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We consider a two-sided sequence of bounded operators in a Banach space which are not necessarily injective and satisfy two properties (SVG) and (FI). The singular value gap (SVG) property says that two successive singular values of the cocycle at some index d admit a uniform exponential gap; the fast invertibility (FI) property says that the cocycle is uniformly invertible on the fastest d-dimensional direction. We prove the existence of a uniform equivariant splitting of the Banach space into a fast space of dimension d and a slow space of codimension d. We compute an explicit constant lower bound on the angle between these two spaces using solely the constants defining the properties (SVG) and (FI). We extend the results obtained by Bochi and Gourmelon in the finite-dimensional case for bijective operators and the results obtained by Blumenthal and Morris in the infinite dimensional case for injective norm-continuous cocycles, in the direction that the operators are not required to be globally injective, that no dynamical system is involved and no compactness of the underlying system or smoothness of the cocycle is required. Moreover we give quantitative estimates of the angle between the fast and slow spaces that are new even in the case of finitedimensional bijective operators in Hilbert spaces.

Introduction

Let X be a real Banach space and pA k q kPZ be a bi-infinite sequence of bounded operators of X which are not required to be injective. The cocycle associated to pA k q kPZ is the sequence of iterated operators Apk, nq :" A k`n´1 ¨¨¨A k`1 A k , @k P Z and @n ě 0, with the convention Apk, 0q :" Id. Our main objective is to find simple conditions on the sequence pA k q kPZ which guarantee the existence of constants d ě 1, K d ě 1 and τ ą 0, and a uniform equivariant splitting X " E k ' F k of fast/slow subspaces satisfying the following condition:

• @k P Z, dimpE k q " d, pA k |E k q is injective,

• @k P Z, A k E k " E k`1 and A k F k Ă F k`1 , (the equivariance property),

• inf kPZ γpE k , F k q ą 0, (the uniform minimal gap property),

• @k P Z, @n ě 1, }Apk, nq|F k } }pApk, nq|E k q ´1} ´1 ď K d e ´nτ , (the slow/fast ratio property) where γpE k , F k q denotes the minimal gap between E k and F k (a notion of minimal angle between two complementary spaces, see definition A.19), γpE k , F k q :" inftdistpu, F k q : u P E k , }u} " 1u, and }pApk, nq|E k q ´1} ´1 and }Apk, nq|F k } denote respectively the lowest and largest expansion of the cocycle restricted to E k and F k , }Apk, nq|F k } :" supt}Apk, nqv} : v P F k , }v} " 1u, }pApk, nq|E k q ´1} ´1 :" inft}Apk, nqu} : u P E k , }u} " 1u.

(The notation }pA|Eq ´1} ´1 will be used only when dimpEq ă `8 and A : E Ñ X is injective). In order to distinguish the two equivariant subspaces in this exponential dichotomy, we will use the terminology fast space for E k and slow space for F k although both operators Apk, nq : E k Ñ E k`n and Apk, nq : F k Ñ F k`n may be expanding or contracting. The index k denotes the position of the cocycle and n represents the order of iteration. We interpret Apk, nq as an operator acting from a space above k to a space above k `n; in particular the dual operator Apk, nq ˚acts on the dual space as an operator from a space above k `n to a space above k.

Our main assumption is related to the existence of a uniform gap in the singular value decomposition at index d. The notion of singular values for an operator in a general Banach space is not well defined. We define the singular value of index d ě 1 of an operator A, to be the number

σ d pAq :" sup dimpEq"d inf uPEzt0u }Au} }u} .
Equivalent definitions σ 1 d pAq, σ 2 d pAq are given in A.29 and A.31. In the Hilbert case, all these definitions are equal. To simplify the notations, we use σ d pk, nq :" σ d pApk, nqq.

The top singular value is σ 1 pk, nq " }Apk, nq} and, in the particular case dim X " d and Apk, nq is invertible, the bottom singular value is σ d pk, nq " }Apk, nq ´1} ´1.

Main hypothesis 1.1. Let X be a real Banach space and pA k q kPZ be a sequence of bounded operators (not necessarily injective nor surjective). We assume there exist an integer d ě 1 and constants D SVG , D FI ě 1, τ, µ ą 0 such that • the sequence admits a uniform singular value gap at index d (SVG) @k P Z, @n ě 0, (We implicitly assume that σ d pk, nq ą 0 for every k P Z and n ě 0),

• the sequence is d-dimensionally fast invertible (FI) @m ě 0, inf kPZ, ně0

d ź i"1
σ i pk ´m, m `nq σ i pk ´m, mqσ i pk, nq ě D ´1 FI e ´mµ .

Property (FI) is a new property that can be used as a substitute for uniform invertibility along d-dimensional spaces. It is an asymmetric property with respect to forward and backward iterations related to the fact that the fast space (respectively the slow space) has dimension d (respectively codimension d). We will show, thanks to the super-multiplicative property of a similar quotient, that (FI) is equivalent to a seemingly weaker property with m " 1, (FI) ðñ (FI) weak e ´ν :" inf kPZ, ně0 d ź i"1 σ i pk ´1, 1 `nq σ i pk ´1, 1qσ i pk, nq ą 0.

We have chosen the other form to quantify precisely the minimal gap between the fast and slow spaces in our main theorem 1.2 in the Banach spaces case. In the Hilbert spaces case we may choose D FI " 1 and ν " µ. Property (FI) is used as a sufficient and necessary hypothesis in a bootstrap argument. Our main result actually shows that the cocycle must satisfy a stronger property (FI) strong with a uniform lower bound independent of m,

(FI) strong inf mě0 inf kPZ, ně0 d ź i"1
σ i pk ´m, m `nq σ i pk ´m, mqσ i pk, nq ą 0.

We will show (SVG) and (FI) ùñ (FI) strong .

Notice that we do not assume that the norm of the operators A k is uniformly bounded from above. Notice also that A k may not be invertible.

If the cocycle is uniformly invertible (UI) in the sense (UI) sup kPZ }A k } ď M ˚and inf kPZ }A ´1 k } ´1 ě M for some constants M ˚, M ˚ą 0, property (FI) is automatically true with D FI " 1 and µ :" d logpM ˚{M ˚q. In that case our main result implies (UI) ùñ (FI), (SVG) and (UI) ùñ (FI) strong .

The singular value gap property (SVG) admits a weaker form. This weaker form is actually equivalent to the strong one for uniformly invertible cocycles and was introduced by Bochi and Gourmelon in [START_REF] Bochi | Some characterization of domination[END_REF] for the first time, (SVG) weak @k P Z, @n ě 0, σ d`1 pk, nq σ d pk, nq ď D SVG e ´nτ .

The strong form (SVG) was introduced by Blumenthal and Morris in [START_REF] Blumenthal | Characterization of dominated splittings for operator cocycles acting on Banach spaces[END_REF] in order to extend the results of Bochi and Gourmelon to the infinite-dimensional case. They nevertheless assume the cocycle to be norm-continuous over a compact dynamical system and each operator A k to be injective. Our property (FI) is used instead of the injectiveness assumption. Moreover we do not assume that the cocycle is defined over a dynamical system, nor do we require regularity conditions as in [START_REF] Bochi | Some characterization of domination[END_REF][START_REF] Blumenthal | Characterization of dominated splittings for operator cocycles acting on Banach spaces[END_REF]. Our main objective is to obtain an effective splitting of the Banach space into a fast and a slow space, equivariant under the cocycle, for which the angle between the two spaces can be explicitly bounded from below using only the constants pD SVG , D FI , τ, µq while avoiding the use of compactness of the underlying dynamical system and regularity assumptions on the cocycle.

Our estimates depend on a constant K d which is only a function of the dimension d and the Banach space. For a Hilbert space K d " 1, for a general Banach space, K d is explicitly computed given a volume distortion ∆ d pXq (see definition A.4) which measures the distortion of the unit Banach ball to the best fitted Euclidean ball. We have that ∆ d pXq ď ? d for Banach spaces and ∆ d pXq " 1 for Hilbert spaces. We give an estimate of ∆ d pXq in proposition A.5 when X " ℓ p d is the space of dimension d equipped the p-norm. We do not intend to undertake a systematic study of ∆ d pXq. We have chosen to give a unified proof for both Banach and Hilbert spaces in such a way the constants appearing in the estimates become optimal in the Hilbert case.

Our main result is the following.

Theorem 1.2. Let X be a Banach space, d ě 1, and pA k q kPZ be a sequence of bounded operators satisfying the two assumptions (SVG) and (FI) at the index d, for some constants D SVG , D FI ě 1 and τ, µ ą 0. Then there exist a constant K d depending only on the dimension d and the Banach norm such that, 1. there exists an equivariant splitting X " E k ' F k satisfying for every k P Z,

• dimpE k q " d, A k pE k q " E k`1 , A k pF k q Ă F k`1 , • γpE k , F k q ě 1 5K d D FI " p3d `7q ´2 2K d D FI 1 ´e´τ D SVG e τ ı µpµ`4τq 2τ 2 
, 2. (FI) ô (FI) strong . More precisely for every k P Z, m, n ě 1,

d ź i"1 σ i pk ´m ´n, m `nq σ i pk ´m, mqσ i pk, nq ě 3 25K d D 3 FI " p3d `7q ´2 2K d D FI 1 ´e´τ D SVG e τ ı µpµ 2 `5µτ`8τ 2 q{2τ 3 ,

3.

The spaces E k and F k are called the fast and slow spaces respectively and satisfy: for every k P Z and n such that,

n ě ´1 `µpµ `4τq 2τ 2 ¯1 τ log ´DSVG e τ 1 ´e´τ 2p3d `7q 2 K d ¯, • }pApk, nq|E k q ´1} ´1 ě 3 5 K ´1 d γpE k , F k qσ d pk, nq, • }Apk, nq|F k } ď 3K d γpF k`n , E k`n q ´1σ d`1 pk, nq.
Using the definition of ∆d pXq in equation (A.3), and the constants C 0,d and p C 0,d in theorems A.35 and A.43, with ǫ " 0, we obtain

K d :" p C 7 0,d C 8d`5 0,d ∆2 pXq 4d ∆d pXq 8d ď p2dq 2000d 3 .
If X is a real Hilbert space then K d " 1 and D FI may be chosen equal to 1 in (FI).

