤ N β exp(-βH 0 min ) + exp(-βH 0 ∞ + ) λ N β β (λ β -1) , exp(-βH 0 ∞ -2 ) λ β -1 ≤ F 0 β (λ β ) ≤ exp(-βH 0 ∞ + 2 ) λ β -1
.

By taking → 0, we have just proved

F 0 β (λ β ) ∼ exp(-βH 0 ∞ ) λ β -1 . (4.4)
Part 2. We determine an equivalent of F 0 β (λ β ). We use the same definition of N β as before and prove similarly the estimates

N β (λ β -1) 1, N 2 β (λ β -1) 2 exp(-βH 0 min ) exp(-βH 0 ∞ ). (4.5)
We split the series F 0 β (λ β ) and use the computation (3.3) to obtain

(N β (λ β -1) + λ β ) exp(-βH 0 ∞ -) λ N β β (λ β -1) 2 ≤ F 0 β (λ β ) F 0 β (λ β ) ≤ N 2 β exp(-βH 0 min ) + (N β (λ β -1) + λ β ) exp(-βH 0 ∞ + ) λ N β β (λ β -1) 2 .
Using the estimates (4.5), one gets for β sufficiently large 2 .

exp(-βH 0 ∞ -2 ) (λ β -1) 2 ≤ F 0 β (λ β ) ≤ exp(-βH 0 ∞ + 2 ) (λ β -1)
Letting → 0, we have just proved

F 0 β (λ β ) ∼ exp(-βH 0 ∞ ) (λ β -1) 2 .
(4.6)

Part 3. We determine an equivalent of F 1 β (λ β ). As before we discuss two cases. If H 1 k is constant and equal to H 1 ∞ , the coincidence number (1.3) is κ = 0 and the coefficient (1.4) is c = 1. We immediately obtain

F 1 β (λ β ) = exp(-βH 1 ∞ ) λ β -1 and F 1 β (λ β ) = exp(-βH 1 ∞ ) (λ β -1) 2 .
We may assume H 1 k is not constant. For β large enough, we redefine N β as the smallest positive integer such that

β|H 1 N β -H 1 ∞ | ≥ , and β|H 1 k -H 1 ∞ | ≤ , ∀ k ≥ N β + 1.
As before

1 β ln N β 1. Recall now that H 1 min ≥ 1 2 (H 1 ∞ -H 0 ∞ ).
In the case κ > 0, H 1 min < H 1 ∞ and we introduce another exponent

H 1 * min := min H 1 k : k s.t. H 1 k + H 0 ∞ = 1 2 H 1 ∞ + H 0 ∞ > H 1 min .
In the case κ = 0, by convention, H 1 * min = H 1 min . We show the first estimate

N β (λ β -1) exp(-βH 1 * min ) exp(-βH 1 ∞ ). (4.7)
Indeed, by taking -1 β ln, it is enough to argue that γ

+ H 1 * min > H 1 ∞ . In the case κ > 0, H 1 min + H 0 ∞ = 1 2 (H 1 ∞ + H 0 ∞ ) = γ and γ + H 1 * min > γ + H 1 min = H 1 ∞ .
In the case κ = 0,

H 1 min + H 0 ∞ > 1 2 (H 1 ∞ + H 0 ∞ ) = γ and γ + H 1 * min = γ + H 1 min > H 1 ∞ .
The limit λ

N β β
→ 1 is similarly proved. We are now able to compute an equivalent of F 1 β (λ β ). We split as before the series in two parts: in the finite sum, we keep the indices corresponding to the incidences and the exponents H 1 min , the rest of the indices have an larger exponent H 1 * min (unless κ = 0 where we only use one exponent H 1 min ). For β large enough, we thus have

(e -κ) exp(-βH 1 min ) + exp(-βH 1 ∞ -) λ N β β (λ β -1) ≤ F 1 β (λ β ) F 1 β (λ β ) ≤ κ exp(-βH 1 min ) + N β exp(-βH 1 * min ) + exp(-βH 1 ∞ + ) λ N β β (λ β -1)
.