Our main result extends the results of Bochi and Gourmelon [START_REF] Bochi | Some characterization of domination[END_REF] in the case X " R d in three ways: we do not assume the cocycle to be invertible, we do not introduce a dynamical system, we do not assume either C 0 regularity or compactness. The proof used in [START_REF] Bochi | Some characterization of domination[END_REF] requires all these assumptions and actually needs the ergodic Oseledets theorem for invariant probability measures. We have chosen to work in two directions: a direction which gives explicit estimates, especially for the lower bound of the angle, with respect to the initial data, and a direction which gives an unified proof for Banach and Hilbert spaces. In order not to introduce artificial constants in the Banach setting, we found it necessary to develop in appendix A a theory of volume distortion ∆d pXq which enables us to quantify on each ddimensional space the distortion of the Banach norm with respect to the best fitted Euclidean norm. The volume distortion ∆d pXq is 1 in the Hilbert case. We express all estimates in terms of a constant K d that is only a function of ∆d pXq and satisfies K d " 1 in the Hilbert case.

In item 1 we obtain an explicit lower bound of the angle between the fast and slow spaces depending only on D SVG , D FI , τ, µ and the dimension d. We have chosen to give a uniform estimate for every k P Z instead of an asymptotic estimate as k Ñ ˘8. This choice has led to additional computation.

In item 2 we prove the strong form (FI) strong . This is actually a simple consequence of lemma A.44 and the uniform bound inf kPZ γpE k , F k q ą 0. We nevertheless give a precise estimate valid for all iterates m, n and not just for m, n Ñ `8. In the Hilbert case, the estimate is simpler with K d " 1 and D FI " 1 in (FI).

In item 3 we show that the two equivariant splittings correspond indeed to the fast and slow spaces; we again made the decision to give explicit but not optimal estimates. The singular value of index d of the cocycle restricted to the fast space is comparable up to a factor given by the minimal gap γpE k , F k q to the original d-dimensional singular value. A similar result is obtained for the slow space. For large n and in the Hilbert case, the two constants 3 5 K ´1 d and 3K d may be replaced by 1.

The proof of our main result is divided into 3 parts. In section 2, we show how property (SVG) implies the existence of two fast and slow spaces that may not be complementary. This mechanism is standard since Raghunathan [START_REF] Raghunathan | A proof of Oseledec's multiplicative ergodic theorem[END_REF] in finite dimension, Ruelle [START_REF] Ruelle | Characteristic Exponents and Invariant Manifolds in Hilbert Space[END_REF] in Hilbert spaces, Blumenthal-Morris [START_REF] Blumenthal | Characterization of dominated splittings for operator cocycles acting on Banach spaces[END_REF] in Banach spaces, and González-Tokman-Quas [START_REF] González-Tokman | A concise proof of the multiplicative ergodic theorem on Banach spaces[END_REF] for a shorter proof. Our proof quantifies precisely the speed of convergence of the approximate spaces. In section 3, we show how property (FI) implies that the two fast and slow spaces give a splitting of the ambient space. This part is the heart of the proof and is new. In section 4, we show that (FI) is a necessary and sufficient condition and actually equivalent to a stronger condition (FI) strong . In appendix A, we recall basic definitions of the geometric theory of Banach spaces. We recall different notions of distance between subspaces, several notions of singular values, some facts about the projective norm on the exterior product. The main purpose of this appendix is to recall without proofs the standard approximate singular value decomposition theorem A.35.

Construction of the fast and slow spaces

The proof of our main result is based on a version of the singular value decomposition (SVD) theorem for a single bounded operator in the Banach setting. The (SVD) theorem is well known for compact operators in a Hilbert space (see [START_REF] Pietsch | Eigenvalues and s-numbers[END_REF]). We did not find a version of the (SVD) theorem adapted to our needs in the literature. Appendix A fills in this missing piece. The main interest of Appendix A is theorem A.35 which shows the existence of approximate singular spaces at every index d. The singular spaces may not be exact because of the non compactness of the operators and are thus non canonical. They depend for instance on an arbitrarily small constant ǫ ą 0 coming from the fact that, in the case of infinite Banach or Hilbert spaces, the norm of an operator may not be attained by a vector of the unit sphere. Notice that we shall not use the (FI) condition in this section.

The following theorem is a special version of theorem A.35 applied to each operator Apk, nq " A k`n´1 ¨¨¨A k`1 A k . We fix ǫ ą 0 and the index d ě 1. We show there exist a pair of complementary spaces X " Upk, nq ' Vpk, nq of the source space and a pair of complementary spaces X " Ũpk `n, nq ' Ṽpk `n, nq of the target space that are related by Apk, nq and Apk, nq ˚. We replace the usual notion of orthogonality by a weaker notion using C-Auerbach families (see definition A.12 for more details). We show that the two splittings are C ǫ,d -orthogonal in the sense of the following definition. Definition 2.1. Let X be a Banach space, d ě 1, C ě 1.

• We say that a family of vectors pu 1 , . . . ,

u d q is C-Auerbach if @ j " 1, . . . , d, C ´1 ď distpu j , spanpu i : i jqq ď }u j } ď C.
• We say a splitting X " U ' V with dimpUq " d is C-orthogonal if there exist a C-Auerbach basis pe 1 , . . . , e d q spanning U and a C-Auerbach basis pφ 1 , . . . , φ d q spanning V K in the dual space X ˚which are dual to each other, that is xφ i |e j y " δ i, j , @i, j " 1, . . . , d.

If V Ă X is a subspace of X, the annihilator of U is the subspace in the dual space, U K :" tφ P X ˚: xφ|uy " 0, @u P Uu. If H Ă X ˚, the pre-annihilator of H is the subspace in X, H :" tv P X : xη|vy " 0, @η P Hu. Theorem 2.2 (Approximate singular value decomposition). Let X be a Banach space, d ě 1, ǫ ą 0, and pA k q kPZ be a sequence of bounded operators. Then there exists a constant K d ě 1 depending only on the Banach norm and d, such that for every k P Z, n ě 1, and C ǫ,d :" p1 `ǫqK d , 1. there exist two C ǫ,d -orthogonal splittings:

• X " Upk, nq ' Vpk, nq, X " Ũpk, nq ' Ṽpk, nq, • dimpUpk, nqq " dimp Ũpk, nqq " d,
• Apk, nqUpk, nq " Ũpk `n, nq, Apk, nqVpk, nq Ă Ṽpk `n, nq,

• Apk, nq ˚Ũpk `n, nq K Ă Upk, nq K , Apk, nq ˚Ṽpk `n, nq K " Vpk, nq K , 2. the singular values of Apk, nq and Apk, nq ˚restricted to this splitting are comparable to those of Apk, nq on X: for every 1 ď i ď d, • xφ i pk, nq|e j pk, nqy " δ i, j , x φpk, nq|ẽ j pk, nqy " δ i, j ,

• σ i pk, nq ě σ i pApk, nq|Upk, nqq ě σ i pk, nq{C ǫ,d , • σ i pk, nq ě σ i pApk, nq ˚| Ṽpk `n, nq K q ě σ i pk, nq{C ǫ,d , • σ d`1 pk, nq ď }Apk, nq|Vpk, nq} ď σ d`1 pk, nqC ǫ,d , • σ d`1 pk, nq ď }Apk, nq ˚| Ũpk `n, nq K } ď σ d`1 pk, nqC ǫ,
• Apk, nqe i pk, nq " σ i pk, nqẽ i pk `n, nq,

• Apk, nq ˚φ i pk `n, nq " σ i pk, nqφ i pk, nq,

• Upk, nq " spanpe 1 pk, nq, . . . , e d pk, nqq,

• Vpk, nq " spanpφ 1 pk, nq, . . . , φ d pk, nqq ,

• Ũpk `n, nq " spanpẽ 1 pk `n, nq, . . . , ẽd pk `n, nqq,

• Ṽpk `n, nq " spanp φ1 pk `n, nq, . . . , φd pk `n, nqq .

5. Moreover K d " 1 if X is a Hilbert space and ǫ may be chosen to be zero if X is finite-dimensional.

We call Upk, nq and Vpk, nq, the approximate fast and slow forward spaces above k. Similarly we will call Ũpk, nq and Ṽpk, nq, defined using Apk ´n, nq, the approximate fast and slow backward spaces above k. Since the approximate forward spaces are built using the sequence of operators pA k , A k`1 , . . . , A k`n´1 q and the approximate backward spaces are built using pA k´n , A k´n`1 , . . . , A k´1 q, the two splittings above k, X " Upk, nq ' Vpk, nq and X " Ũpk, nq ' Ṽpk, nq, need not be closely related.

We first consider the construction of the slow spaces pF k q kPZ using the forward cocycle pA n q `8 n"k and their approximate slow forward spaces Vpk, nq.

The following lemma shows an exponential contraction between the two approximate slow forward spaces. The maximal gap δpV, Wq between V and W is a standard notion of distance between two subspaces (see definition A.17 and equivalent formulations -note the asymmetry in the definition).

δpV, Wq " suptdistpv, Wq : v P V, }v} " 1u. (1)

Proof. Let v P Vpk, nq and φ P Vpk, n `1q K be of norm .

The previous lemma shows that the gap between two successive Vpk, nq is exponentially small. This implies in particular that pVpk, nqq ně1 is a Cauchy sequence and that Vpk, nq Ñ F k uniformly in k to a subspace F k of codimension d that we will call the slow space. We will need a more precise statement where F k is understood as a graph over a fixed splitting uniformly in k (see definition A.22). The reference splitting will be given by X " Upk, N ˚q ' Vpk, N ˚q for some N ˚chosen sufficiently large. An initial choice of N ˚is made in the following lemma and will be subsequently tightened in lemma 3.3, 3.8, and finally in Assumption 3.11. It will be convenient to choose at each step of the proof N ˚depending on a parameter θ ˚P p0, 1q as in (2), ( 5) and [START_REF] Gohberg | Introduction to the Theory of Linear Nonselfadjoint Operators[END_REF]. 

Then for every k P Z, for every n ě N ˚, the following 5 items are satisfied. 

F k q ď }Θ k pN ˚q} ď θ ˚, δpF k , Vpk, N ˚qq ď θ ˚.
F k is called the slow space of index d; F k is independent of the choice of N ˚.

4. Vpk, nq K " GraphpΘ K pk, nqq for the bounded operator

Θ K pk, nq " ´πpk, N ˚q˚Θ pk, nq ˚ρpk, N ˚q˚P BpVpk, N ˚qK , Upk, N ˚qK q,
where πpk, nq is the projection onto Vpk, nq parallel to Upk, nq and ρpk, nq is the inclusion operator Upk, nq ãÑ X. Moreover

Θ K k pN ˚q :" lim nÑ`8 Θ K pk, nq exists, F K k " GraphpΘ K k pN ˚qq, }Θ K pk, nq} ď θ ˚, }Θ K k pN ˚q} ď θ ˚.
5. }pApk, nq|Upk, N ˚q´1 } ´1{σ d pk, nq is uniformly bounded from below,

• X " Upk, N ˚q ' F k ,

• @u P Upk, N ˚q, }Apk, nqu} ě C ´2 ǫ,d p1 ´θ˚q 2 σ d pk, nq}u},

• γpUpk, N ˚q, F k q ě C ´1 ǫ,d p1 ´θ˚q 2 .
Proof. In order to simplify the notations, fix k and denote

V n :" Vpk, nq, V ˚:" Vpk, N ˚q, U ˚:" Upk, N ˚q.

We want to apply lemma A.25 for the initial splitting X " U ˚' V ˚where V ˚plays the role of U 0 . An additional complication comes from the fact that the minimal angle is not symmetric. We shall show by induction for every n ě N • }Θ n ´Θn´1 } ď θ n´1 p1 ´θ˚q , (Θ N ˚´1 " 0 by convention),

• V n " GraphpΘ n q for some Θ n P BpV ˚, U ˚q with }Θ n } ď θ ˚p1´θ ˚qγpU ˚, V ˚q,

• δpV n , V ˚q ď θ ˚γpU ˚, V ˚q,
where θ n :" θ ˚e´pn´N ˚qτ p1 ´e´τ qγpU ˚, V ˚q ď θ ˚. Suppose that the above conditions are satisfied for the index n. We first claim that the choice of N ˚implies δpV n`1 , V n q ď θ n p1 ´θn qp1 ´θ˚q 2 γpU ˚, V n q ď θ n .

To see this, on the one hand, from equation (A.16), we have

γpU ˚, V n q ě γpU ˚, V ˚q ´δpV n , V ˚q 1 `δpV n , V ˚q ě p1 ´θ˚q γpU ˚, V ˚q 1 `θ˚γ pU ˚V˚q ě p1 ´θ˚q 2 γpU ˚, V ˚q.
On the other hand, from the definition of N ˚we have

C 2 ǫ,d D SVG e ´nτ ď θ ˚p1 ´θ˚q 6 e ´pn´N ˚qτ p1 ´e´τ qγpU ˚, V ˚q2 , ď θ n p1 ´θ˚q 6 γpU ˚, V ˚q.
Combining both estimates, lemma 2.3 and equation (A.11), one obtains

δpV n , V n`1 q ď C 2 ǫ,d D SVG e ´nτ ď θ n p1 ´θ˚q 4 γpU ˚, V n q ď θ n ď θ ˚, δpV n`1 , V n q ď θ n p1 ´θ˚q 4 γpU ˚, V n q 1 ´θ˚ď θ n p1 ´θn qp1 ´θ˚q 2 γpU ˚, V n q.
The claim is proved. We now show the three conditions for the index n `1. From item 2 of lemma A.25, V n`1 " GraphpΘ n`1 q for some Θ n`1 P BpV ˚, U ˚q and

}Θ n`1 ´Θn } ď δpV n`1 , V n q γpU ˚, V n q ´δpV n`1 , V n q γpU ˚, V ˚q γpU ˚, V ˚q ´δpV n , V ˚q ď θ n p1 ´θ˚q , δpV ˚, V n`1 q ď }Θ n`1 } ď n ÿ k"N ˚θk p1 ´θ˚q ď θ ˚p1 ´θ˚q γpU ˚, V ˚q, δpV n`1 , V ˚q ď δpV ˚, V n`1 q 1 ´δpV ˚, V n`1 q ď θ ˚γpU ˚, V ˚q.
The induction is complete and the three first items are proved. The fact that F k is independent of the initial choice N ˚is proved in the following way. Let w P F k , w " v `Θk pN ˚qv for some v P Vpk, N ˚q. Then

w ´rv `Θpk, nqvs " rΘ k pN ˚qv ´Θpk, nqvs, distpw, Vpk, nqq ď }Θ k pN ˚q ´Θpk, nq} }v} ď }Θ k pN ˚q ´Θpk, nq} γpV ˚, U ˚q }w}, δpF k , Vpk, nqq ď }Θ k pN ˚q ´Θpk, nq} γpV ˚, U ˚q ď θ ˚e´pn´N ˚qτ γpU ˚, V ˚q γpV ˚, U ˚q .
Let F 1 k as in item 3 with another choice of θ 1 ˚and N 1 ˚. Using the weak triangle inequality δpF k , F 1 k q ď 2δpF k , Vpk, nqq `2δpVpk, nq, F 1 k q and letting n Ñ `8, one obtains δpF k , F 1 k q " 0 and F k " F 1 k . Item 4 is a consequence of lemma A.23. Item 5 is a consequence of item 2 of theorem 2.2 and equation (A.16),

γpU ˚, V n q ě γpU ˚, V ˚q ´δpV n , V ˚q 1 `δpV n , V ˚q ě γpU ˚, V ˚q 1 ´θ1 `θ˚ě γpU ˚, V ˚qp1 ´θ˚q 2 ,
γpU ˚, F k q ě γpU ˚, V ˚qp1 ´θ˚q 2 , (by taking the limit n Ñ `8).

Moreover for every u P U ˚such that }u} " 1, }Apk, nqu} ě suptx φ|Apk, nquy : φ P Ṽpk `n, nq K , } φ} " 1u

ě suptxφ|uy : φ P V K n , }φ} " 1u inf ! }Apk, nq ˚φ} } φ} : φ P Vpk `n, nq K ) ě distpu, V n q σ d pk, nq C ǫ,d ě γpU ˚, V n q σ d pk, nq C ǫ,d ě γpU ˚, V ˚qp1 ´θ˚q 2 σ d pk, nq C ǫ,d .
Lemma 2.5 (Equivariance of the slow space). For every k P Z,

A k F k Ă F k`1 .
Proof. Let v P Vpk, n `1q, and φ P Vpk `1, nq K . Then there exists φ P Ṽpk `n 1, nq K such that φ " Apk `1, nq ˚φ. On the one hand, item 2 of theorem 2.2 implies

}φ} ě σ d pApk `1, nq ˚| Ṽpk `n `1, nq K q} φ} ě σ d pk `1, nq C ǫ,d } φ}.
On the other hand, item 2 also shows

xφ|A k vy " x φ|Apk, n `1qvy ď } φ}}Apk, n `1q|Vpk, n `1q} }v}, ď C 2 ǫ,d σ d`1 pk, n `1q σ d pk `1, nq }φ} }v} ď C 2 ǫ,d }A k } }A k`1 }σ d`1 pk `2, n ´1q σ d pk `1, nq }φ} }v} ď C 2 ǫ,d }A k }D SVG e ´pn´1qτ }φ} }v}.
We have thus obtained for every v P Vpk, n `1q,

distpA k v, Vpk `1, nqq " suptxφ|A k vy : φ P Vpk `1, nq K , }φ} " 1u, ď C 2 ǫ,d }A k }D SVG e ´pn´1qτ }v}.
Let θ ˚and N ˚satisfy equation (2). Assume n ě N ˚. Let v ˚P Vpk, N ˚q and w n :" Θpk, n `1qv ˚`v ˚. Then there exists v 1 n P Vpk `1, N ˚q such that

w 1 n :" Θpk `1, nqv 1 n `v1 n satisfies }A k w n ´w1 n } Ñ 0.
Since w n Ñ w :" Θ k pN ˚qv ˚`v ˚, the sequences pA k w n q n , pw 1 n q n and pv 1 n q n are Cauchy sequences. We obtain therefore the convergence of

v 1 n Ñ v 1 P Vpk `1, N ˚q and A k pΘ k pN ˚qv ˚`v ˚q " Θ k`1 pN ˚qv 1 `v1 .
We now consider the construction of the fast spaces pE k q kPZ using the backward cocycle pA n q n"k´1 ´8 and their approximate fast backward spaces Ũpk, nq. The following lemma is analogous to lemma 2.3.

Lemma 2.6 (Raghunathan estimate II). For every n

ě 1, k P Z, δp Ũpk, n `1q, Ũpk, nqq ď C 2 ǫ,d D SVG e ´nτ , δp Ũpk, nq, Ũpk, n `1qq ď C 2 ǫ,d D SVG e ´nτ {p1 ´C2 ǫ,d D SVG e ´nτ q.
(3)

Proof. Let ũ P Ũpk, n `1q and φ P Ũpk, nq K of norm 1. On the one hand ũ " Apk ´n ´1, n `1qu for some u P Upk ´n ´1, n `1q and item 2 of theorem 2.2 implies }ũ} ě σ d pk ´n ´1, n `1q}u}{C ǫ,d .

On the other hand, item 2 also implies

x φ|ũy " x φ|Apk ´n ´1, n `1quy " xApk ´n ´1, n `1q ˚φ|uy ď }A k´n´1 }}Apk ´n, nq ˚φ}}u} ď }A k´n´1 }σ d`1 pk ´n, nqC ǫ,d } φ}}u} ď C 2 ǫ,d }A k´n´1 }σ d`1 pk ´n, nq σ d pk ´n ´1, n `1q } φ}}ũ}.
The second inequality is a consequence of equation (A.11).