Taking into account the estimate (4.7), for β sufficiently large

κ exp(-βH 1 min ) + exp(-βH 1 ∞ ) λ β -1 e -2 ≤ F 1 β (λ β ) F 1 β (λ β ) ≤ κ exp(-βH 1 min ) + exp(-βH 1 ∞ ) λ β -1 e 2 ,
Letting → 0, we have proved (in both cases, κ > 0 or κ = 0)

F 1 β (λ β ) ∼ κ exp(-βH 1 min ) + exp(-βH 1 ∞ ) λ β -1 . (4.8)
Part 4. We show an equivalent of λ β -1. The characteristic equation (item 1 of corollary 3.5), the equivalents (4.4) and (4.8) give

(λ β -1) 2 exp(β(H 1 ∞ + H 0 ∞ )) ∼ κ (λ β -1) exp(β(H 1 ∞ + H 0 ∞ )/2) + 1.
(In the case κ > 0, we use the equality

H 1 min + H 0 ∞ = 1 2 H 1 ∞ + H 0 ∞ ).) Let X β = (λ β -1) exp(β(H 1 ∞ + H 0 ∞ )/2). Then X 2 β ∼ κX β + 1.
Necessarily X β is bounded with respect to β, nonnegative, and any accumulation point c satisfies c 2 = κc + 1. We have just proved that

λ β -1 ∼ c exp -β 1 2 (H 1 ∞ + H 0 ∞ ) . (4.9) 
Using the previous equivalents (4.4) and (4.6) as well as the characteristic equation, one obtains the equivalents of

F 0 β (λ β ), F 0 β (λ β ) and F 1 β (λ β ). For the equivalent of F 1 β (λ β ), since 2γ + H 1 min = H 1 ∞ + H 1 min + H 0 ∞ > H 1 ∞ , one first notices that N 2 β (λ β -1) 2 exp(-βH 1 min ) exp(-βH 1 ∞ ). ( 4 

.10)

The series F 1 β (λ β ) is then split in a more crude way

(N β (λ β -1) + λ β ) exp(-βH 1 ∞ -) λ N β β (λ β -1) 2 ≤ F 1 β (λ β ) F 1 β (λ β ) ≤ N 2 β exp(-βH 1 min ) + (N β (λ β -1) + λ β ) exp(-βH 1 ∞ + ) λ N β β (λ β -1) 2
, and therefore

F 1 β (λ β ) ∼ exp(-βH 1 ∞ ) (λ β -1) 2 ∼ 1 c 2 exp(βH 0 ∞ ). ( 4 

.11)

The proof of all the equivalents (4.1) is now complete.

The nonselection case

We construct an example of Lipschitz double-well type potential satisfying H 0 ∞ = H 1 ∞ = 0 that produces a nonconvergent family of Gibbs measure as the temperature goes to zero. Notice that any symmetric example, H 0 n = H 1 n , ∀ n ≥ 1, provides a family of symmetric Gibbs measures {µ β } that converges to 1 2 δ 0 ∞ + 1 2 δ 1 ∞ . We show that the subclass of double-well type potentials is rich enough to break the symmetry in an alternated way. Notice also that H is necessarily reduced in order to obtain the nonselection case.

The two fixed points 0 ∞ , 1 ∞ are connected by two heteroclinic orbits, {0 n 1 ∞ } n≥1 and {1 n 0 ∞ } n≥1 . The oscillation between the two minimizing measures δ 0 ∞ and δ 1 ∞ are obtained by choosing a symmetric potential H, where both {H 0 n } n≥1 and {H 1 n } n≥1 are nonincreasing and converge to zero. The level sets of H alternate as in figure 2 and are chosen according to the following rules that are similar to the rules in [START_REF] Van Enter | Chaotic temperature dependence at zero temperature[END_REF].

p k q k q k +1 p k +1 p k -1 q k -1 H n n ϵ k =exp (-k 2k+1 ) ϵ k +1 =exp(-(k +1) 2k+3 ) ϵ k -1 =exp(-(k -1) 2k-1 ) k even k+1 odd k-1 odd k 2k k 2k+1 (k +1) 2k+2 (k +1) 2k+3 (k -1) 2k-1 (k -1) 2k-2 β k =5 k ln (k )exp (k 2k+1 ) p k +2 ϵ k ϵ k+1 ϵ k+2 [01 n 0] [10 n 1]
Inverse of the temperature 

q k-1 < n ≤ q k . If k is even, p k = k 2k and q k = k 2k+1 . If k is odd, p k = k 2k+1 and q k = k 2k .
-Rule 1. We choose two increasing sequences {p k } k≥0 and {q k } k≥0 which alternate according to the parity of the index k:

1 ≤ p 0 < q 0 < q 1 < p 1 < p 2 < q 2 < q 3 < p 3 < . . . , p 2l < q 2l < q 2l+1 < p 2l+1 < p 2l+2 < q 2l+2 < . . .