The following lemma is analogous to lemma 2.4. We show that the sequence of subspaces p Ũpk, nqq ně1 is a Cauchy sequence converging uniformly in k to a subspace E k of dimension d. We see E k as a graph over Ũpk, N ˚q in the splitting X " Ũpk, N ˚q ' Ṽpk, N ˚q for some large N ˚defined in (2). Lemma 2.7 (Existence of the fast space). Let θ ˚P p0, 1q and N ˚satisfy equation [START_REF] Blumenthal | Characterization of dominated splittings for operator cocycles acting on Banach spaces[END_REF]. Then for every k P Z, for every n ě N ˚, the following 4 items are satisfied. 1. Ũpk, nq " Graphp Θpk, nqq for some Θpk, nq P Bp Ũpk, N ˚q, Ṽpk, N ˚qq, δp Ũpk, N ˚q, Ũpk, nqq ď } Θpk, nq} ď θ ˚, δp Ũpk, nq, Ũpk, N ˚qq ď θ ˚.

p Θpk, nqq něN ˚is a Cauchy sequence, for every n ě 1

} Θpk, n `1q ´Θpk, nq} ď θ ˚e´pn´N ˚qτ p1 ´e´τ q, 3. Let Θk pN ˚q :" lim nÑ`8 Θpk, nq and E k :" Graphp Θk pN ˚qq. Then

δp Ũpk, N ˚q, E k q ď } Θk pN ˚q} ď θ ˚, δpE k , Ũpk, N ˚qq ď θ ˚. E k is called the fast space of index d; E k is independent of the choice of N ˚. 4. }pApk ´n, nq ˚| Ṽpk, N ˚qK q ´1} ´1{σ d pk ´n, nq is bounded from below, • X " E k ' Ṽpk, N ˚q, • @ φ P Ṽpk, N ˚qK , }Apk ´n, nq ˚φ} ě C ´2 ǫ,d p1 ´θ˚q 2 σ d pk ´n, nq} φ}, • γp Ũpk, nq, Ṽpk, N ˚qq ě p1 ´θ˚q 2 C ´1 ǫ,d .
Proof. The proof of items 1 -3 is similar to the one in lemma 2.4 by permuting the role of U and V. For instance we also obtain by induction δp Ũpk, N ˚q, Ũpk, nqq ď θ ˚γp Ũpk, N ˚q, Ṽpk, N ˚qq.

For the last item, we choose φ P Ṽpk, N ˚qK , } φ} " 1, then using (A. 

) ě distp φ, Ũpk, nq K q σ d pk ´n, nq C ǫ,d ě γp Ṽpk, N ˚qK , Ũpk, nq K q σ d pk ´n, nq C ǫ,d ,
and by using equations (A.16) and (A.17) one concludes

γp Ṽpk, N ˚qK , Ũpk, nq K q " γp Ũpk, nq, Ṽpk, N ˚qq ě γp Ũpk, N ˚q, Ṽpk, N ˚qq ´δp Ũpk, N ˚q, Ũpk, nqq 1 `δp Ũpk, N ˚q, Ũpk, nqq ě 1 ´θ1 `θ˚γ p Ũpk, N ˚q, Ṽpk, N ˚qq ě p1 ´θ˚q 2 C ´1 ǫ,d .
Lemma 2.8 (Equivariance of the fast space). For every k P Z,

A k E k " E k`1 .
Proof. Let ũ P Ũpk, nq and φ P Ũpk `1, n `1q K . Then there exists u P Upk ´n, nq such that ũ " Apk ´n, nqu. On the one hand }ũ} ě σ d pk ´n, nq}u}{C ǫ,d .

On the other hand

x φ|A k ũy " xApk ´n, n `1q ˚φ|uy ď }Apk ´n, n `1q ˚φ}}u} ď C ǫ,d σ d`1 pk ´n, n `1q} φ}}u} ď C 2 ǫ,d σ d`1 pk ´n, n `1q σ d pk ´n, nq } φ} }ũ} ď C 2 ǫ,d }A k } σ d`1 pk ´n, n ´1q}A k´1 } σ d pk ´n, nq } φ} }ũ} ď C 2 ǫ,d }A k }D SVG e ´pn´1qτ } φ} }ũ}.
We just have proved for every ũ P Ũpk, nq,

distpA k ũ, Ũpk `1, n `1q ď C 2 ǫ,d }A k }D SVG e ´pn´1qτ }ũ}.
Let θ ˚, N ˚as in equation ( 2). Let ũ˚P Ũpk, N ˚q and w n :" ũ˚`Θ pk, nqũ ˚. Then there exists ũ1 n P Ũpk `1, N ˚q such that

w 1 n :" ũ1 n `Θpk `1, n `1qũ 1 n satisfies }A k w n ´w1 n } Ñ 0. Since w n Ñ ũ˚`Θk pN ˚q ũ˚, ũ1 n Ñ ũ1 , w 1 n Ñ w 1 " ũ1 `Θ k`1 pN ˚q ũ1 .
We have proved A k pũ ˚`Θ k pN ˚q ũ˚q " ũ1 `Θ k`1 pN ˚q ũ1 and the equivariance of the fast space.

3 Proof of item 1 of theorem 1.2

We present the proof of the bound from below (item 1 of theorem 1.2) of the angle between E k and F k uniformly in k P Z. We use for the first time the property (FI). Although there should exist a direct proof for any dimension d, we reduce our analysis to the case d " 1 by introducing the exterior product Ź d X. The cocycle Apk, nq admits a canonical extension to the exterior product that we denote p Apk, nq :"

Ź d Apk, nq.
The approximate singular value decomposition obtained in theorem 2.2 for the cocycle Apk, nq can be extended to the cocycle p Apx, nq by applying theorem A.43 to each Apk, nq. We use definition A.39 for the notation p U and q V, for every subspace U of dimension d and V of codimension d, respectively. We obtain the following theorem.

Theorem 3.1. Let X be a Banach space, d ě 1, ǫ ą 0, and pA k q kPZ be a sequence of bounded operators. Let X " Upk, nq ' Vpk, nq " Ũpk, nq ' Ṽpk, nq be the approximate singular value decomposition given in theorem 2.2 spanned respectively by the bases pe 1 , . . . , e d q, pφ 1 , . . . , φ d q, pẽ 1 , . . . , ẽd q, p φ1 , . . . , φd q. Then there exists a constant p K d depending only on the Banach norm and d, such that, for every 

k P Z, n ě 1, p C ǫ,d :" p1 `ǫq p K d , 1. Ź d X " p Upk, nq ' q Vpk, nq, Ź d X " p Ũpk, nq ' q Ṽpk, nq, 2. p Upk, nq " spanp Ź d i"1 e i pk, nqq, q Vpk, nq " spanp Ź d i"1 φ i pk, nqq , 3. p Ũpk, nq " spanp Ź d i"1 ẽi pk, nqq, q Ṽpk, nq " spanp Ź d i"1 φi pk,
• F k " GraphpΘ K k pN ˚qq for some Θ K k pN ˚q : Vpk, N ˚qK Ñ Upk, N ˚qK , • p E k " span `Źd i"1 pId ' Θk pN ˚qqẽ i pk, N ˚q˘, • q F k :" span `Źd i"1 pId ' Θ K k pN ˚qφ i pk, N ˚q˘ , • q F k " Graphp p Θ k pN ˚qq for some p Θ k pN ˚q : q Vpk, N ˚q Ñ p Upk, N ˚q, • } Θk pN ˚q} ď θ ˚, }Θ K k pN ˚q} ď θ ˚, } p Θ k pN ˚q} ď C 2d ǫ,d K d θ ˚p1 `θ˚q d´1 ,
(using lemma A.42 for some constant K d " ∆d pXq d given by (A.3)).

The strategy of the proof is based on two steps. In the first step we show that, for some N ˚large enough,

@k P Z, γp p Apk ´N˚, N ˚q p Upk ´N˚, N ˚q, q F k q ě cpN ˚q,
with a constant that depends on N ˚(and goes to zero as N ˚Ñ `8). This estimate may be considered as a bootstrap argument; this is the only place where property (FI) is used.

In the second part, we analyze the special backward cocycle associated to the sequence of operators p p Apk ´nN ˚, N ˚qq `8 n"1 . We improve the previous estimate and show that actually

@n ě 1, @k P Z, γp p Apk ´nN ˚, nN ˚q p Upk ´nN ˚, nN ˚q, q F k q ě constant.
The proof is complicated by the fact that we are in a Banach space and look for an explicit lower bound. The proof is also new in the finite dimensional setting. We conclude the proof by observing

p Apk ´nN ˚, nN ˚q p Upk ´nN ˚, nN ˚q " p Ũpk, nN ˚q Ñ p E k .
We obtain a uniform bound from below of γp p E k , p F k q and therefore a uniform bound from below of γpE k , F k q by using lemma A.40.

We show in the following lemma that the smallest expansion of p Apk, nq on p Upk, mq is bounded from below by ś d i"1 σ i pk, nq uniformly in m, n large enough,

@k P Z, @m, n ě N ˚, } p Apk, nq| p Upk, mq} ě constant " d ź i"1 σ i pk, nq ‰ . (4) 
We now choose N ˚satisfying a more restrictive condition than the one in (2). 

Then for every n, m ě N ˚and k P Z,

@u P Ûpk, mq, } Âpk, nqu} ě C ´4d ǫ,d K ´1 d p1 ´θ˚q d ´d ź i"1 σ i pk, nq ¯}u},
where K d :" ∆d pXq 3d .

Proof. Part 1. We prove in both cases, n ě m and m ě n, that there exists an operator Θ K : Vpk, mq K Ñ Upk, mq K such that Vpk, nq K " GraphpΘ K q and }Θ K } ď θ ˚.

For n ě m the existence of Θ K is a consequence of item 4 of lemma 2.4 taking N ˚" m.

For m ě n, let θ 1 :" θ ˚p1 ´θ˚q {C ǫ,d , then

D SVG e ´nτ ď D SVG e ´N˚τ ď θ 1 p1 ´θ1 q 6 1 ´e´τ C 4 ǫ,d
, δpVpk, mq, Vpk, nqq ď θ 1 ď θ ˚p1 ´θ˚q γpVpk, mq, Upk, mqq.

In particular, from item 1 of lemma A.25, δpVpk, mq, Vpk, nqq ă γpVpk, mq, Upk, mqq, δpVpk, nq K , Vpk, mq K q ă γpUpk, mq K , Vpk, mq K q, Vpk, nq K " GraphpΘ K q, for some

Θ K : Vpk, mq K Ñ Upk, mq K , }Θ K } ď δpVpk, nq K , Vpk, mq K q γpUpk, mq K , Vpk, mq K q ´δpVpk, nq K , Vpk, mq K q ď θ ˚.
Part 2. We now prove the relative rate of expansion of p Apk, nq. From lemma A.26, one obtains with K 1 d " ∆d pXq 2d , det `"xφ i pk, nq|e j pk, mqy

‰ i j ˘ě pK 1 d q ´1C ´2d ǫ,d p1 ´θ˚q d .
As A ˚pk, nq φi pk `n, nq " σ i pk, nqφ i pk, nq, using equations (A.21) and (A.22), one obtains det `"xφ i pk, nq|e j pk, mqy ‰ i j

˘" det `"x φi pk `n, nq|Apk, nqe j pk, mqy

‰ i j śd i"1 σ i pk, nq , ď Σ d pXq } Ź d i"1 φi pk `n, nq} } Âpk, nq Ź d i"1 e i pk, mq} ś d i"1 σ i pk, nq .
From proposition A.34, we have Σ d pXq ď ∆d pXq d . From the definition of the projective norm (A.20), we have

} Ź d i"1 φpk `n, nq} ď C d ǫ,d and } Ź d i"1 e j pk, mq} ď C d ǫ,d .
The next lemma gives a lower bound of the angle between the approximate fast space p W k :" p Apk ´N˚, N ˚q p Upk ´N˚, mq and the slow space q F k for m ě N ˚. This estimate is non trivial as p W k is defined using the operators pA k´n q ně1 and q F k is defined using the operators pA k`n q ně0 . Property (FI) forces the two spaces to be complementary. It is the only place where (FI) is used. 

γp p W k , q F k q ě p C ´3 ǫ,d C ´4d ǫ,d K ´1 d p1 ´θ˚q d D ´1 FI e ´N˚µ ,
where K d :" ∆d pXq 3d .

Proof. As q Vpk, nq Ñ q F k in the co-Grassmannian topology, it is enough to bound from below γp p W k , q Vpk, nqq for large n ě m. We first show that p W k is the graph of some operator p Γpk, nq : p Upk, nq Ñ q Vpk, nq. We then give an upper bound for }Id ' p Γpk, nq}; or equivalently a lower bound for the angle γp p W k , q Vpk, nqq. Let w P p W k , w " w 1 `w2 , w 1 P p Upk, nq and w 2 P q Vpk, nq.

On the one hand w " p Apk ´N˚, N ˚qu for some u P p Upk ´N˚, mq. Then using lemma 3.3 with K d " ∆d pXq 3d and item 6 of theorem 3.1, one gets

} p Apk, nqw} " } p Apk ´N˚, N ˚`nqu} ě C ´4d ǫ,d K ´1 d p1 ´θ˚q d ś d i"1 σ i pk ´N˚, N ˚`nq }u}, }w} ď p C ǫ,d ś d i"1 σ i pk ´N˚, N ˚q}u}. Thus } p Apk, nqw} ě p C ´1 ǫ,d C ´4d ǫ,d K ´1 d p1 ´θ˚q d ś d i"1 σ i pk ´N˚, N ˚`nq ś d i"1 σ i pk ´N˚, N ˚q }w}.
On the other hand using items 6 and 8 of theorem 3.1,

} p Apk, nqw 1 } ď p C ǫ,d "ś d i"1 σ i pk, nq ‰ }w 1 }, } p Apk, nqw 2 } ď p C ǫ,d "ś d´1 i"1 σ i pk, nq ‰ σ d`1 pk, nq}w 2 }, } p Apk, nqw} ď p C ǫ,d "ś d i"1 σ i pk, nq ‰ " }w 1 } `σd`1 pk,nq σ d pk,nq }w 2 } ı .
Property (FI) implies

ś d i"1 σ i pk ´N˚, N ˚`nq ś d i"1 σ i pk ´N˚, N ˚qś d i"1 σ i pk, nq ě D ´1 FI e ´N˚µ .
Combining the two estimates of } p Apk, nqw} and using property (SVG), one obtains,

}pId ' p Γpk, nqqw 1 } " }w} ď p C 2 ǫ,d C 4d ǫ,d K d p1 ´θ˚q ´d D FI e N ˚µ" 1 `DSVG e ´nτ } p Γpk, nq} ‰ }w 1 }.
In particular } p Γpk, nq} is uniformly bounded from above. Using lemma A.24 and item 9 of theorem 3.1

γp p W, q Vpk, nqq ě γp p Upk, nq, q Vpk, nqq }Id ' p Γpk, nq} ě p C ´1 ǫ,d }Id ' p Γpk, nq} ě p C ´3 ǫ,d C ´4d ǫ,d K ´1 d p1 ´θ˚q d D ´1 FI e ´N˚µ " 1 `DSVG e ´nτ } p Γpk, nq} ‰ ´1.
We conclude by letting n Ñ `8.

Similarly to lemma 3.3, we show that the largest expansion of p Apk, nq restricted to q F k is bounded from above by r ś d i"1 σ i pk, nqse ´nτ uniformly for n large enough,

@k P Z, @n ě N ˚, } p Apk, nq| q F k } ď constant ´d ź i"1 σ i pk, nq ¯e´nτ . (6) 
Equation ( 6) together with equation (4) show that the cocycle p Apk, nq satisfies property (SVG) at index 1. Estimate [START_REF] Gohberg | Two theorems on the opening of subspaces of Banach space[END_REF] is the main reason to introduce the exterior product. The simplest proof based on the original cocycle seems to require a comparison between the two ratios σ d pk, nq{σ 1 pk, nq and σ d`1 pk, nq{σ d pk, nq. Lemma 3.5. Let θ ˚P p0, 1q and N ˚satisfy equation [START_REF] Gohberg | The basic propositions on defect numbers, root numbers and indices of linear operator[END_REF]. Then for every n ě N ånd k P Z,

} p Apk, nq| q F k } ď 2 p C 2 ǫ,d C 2d ǫ,d K d θ ˚p1 `θ˚q d´1 ´d ź i"1 σ i pk, nq ¯e´pn´N ˚qτ ,
where K d " ∆d pXq d .

Proof. Let F k " GraphpΘ K k pnqq and q F k " Graphp p Θ k pnqq as in notations 3.2. We first notice D SVG e ´nτ ď e ´pn´N ˚qτ D SVG e ´N˚τ ď θ 1 p1 ´θ1 q 6 1 ´e´τ

C 4 ǫ,d
with θ 1 :" θ ˚e´pn´N ˚qτ . Substituting θ 1 for θ ˚and n for N ˚in item 4 of lemma 2.4, one obtains }Θ K k pnq} ď θ 1 . Then lemma A.42 and proposition A.34 imply

} p Θ k pnq} ď C 2d ǫ,d K d θ 1 p1 `θ˚q d´1 .
Let w P q F k , w " w 1 `w2 , w 2 P q Vpk, nq and w 1 " p Θ k pnqw 2 P p Upk, nq. Then

}w 2 } ď }π q Vpk,nq| p Upk,nq }}w} ď p C ǫ,d }w}, } p Apk, nqw 1 } ď p C ǫ,d "ś d i"1 σ i pk, nq ‰ } p Θ k pnq}}w 2 }, } p Apk, nqw 2 } ď p C ǫ,d σ 1 pk, nq ¨¨¨σ d´1 pk, nqσ d`1 pk, nq}w 2 }, } p Apk, nqw} ď p C 2 ǫ,d "ś d i"1 σ i pk, nq ‰ " } p Θ k pnq} `σd`1 pk,nq σ d pk,nq ı }w}.
We conclude using property (SVG),

σ d`1 pk, nq σ d pk, nq ď D SVG e ´nτ ď θ 1 ď C 2d ǫ,d K d θ 1 p1 `θ˚q d´1 .
We now change notation and rewrite the cocycle p p Apk ´nN ˚, N ˚qq `8 n"1 as block matrices along the following splitting. Notice the small circumflex for the new notation. Define

• ´n :" p Apk ´nN ˚, N ˚q, @n ě 1,
• Û´n :" p Upk ´nN ˚, nN ˚q, V´n :" q Vpk ´nN ˚, nN ˚q, @n ě 1,

• Û0 :" p Ũpk, N ˚q, V0 :" q Ṽpk, N ˚q,

• Ê´n :" p E k´nN ˚, F´n :" p F k´nN ˚, @n ě 0,

• Ź d X " Û´n ' F´n , @n ě 0.

Notice that the first crucial step, lemma 3.4, implies that Û0 " ´1 Û´1 and F0 are indeed two complementary spaces. We consider the following block splitting

• p´n the projector onto Û´n parallel to F´n , @n ě 0,

• q´n the projector onto F´n parallel to Û´n , @n ě 0,

• ´n :" " â´n 0 ĉ´n d´n  , @n ě 1

• â´n " p ´pn´1q ˝p ´n | Û´n q : Û´n Ñ Û´pn´1q ,

• ĉ´n " q ´pn´1q ˝p ´n | Û´n q : Û´n Ñ F´pn´1q ,

• d´n " p ´n | F´n q : F´n Ñ F´pn´1q .

By the equivariance of the slow space ´n F´n Ă F´pn´1q , we obtain

• Ân ´n :" ´1 ´2 ¨¨¨Â ´n " p Apk ´nN ˚, nN ˚q,
• ân ´n :" â´1 â´2 ¨¨¨â ´n " p0 ˝p p Apk ´nN ˚, nN ˚q| p Upk ´nN ˚, nN ˚qq,

• dn ´n :" d´1 d´2 ¨¨¨d ´n " p p Apk ´nN ˚, nN ˚q| p F k´nN ˚q.

Lemma 3.4 implies that ´n Û´n and F´pn´1q are complementary. In particular â´n : Û´n Ñ Û´pn´1q is bijective. Define for n ě 1,

• ´n´1 Û´n´1 " Graphp Γ´n q for some operator Γ´n : Û´n Ñ F´n , by convention, Γ0 :" 0,

• Ân ´n Û´n " Graphp Ξn 0 q for some operator Ξn 0 : Û0 Ñ F0 . Notice that the choice of Û0 implies Ξ1 0 " 0. Lemma 3.6. Let θ ˚P p0, 1q and N ˚satisfy equation [START_REF] Gohberg | The basic propositions on defect numbers, root numbers and indices of linear operator[END_REF].

Then @n ě 1, } q´n } ď p C ǫ,d C 2d ǫ,d K d p1 `θ˚q d ,
where K d " ∆d pXq d .