-Rule 2. We choose a decreasing sequence { k } k≥0 of positive numbers which goes to zero. We choose H so that a level set of H corresponds to a union of cylinders [01 n 0] (respectively [10 n 1]) over n ∈ {p k-1 + 1, . . . , p k } (respectively over n ∈ {q k-1 + 1, . . . , q k }). By convention p -1 = q -1 = 0, and

H 0 n := k , ∀ p k-1 < n ≤ p k , H 1 n := k , ∀ q k-1 < n ≤ q k .
The contribution of the potential H 0 n (respectively H 1 n ) exhibits a large drop at the level p k (respectively q k ):

∀ n ≤ p k , H 0 n ≥ k , ∀ n ≥ p k + 1, H 0 n ≤ k+1 , ∀ n ≤ q k , H 1 n ≥ k , ∀ n ≥ q k + 1, H 1 n ≤ k+1 .
-Rule 3. We choose a decreasing sequence of temperatures β -1 k → 0 which forces the Gibbs measure to give larger mass to either [0] for an even index or [START_REF] Atkinson | Recurrence of co-cycles and random walks[END_REF] for an odd index. The only constraints on {p k }, {q k }, { k } and {β k } we use are:

lim k→+∞ p 2 k exp(-β k k ) = 0, lim k→+∞ q 2 k exp(-β k k ) = 0, lim k→+∞ β k k+1 = 0, lim k→+∞ q 2k p 2k = +∞, lim k→+∞ p 2k+1 q 2k+1 = +∞, k≥1 (p k -p k-1 ) exp(-k ) < +∞, k≥1
(q k -q k-1 ) exp(k ) < +∞.

The last two conditions ensure the summability of the variation.

The three previous rules enable us to say that, at the temperature β -1 k , for k even or odd, the system is mainly governed by a system having a potential H equal to zero on [00] ∪ [01 p k +1 ] ∪ [START_REF] Freire | Equilibrium states and zero temperature limit on topologically transitive countable Markov shifts[END_REF] ∪ [10 q k +1 ] (thanks to k+1 k ), and positive elsewhere.

Proof of item 3 of theorem 1.2. Let k be even. The other case is similar. To simplify the notations, we write p = p k , q = q k , and λ = λ β k . Remember the a priori estimate λ ≤ 2.

Part 1. We rewrite F 0 β (λ) as if the energy H 0 n where negligible for n > p. Then F 0 β (λ) = 1 λ p (λ -1) α 0 + λ p (λ -1)θ 0 , (

where α 0 := λ p (λ -1) Rule 3 implies α 0 → 1 and θ 0 → 0 as k → +∞. Similarly

F 1 β (λ) = 1 λ q (λ -1) α 1 + λ q (λ -1)θ 1 , (5.2) 
with α 1 := λ q (λ -1)

n≥q+1 1 λ n exp(-β k H 1 n ), and 
θ 1 := q n=1 1 λ n exp(-β k H 1 n ).
As H 1 n ≤ k+1 for n ≥ q + 1 and H 1 n ≥ k for n ≤ q, the third rule also implies α 1 → 1 and θ 1 → 0 as k → +∞. As F 0 β (λ)F 1 β (λ) = 1, we have λ p+q (λ -1) 2 = α 0 + λ p (λ -1)θ 0 α 1 + λ q (λ -1)θ 1 := δ 2 .

Part 2. We show that δ → 1 as k → +∞. Let N := p+q 2 . We first observe that, for k large enough, λ N ≥ e. If not, λ -1 ≥ δe -1 ≥ e -1 √ α 0 α 1 .

(5.3)

On the one side λ -1 → 0, on the other side α 0 α 1 → 1; we get a contradiction. We next observe that λ -1 ≥ 1 N . Indeed

λ = 1 + δ λ N , ln(λ) ≤ δ λ N , 1 ≤ N ln(λ) ≤ N δ λ N , λ N ≤ N δ, (5.4) 
and from the equation λ N (λ -1) = δ, we finally obtain λ -1 ≥ 1 N . We rewrite the two terms λ p (λ -1) and λ q (λ -1) as λ p (λ -1) = (λ N ) p/N (λ -1) = λ N (λ -1)

p/N (λ -1) 1-p/N = δ p/N (λ -1) (q-p)/(q+p) ≤ δ p/N , λ q (λ -1) = (λ N ) q/N (λ -1) = λ N (λ -1) q/N (λ -1) 1-q/N = δ q/N (λ -1) -(q-p)/(q+p) ≤ δ q/N (λ -1) -1 ≤ qδ q/N .