Proof. From notations 3.2 one obtains F´n " Graphp Θ´n q for some operator Θ´n :" p Θ k´nN ˚pnN ˚q : V´n Ñ Û´n . Moreover q´n " pId ' Θ´n q ˝π V´n | Û´n ,

} Θ´n } ď C 2d ǫ,d K d θ ˚p1 `θ˚q d´1 , } q´n } ď p C ǫ,d p1 `} Θ´n }q ď Ĉǫ,d C 2d ǫ,d K d p1 `θ˚q d .
Lemma 3.7. Let θ ˚P p0, 1q and N ˚satisfy equation [START_REF] Gohberg | The basic propositions on defect numbers, root numbers and indices of linear operator[END_REF]. Then

@n ě 1, } Γ´n } ď p C 4 ǫ,d C 6d ǫ,d K d p1 ´θ˚q ´2d D FI e N ˚µ,
where K d :" ∆d pXq 4d .

Proof. Since Γ´n " q´n pId ' Γ´n q, we obtain using lemmas A.24, 3.6 and 3.4

} Γ´n } ď } q´n } γp ´n´1 Û´n´1 , F´n q ď } q´n } p C 3 ǫ,d C 4d ǫ,d K 1 d p1 ´θ˚q ´d D FI e N ˚µ,
with K 1 d " ∆d pXq 3d . We now show that the minimal gap between Ân ´n Û´n and F0 is bounded from below uniformly in n. Since Ân ´n Û´n " Graphp Ξn 0 q for some Ξn 0 : Û0 Ñ F0 , it is enough to bound from above }Id ' Ξn 0 }. We show how to estimate }Id ' Ξn`1 0 } in terms of }Id ' Ξn 0 }. Since Ân ´n Û´n " p Ũpk, nN ˚q Ñ Ê0 , we obtain a bound from below of γp Ê0 , F0 q. Lemma 3.8 (Second crucial step). Let θ ˚P p0, 1q and N ˚satisfy

D SVG e ´N˚τ ď θ ˚p1 ´θ˚q 3d´1 2 p C 7 ǫ,d C 8d ǫ,d K d D FI p1 ´θ˚q 7 1 ´e´τ C 5 ǫ,d , (7) 
with K d :" ∆d pXq 5d . Then for every n ě 1, γp Ân ´n Û´n , F0 q ě p1 ´θ˚q

d D ´1 FI p C 3 ǫ,d C 4d ǫ,d K d e ´N˚µ n´2 ź k"0 " 1 `eN ˚µe ´kN ˚τı ´1.
Proof. Define

θ 1 :" θ ˚p1 ´θ˚q 3d´1 2 p C 7 ǫ,d C 8d ǫ,d K d D FI .
Notice that N ˚satisfies equation ( 5) with θ 1 instead of θ DSVG e ´N˚τ ď θ 1 p1 ´θ1 q 7 1 ´e´τ C 5 ǫ,d , Part 1. We estimate the norms }pâ n ´nq ´1} and } dn ´n}. On the one hand, using item 6 of theorem 3.1, one gets

pâ n ´nq ´1 " p Ân ´n| Û´n q ´1 ˝pId ' Ξn 0 q, }pâ n ´nq ´1} ď p C ǫ,d " d ź i"1 σ i pk ´nN ˚, nN ˚q‰ ´1}Id ' Ξn 0 }.
On the other hand, using lemma 3.5, one gets Since Ξn 0 " ĉn ´np ân ´nq ´1, we obtain pId ' Ξn`1 0 q " pId ' Ξn 0 q `d n ´n Γ´n pâ n ´nq ´1,

} dn ´n} ď 2 p C 2 ǫ,d C 2d ǫ,d K 1 d θ 1 p1 `θ1 q d´1 " d ź i"1 σ i pk
}Id ' Ξn`1 0 } ď }Id ' Ξn 0 } ´1 `} dn ´n}} Γ´n }}pâ n ´nq ´1} }Id ' Ξn 0 } ¯.
Using the estimates of part 1 and θ 1 instead of θ ˚in lemma 3.7, we obtain

} dn ´n}} Γ´n }}pâ n ´nq ´1} }Id ' Ξn 0 } ď 2 p C 7 ǫ,d C 8d ǫ,d K d θ 1 p1 ´θ1 q ´3d`1 D FI e N ˚µe ´pn´1qN
˚τ ď e N ˚µe ´pn´1qN ˚τ.

Using }Id ' Ξ1 0 } " 1, one obtains

}Id ' Ξn 0 } ď n´2 ź k"0 " 1 `eN ˚µe ´kN ˚τı ´1.
Using the bound from below in lemma 3.4 for γp Û0 , F0 q and the comparison estimate in lemma A.24, one gets

γp Ân ´n Û´n , F0 q ě γp Û0 , F0 q }Id ' Ξn 0 } ě p1 ´θ˚q d D ´1 FI p C 3 ǫ,d C 4d ǫ,d K d e ´N˚µ n´2 ź k"0 " 1 `eN ˚µe ´kN ˚τı ´1.
We now explain how to choose θ ˚so that N ˚is the smallest possible. We use the following lemma whose proof is left to the reader. We will choose later α " 3d `6. Lemma 3.9. Let α ą 1. Then • θ ˚:" 1 1`α " arg maxtθp1 ´θq α : 1 ă θ ă 1u,

• θ ˚p1 ´θ˚q α ě θ ˚p1 ´αθ ˚q " 1 pα`1q 2 .

We estimate the infinite product in lemma 3.8 using the following lemma. We will choose later ρ " µ{τ and a " e ´N˚τ . Lemma 3.10. Let a P p0, 1q and ρ ą 0. Then

`8 ź n"0 " 1 `an´ρ ‰ ď exp ´1 `a 1 ´a ¯´1 a ¯ρpρ`2q{2 .
Proof. We choose n ˚such that n ˚ď ρ ă n ˚`1. We split the infinite product in two parts. On the one hand

n ź n"0 " 1 `an´ρ ‰ " n ź n"0 " a ρ´n `1‰ ´1 a ¯řn n "0 ρ´n , ď exp ´nÿ n"0 a ρ´n ¯´1 a ¯pn ˚`1qρ´n ˚pn ˚`1q{2 ď exp ´aρ´n 1 ´a ¯´1 a ¯ρpρ`2q{2 .
On the other hand

ź něn ˚`1 " 1 `an´ρ ‰ ď exp ´ÿ něn ˚`1 a n´ρ ¯ď exp ´an ˚`1´ρ 1 ´a ¯.
Using the convexity of the function ρ P rn ˚, n ˚`1s Þ Ñ a n ˚`1´ρ `aρ´n ˚, we obtain a n ˚`1´ρ `aρ´n ˚ď 1 `a and conclude the proof. 

5 p C 3 ǫ,d C 4d ǫ,d K d D FI . ( 9 
)
Using a ě p3d `7q

´2 2 p C 7 ǫ,d C 8d`5 ǫ,d K d D FI 1 ´e´τ D SVG e τ , we obtain γp Ân ´n Û´n , F0 q ě 1 5 p C 3 ǫ,d C 4d ǫ,d K d D FI " p3d `7q ´2 2 p C 7 ǫ,d C 8d`5 ǫ,d K d D FI 1 ´e´τ D SVG e τ ı ρpρ`4q 2 .
We conclude by using Ân ´n Û´n Ñ Ê0 and the comparison between the minimal gaps, γpE 0 , F 0 q ě γp Ê0 , F0 q{K 1 d where the constant K 1 d " ∆2 pXq 4d ∆d pXq 3d is given by lemma A.40.

Proof of items 2 and 3 of theorem 1.2

We first show that property (FI) is related to a super-multiplicative sequence [START_REF] Kato | Perturbation Theory for Linear Operators[END_REF] p f m pkqq mě0 . We use the notion of Jacobian of index d, introduced in definition in A.30 and denoted by Σ d pAq. Proposition A.32 implies,

d ź i"1 σ i pAq ď Σ d pAq " d ź i"1 σ 2 i pAq ď K d d ź i"1 σ i pAq
where K d " ∆d pXq 2d 2 . In the Hilbert case K d " 1 and Σ d pAq " ś d i"1 σ i pAq. Proposition A.34 shows that the Jacobian is sub-multiplicative,

@k P Z, @m 1 , m 2 ě 0, Σ d pk, m 1 `m2 q ď Σ d pk, m 1 qΣ d pk `m1 , m 2 q,
where Σ d pk, nq :" Σ d pApk, nqq. We define for every k P Z and m ě 0,

f m pkq :" inf ně0 Σ d pk ´m, m `nq Σ d pk ´m, mqΣ d pk, nq . (10) 
We have obviously f m pkq ď K d pXq ´1 ď 1. We show in the following lemma that f m pkq is super-multiplicative and that the ratio appearing in property (FI) is comparable to f m pkq.

Lemma 4.1. For every k P Z,

1. @m 1 , m 2 ě 0, f m 1 `m2 pkq ě f m 1 pkq f m 2 pk ´m1 q and f m pkq ď 1, 2. K ´2 d inf ně0 d ź i"1 σ i pk ´m, m `nq σ i pk ´m, mqσ i pk, nq ď f m pkq ď K d inf ně0 d ź i"1 σ i pk ´m, m `nq σ i pk ´m, mqσ i pk, nq , 3. @m, n ě 0, d ź i"1 σ i pk ´m, m `nq σ i pk ´m, mqσ i pk, nq ď K 2 d , with K d " ∆d pXq 2d 2 , Proof of item 1. As Σ d pk´m 1 ´m2 , m 1 `m2 q ď Σ d pk´m 1 ´m2 , m 2 qΣ d pk´m 1 , m 1 q, Σ d pk ´m1 ´m2 , m 1 `m2 `nq Σ d pk ´m1 ´m2 , m 1 `m2 qΣ d pk, nq ě Σ d pk ´m1 ´m2 , m 1 `m2 `nq Σ d pk ´m1 ´m2 , m 2 qΣ d pk ´m1 , m 1 `nq Σ d pk ´m1 , m 1 `nq Σ d pk ´m1 , m 1 qΣ d pk, nq .
The first quotient is bounded from below by f m 2 pk ´m1 q, the second by f m 1 pkq. Proof of item 2 and 3. The proof follows the comparison between Σ d pk, nq and ś d i"1 σ i pk, nq.