Therefore, we have δ 2 ≤ α 0 + δ p/N θ 0 α 1 + qδ q/N θ 1 = α 0 α 1 + α 0 θ 1 qδ q/N + α 1 θ 0 δ p/N + θ 0 θ 1 qδ 2 .

Using δ p/N ≤ 1 + δ 2 and δ q/N ≤ 1 + δ 2 , we have α 0 α 1 ≤ δ 2 ≤ α 0 α 1 + (α 0 qθ 1 + α 1 θ 0 ) 1 -(α 0 qθ 1 + α 1 θ 0 + θ 0 qθ 1 ) .

Since qθ 1 ≤ q 2 exp(-β k k ) → 0 and θ 0 → 0 as k → +∞, we obtain δ → 1. Part 3. We first prove that q(λ -1) → +∞. Since N < q, it is enough to show N (λ -1) → +∞. Indeed, for every C ≥ 1, for k sufficiently large, λ N ≥ exp(C) as in (5.3). Using the same estimates as in (5.4), we have Cλ N ≤ N δ and N (λ -1) ≥ C.

Therefore, from the estimates of part 2, we see that

λ p (λ -1) 2 p(λ -1) + λ ≤ λ p (λ -1) p ≤ δ p/N p ≤ 1 + δ 2 p → 0,
λ q (λ -1) 2 q(λ -1) + λ ≤ λ q (λ -1) q ≤ δ q/N q(λ -1) ≤ 1 + δ 2 q(λ -1) → 0. Then α0 → 1 and θ0 → 0. Similar estimates are obtained for F 1 β (λ). Part 5. We may now conclude the proof. Since λ p (λ -1)/p → 0, λ q (λ -1)/q → 0, pθ 0 → 0 and qθ 1 → 0, equations (5.1) and (5.2) imply

F 0 β (λ) ∼ 1 λ p (λ -1)
and F 1 β (λ) ∼ 1 λ q (λ -1) .

As λ p (λ -1) 2 /(p(λ -1) + λ) → 0 and λ q (λ -1) 2 /(q(λ -1) + λ) → 0, equation (5.5) and a similar expression for F 1 β (λ) provide F 0 β (λ) ∼ p(λ -1) + λ λ p (λ -1) 2 and F 1 β (λ) ∼ q(λ -1) + λ λ q (λ -1) 2 .

Item 5 of Corollary 3.6 thus gives

µ β [0] µ β [1] = F 0 β (λ) F 1 β (λ) F 1 β (λ) F 0 β (λ)
∼ q(λ -1) + λ p(λ -1) + λ ≥ min q 2p , q(λ -1) 2λ → +∞.

As a matter of fact, rule 3 asks lim l→+∞ q 2l p 2l = +∞. Hence, µ β 2l → δ 0 ∞ .

Figure 2 :

 2 Figure 2: The nonselection case for a Lipschitz example. The level sets satisfyH = k = exp(-k 2k+1 ) on [01 n 0] for every p k-1 < n ≤ p k and on [10 n 1] for every q k-1 < n ≤ q k . If k is even, p k = k 2k and q k = k 2k+1 . If k is odd, p k = k 2k+1 and q k = k 2k .

n≥p+1 1 λ 1 λ

 11 n exp(-β k H 0 n ), and θ 0 :=p n=1 n exp(-β k H 0 n ).As H 0 n ≤ k+1 for n ≥ p + 1 and H 0 n ≥ k for n ≤ p, we obtain exp(-β k k+1 ) ≤ α 0 ≤ 1, θ 0 ≤ p exp(-β k k ).

Part 4 .

 4 We decompose F 0 β (λ) as beforeF 0 β (λ) = p(λ -1) + λ λ p (λ -1) 2 α0 + λ p (λ -1) 2 p(λ -1) + λ θ0 ,(5.5)where exp(-β k k+1 ) ≤ α0 := λ p (λ -1) 2 p(λ -1) + λ n≥p+1 n λ n exp(-β k H 0 n ) exp(-β k H 0 n ) ≤ p 2 exp(-β k k ).

This representation is usually stated using the Aubry set instead of the Mather set.
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