In the following lemma we estimate a bound from below of f m pkq from partial information on f mN ˚pkq. Lemma 4.2. Let N ˚ě 1, α ě 1, and pA k q kPZ be a sequence of operators satisfying property (FI). Then for every k P Z, Dividing by Σ d pk ´mN ˚, mN ˚qΣ d pk, nq and rewriting in a different way, we obtain

inf mě1 f m pkq ě K ´1 d D ´2 FI e ´p1`
Σ d pk ´mN ˚, mN ˚`nq Σ d pk ´mN ˚, mN ˚qΣ d pk, nq ě " Σ d pk ´mN ˚, mN ˚`pq Σ d pk ´mN ˚, mN ˚qΣ d pk, pq ı " Σ d pk `n ´n, pq Σ d pk `n ´n, nqΣ d pk `n, p ´nq ı .
The second bracket is bounded from below using property (FI) by

f k`n pnq ě K 1 d ´1D ´1 FI e ´nµ ě K 1 d ´1 D ´1 FI e ´αN ˚µ,
where K 1 d " ∆d pXq 4d 2 is obtained from lemma 4.1. The claim is proved. We conclude by using the super-multiplicative property

@0 ď n ď N ˚, f mN ˚`n pkq ě f mN ˚pkq f n pk `mN ˚q ě f mN ˚pkqK 1 d ´1 D ´1 FI e ´N˚µ .
Proof of theorem 1.2, item 2. Step 1. We use lemma A.44 to bound from below the ratio in property (FI) by the angle between the fast and slow local spaces, @m, n ě 0,

d ź i"1 σ i pk ´m, m `nq σ i pk ´m, mqσ i pk, nq ě p C ´3 ǫ,d γp p Ũpk, mq, q Vpk, nqq.
Step 2. We show for every n ě p1 `ρpρ`4q 2 qN ˚and m ě 1, δp q Vpk, nq, q F k q ď 5 2p3d `7q γp p Ũpk, mN ˚q, q F k q.

From the definition of N ˚in assumption 3.11, we obtain

D SVG e ´nτ ď θ 1 p1 ´θ1 q 6 1 ´e´τ C 4 ǫ,d , θ 1 :" θ ˚e´pn´N ˚qτ p1 ´θ˚q 3d 2 p C 7 ǫ,d C 8d`1 ǫ,d K d D FI
with K d :" ∆d pXq 5d . From notations 3.2 and lemma 2.4 and A.42,

F K k " GraphpΘ k pnq K q for some Θ k pnq K : Vpk, nq K Ñ Upk, nq K , q F k " Graphp p Θ k pnqq for some p Θ k pnq : q Vpk, nq Ñ p Upk, nq, }Θ k pnq K } ď θ 1 , } p Θ k pnq} ď C 2d ǫ,d K 1 d θ 1 p1 `θ1 q d´1 .
with K 1 d :" ∆d pXq d . Using p1 `θ1 q ď p1 ´θ˚q ´1 and lemma A.25, we obtain δp q Vpk, nq, q

F k q ď } p Θ k pnq} ď θ ˚p1 ´θ˚q 2d`1 e ´pn´N ˚qτ K 1 d 2 p C 7 ǫ,d C 6d`1 ǫ,d K d D FI , ď p3d `7q ´1 2 K 1 d `e´N ˚τ˘ρ pρ`4q{2 p C 7 ǫ,d C 6d`1 ǫ,d K d D FI .
On the other hand, using equation ( 9), γp p Ũpk, mN ˚q, q F k q ě 1 5

`e´N ˚τ˘ρ pρ`4q{2 Ĉ3 ǫ,d C 4d ǫ,d K d D FI
and using the bound K 1 d ď C ǫ,d , we conclude the proof of the claim, δp q Vpk, nq, q F k q ď 5 2p3d `7q γp p Ũpk, mN ˚q, q F k q.

Step 3. We conclude the proof of item 2 of theorem 1.2. Equations (A.16) imply γp p Ũpk, mN ˚q, q Vpk, nqq ě γp p Ũpk, mN ˚q, q F k q ´δp q Vpk, nq, q

F k q 1 `δp q Vpk, nq, q F k q , ě 6d `9 6d `19
γp p Ũpk, mN ˚q, q F k q ě 3 5 γp p Ũpk, mN ˚q, q F k q.

Using lemma 4.2 with α " 1 `ρpρ`4q 

σ i pk ´m, m `nq σ i pk ´m, mqσ i pk, nq ě 3 25 p C 6 ǫ,d C 6d ǫ,d D 3 FI " p3d `7q ´2 2 p C 7 ǫ,d C 8d`5 ǫ,d K d D FI 1 ´e´τ D SVG e τ ı ρpρ 2 `5ρ`8q{2 .
Proof of theorem 1.2, item 3. We assume n ě p1 `ρpρ`4q 2 qN ˚and write the assumptions 3.11 on θ ˚, N ˚in the form

D SVG e ´nτ ď θ 1 p1 ´θ1 q 6 1 ´e´τ C 4 ǫ,d , θ 1 " θ ˚p1 ´θ˚q 3d 2 p C 7 ǫ,d C 8d`1 ǫ,d K d D FI e ´pn´N ˚qτ
with K d :" ∆d pXq 5d . Notice that 1 2 θ ˚p1 ´θ˚q 3d ď 1 20 . Part 1. We first estimate γpE k , Vpk, nqq by γpE k , F k q. Equation (A.16) gives, γpE k , Vpk, nqq ě γpE k , F k q ´δpVpk, nq, F k q 1 `δpVpk, nq, F k q .

Item 1 of lemma 2.4 and pn ´N˚q τ ě ρpρ`4q 2

N ˚τ gives δpVpk, nq, F k q ď θ 1 ď 1 20 p C ´7 ǫ,d C ´8d´1 ǫ,d K ´1 d D ´1 FI pe ´N˚τ q ρpρ`4q{2 .
By taking n Ñ `8 in equation ( 9) and by using lemma A.40, one obtains,

γpE k , F k q ě K 1 d ´1γp p E k , q F k q ě 5 ´1 p C ´3 ǫ,d C ´4d ǫ,d K 1 d ´1K ´1 d D ´1 FI pe ´N˚τ q ρpρ`4q{2 .
where

K 1 d " ∆2 pXq 4d ∆d pXq 3d . As K 1 d K d " ∆2 pXq 4d ∆d pXq 8d ď C ǫ,d , we have, δpVpk, nq, F k q ď θ 1 ď 1 4 γpE k , F k q, γpE k , Vpk, nqq ě 3 5 γpE k , F k q.
Using item 4 of theorem A. 

γpF k , Ũpk, nqq ě γpF k , E k q ´δp Ũpk, nq, E k q 1 `δp Ũpk, nq, E k q δp Ũpk, nq, E k q ď θ 1 ď 1 4 γpE k , F k q ď 1 2 γpF k , E k q γpF k , Ũpk, nqq ě 1 3 γpF k , E k q.
Let w P F k , w " u `v where u P Upk, nq and v P Vpk, nq. Then }v} ď C ǫ,d }w} thanks to item 3 of theorem 2.2, Apk, nqw " ũ `ṽ, ũ P Ũpk `n, nq, ṽ P Ṽpk `n, nq,

}ṽ} ď C ǫ,d σ d`1 pk, nq}v} ď C 2 ǫ,d σ d`1 pk, nq}w}, }ṽ} ě }Apk, nqw} γpF k`n , Ũpk `n, nqq. Hence }Apk, nqw} ď 3C 2 ǫ,d γpF k`n , E k`n q ´1σ d`1 pk, nq}w}.

Appendices

The purpose of this appendix is to clarify the notion of approximate singular value decomposition of a bounded operator in a Banach space. We need two precise theorems A.35 and A.43. The first theorem is usually stated for compact selfadjoint operators in an Hilbert space (see [START_REF] Pietsch | Eigenvalues and s-numbers[END_REF]). In Hilbert spaces, for non compact operators, we did not find good references, although the results are certainly known by the specialists. In Banach spaces, we are not aware of any statements as in A.35 and A.43. Nevertheless quite similar ideas may be found in [START_REF] Zarrabi | A volume-based approach to the multiplicative ergodic theorem on Banach spaces[END_REF][START_REF] Blumenthal | Characterization of dominated splittings for operator cocycles acting on Banach spaces[END_REF] and [START_REF] González-Tokman | A concise proof of the multiplicative ergodic theorem on Banach spaces[END_REF].

A Basic results in Banach spaces

Let pX, } ¨}q be a real Banach space. We do not assume X to be reflexive. We call X ˚the topological dual space and denote by xη|uy the duality between η P X ånd u P X. If X is an Hilbert space we identify X ˚" X and the duality x¨|¨y with the scalar product. If U is a closed (vector) subspace of X, U becomes a Banach space with the induced norm, U ˚denotes the corresponding dual space, and U K denotes the annihilator of U, the subspace of linear forms of X ˚vanishing on U. Conversely if H Ă X ˚is a subspace, the pre-annihilator of H is the subspace H :" tu P X : xη|uy " 0, @η P Hu. Write BpXq for the space of bounded linear operators on X. If pY, } ¨}q is another Banach space, write BpX, Yq for the space of bounded linear operators from X to Y. If U Ă X is a closed subspace of X, we denote by A|U the restriction to U of A P BpX, Yq. We say that a splitting X " U ' V of two closed subspaces is topological if the projector π U|V onto U parallel to V (or equivalently π V|U ) is a bounded operator. For a Bounded operator A P BpX, Yq, we call A ˚P BpY ˚, X ˚q the dual operator.

A.1 Auerbach basis and distortion

The purpose of this section is to clarify the notion of a distortion of a Banach norm with respect to the best euclidean norm. We use the notion of Auerbach bases as a substitute for orthonormal bases. We begin by recalling the notion of Auerbach families.

Definition A.1. Let X be a Banach space, and d ě 1.

• A family of vectors pu 1 , . . . , u d q in X is said to be Auerbach if @ j " 1, . . . , d, }u j } " 1 and distpu j , spanpu k : k jqq " 1.

• If pu 1 , . . . , u d q are linearly independent in X, a dual family is any family of linear forms pη 1 , . . . , η d q of X ˚satisfying xη i |u j y " δ i j . Similarly if pη 1 , . . . , η d q are linearly independent in X ˚, a predual family is any family of vectors pu 1 , . . . , u d q of X satisfying xη i |u j y " δ i j .

If dimpXq " d, dual bases and predual families do always exist and they are unique. We show in the following lemma that Auerbach families can be characterized by the existence of normalized dual families.

Lemma A.2. Let X be a Banach space, and d ě 1.

1. A family of vectors pu 1 , . . . , u d q of X is Auerbach if and only if }u j } " 1 for every j " 1, . . . , d and there exists a dual family pη 1 , . . . , η d q of X ˚satisfying }η i } " 1 for every j " 1, . . . , d.

2. Suppose dimpXq " d. A family of linear forms pη 1 , . . . , η d q of X ˚is an Auerbach basis if and only if }η i } " 1 and its unique predual family pu 1 , . . . , u d q of X satisfies }u j } " 1 for every j " 1, . . . , d.

If dimpXq " `8, an Auerbach family in X ˚does not admit in general a predual Auerbach family. We will show in lemma A.11 that such predual families do exist if we relax a little the notion of Auerbach family. If X is an Hilbert space of finite dimension, an Auerbach family is an orthonormal family, and two families of vectors pu 1 , . . . , u d q and pη 1 , . . . , η d q are dual to each other if and only if they are equal.

The following lemma shows that Auerbach families exist in any Banach space. We will see that this notion is a key tool for the notion of singular values of bounded operators.

Lemma A.3. Let X, Y be Banach spaces, dimpXq " d ě 1, A P BpX, Yq injective, and X " AX. Let pu 1 , . . . , u d q be vectors of X and pη 1 , . . . , ηd q be linear forms of X˚r ealizing the supremum in Σ d pAq :" sup det `rx ηi |Au j ys 1ďi, jďd ˘: ηi P X˚, u j P X, }η i } " }u j } " 1 ( .

Let η i be a Hahn-Banach extension to Y of ηi with }η i } " 1. Then pu 1 , . . . , u d q is an Auerbach family of X, pη 1 , . . . , η d q is an Auerbach family of Y ˚, and Σ d pAq " sup det `rxζ i |Au j ys 1ďi, jďd ˘:

ζ i P Y ˚, u j P X, }ζ i } " }u j } " 1 ( .
Notice in the previous lemma that, in the case X " Y and A " Id, pη 1 , . . . , η d q and pu 1 , . . . , u d q are not a priori dual to each other. We call the particular constant Σ d pAq appearing in lemma A.3 when A " Id, the projective distortion Σ d pXq :" sup det `rxη i |u j ys 1ďi, jďd ˘:

η i P X ˚, u j P X, }η i } " }u j } " 1 ( . (A.1)
The name "projective distortion" is related to the notion of projective norm introduced in (A.20) and the estimate of the distortion of the canonical duality (A.21) and (A.22). A Banach norm introduces a distortion in the volume of unit balls of finitedimensional subspaces. This distortion may depend on the dimension of the subspace. In order to obtain optimal estimates when X is actually an Hilbert space, we introduce a notion of volume distortion that turn out to be trivial for Hilbert spaces.

Definition A.4. Let X be a Banach space and d ě 1. The volume distortion is

∆ d pXq :" sup ! } ř d j"1 λ j u j } `řd j"1 |λ j | 2 ˘1{2
: u is an Auerbach family and λ 0

) (A.2)
where the supremum is realized over every u " pu 1 , . . . , u d q Auerbach family of X and every non-zero λ " pλ 1 , . . . , λ d q P R d . If X is a Hilbert space ∆ d pXq " 1. In general we have 1 ď ∆ d pXq ď ? d. In order to simplify the estimates, we will use instead a simplified volume distortion ∆d pXq :" maxp∆ d pXq, ∆ d pX ˚q, ∆ d pX ˚˚q.

(A.3)

Although we do not intend to compute this constant for different Banach spaces, we give an exact estimate of ∆ d pXq for X " ℓ p d the space R d endowed with the norm }x} p " `řd n"1 |x n | p ˘1{p , x " px 1 , . . . , x d q, with natural change for p " `8. Recall that the Banach-Mazur distance between two isomorphic spaces X and Y is the number d BM pX, Yq :" inft}T }}T ´1}, T : X Ñ Y linear bounded isomorphismu.

Proposition A.5. For every p P r1, 2s, ∆ d pℓ

p d q " d BM pℓ p d , ℓ 2 d q " d | 1 p ´1 2 | . Hence lim pÑ2 ´∆d pℓ p d q " 1. If U Ă X is a subspace of X, then ∆ d pUq ď ∆ d pXq.
We have for instance ∆ d pXq ď ∆ d pX ˚˚q. By extending any Auerbach family pη 1 , . . . , η d q of U ˚by Hahn-Banach while keeping }η i } " 1, we still obtain an Auerbach family in X ånd thus ∆ d pU ˚q ď ∆ d pX ˚q. We show in the following lemma that ∆ d pXq and ∆ d pX ˚q admit equivalent definitions in the case dimpXq " d.

Lemma A.6. Let be d ě 1 and X be a Banach space of dimension d. Then

1. ∆ d pX ˚q " sup ! `řd i"1 |λ j | 2 ˘1{2 } ř d j"1 λ j u j } : u is an Auerbach basis of X, λ 0u ) , 2. ∆ d pXq " sup ! `řd i"1 |λ i | 2 ˘1{2 } ř d i"1 λ i η i } : η is an Auerbach basis of X ˚, λ 0 ) , 3. ∆ d pXq " ∆ d pX ˚˚q.
In particular we obtain an "explicit" bound between the Banach norm and the Euclidean norm either in U or in U ˚.

Corollary A.7. Let d ě 1 and X be a Banach space of dimension d.

1. If pu 1 , . . . , u d q is an Auerbach basis of X, then

@λ P R d , 1 ∆ d pX ˚q ´d ÿ j"1 |λ j | 2 ¯1{2 ď › › d ÿ j"1 λ j u j › › ď ∆ d pXq ´d ÿ j"1 |λ j | 2 ¯1{2 .
2. If pη 1 , . . . , η d q is an Auerbach basis of X ˚, then

@λ P R d , 1 ∆ d pXq ´d ÿ i"1 |λ i | 2 ¯1{2 ď › › d ÿ i"1 λ i η i › › ď ∆ d pX ˚q ´d ÿ i"1 |λ i | 2 ¯1{2 .
Every subspace U Ă X of finite dimension d admits a topological complement (a closed subspace V such that X " U 'V). For instance, if pu 1 , . . . , u d q is an Auerbach basis of U, if pη 1 , . . . , η d q is an Auerbach basis in U ˚dual to pu 1 , . . . , u d q, that has been extended to X by Hahn-Banach as linear forms of norm one, then pη 1 , . . . , η d q is again an Auerbach family in X ˚, and V " Ş d i"1 kerpη i q is a topological complement to U where the projector π U|V onto U parallel to V is given by

π U|V pwq " d ÿ i"1 xη i |wyu i , @w P X. (A.4)
Notice that if pu 1 , . . . , u d q and pη 1 , . . . , η d q are dual to each other but not necessarily Auerbach, then in addition to (A.4), we have,

π V|U " Id ´πU|V " π d ˝¨¨¨˝π 1 ,
where

π k pwq " w ´xη k |wyu k , @w P X. (A.5)
Definition A.8. Let X be a Banach space, d ě 1, and X " U 'V be a splitting such that dimpUq " d. We say that the splitting is orthogonal if there exist Auerbach families pu 1 , . . . , u d q of X and pη 1 , . . . , η d q of X ˚dual to each other such that U " spanpu 1 , . . . , u d q and V "

d č i"1 kerpη i q " spanpη 1 , . . . , η d q .
If X is a Hilbert space, we recover the usual notion of orthogonal complements. In particular the two projectors π V|U and π U|V have norm one. In general if X is a Banach space, the norm of the projectors is not any more one. We give two results giving the bound of the norm of these projectors in terms of the volume distortion. We use the simplified volume distortion given in (A.3).

Lemma A.9. Let X be a Banach space, u P X, η P X ˚, such that xη|uy " 1, and }η} " 1. Let U " spanpuq, V " kerpηq, and K d :" ∆2 pXq 3 . Then }π U|V } " }u}, and }π V|U } ď K d }u}.

For any dimension, we obtain the following bound.

Lemma A.10. Let X be a Banach space, d ě 1, dimpUq " d, and X " U ' V be an orthogonal splitting. Let K d :" ∆2 pXq 4 ∆d pXq 2 . Then

@u P U, @v P V, 1 K d b }u} 2 `}v} 2 ď }u `v} ď K d b }u} 2 `}v} 2
In particular }π U|V } ď K d and }π V|U } ď K d .

We are now able to extend item 2 of lemma A.2 to Banach spaces of infinite dimension.

Lemma A.11. Let X be a Banach space and d ě 1. Let be K d :" ∆2 pXq 3d . Then for every Auerbach family pη 1 , . . . , η d q of X ˚, for every ǫ ą 0, there exist a predual family pu 1 , . . . , u d q in X satisfying 1 ď distpu k , spanpu l : l kqq and }u k } ď p1 `ǫqK d , @k " 1, . . . , d.

If X is a Hilbert space, ǫ " 0, K d " 1 and pu 1 , . . . , u d q " pη 1 , . . . , η d q.

The previous result suggests the following definition.

Definition A.12. Let X be a Banach space, d ě 1 and C ě 1. A family of vectors pu 1 , . . . , u d q is said to be a C-Auerbach family if C ´1 ď distpu k , spanpu l : l kqq and }u k } ď C, @k " 1, . . . , d.

A splitting X " U ' V where dimpUq " d, is said to be C-orthogonal if there exist C-Auerbach families pu 1 , . . . , u d q of X and pη 1 , . . . , η d q of X ˚dual to each other such that U " spanpu 1 , . . . , u d q and V " spanpη 1 , . . . , η d q .

Lemma A.11 shows that, if V is a subspace of X of codimension d, and ǫ ą 0, then there exists U such that X " U ' V is a p1 `ǫqK d -orthogonal splitting.

If X is a Hilbert space, a 1-Auerbach family corresponds to an orthonormal family, a C-Auerbach family represents a distorted orthonormal family. We give in the following lemma several equivalent characterizations of C-Auerbach bases in the case X is a finite dimensional Hilbert space.

Lemma A.13. Let P " rP i, j s 1ďi, jďd be a real matrix and C ě 1. R d is equipped with the standard euclidean norm } ¨}2 . The following 3 conditions are equivalent.

The column vectors

Ý Ñ C j :" pP i, j q d i"1 form a C-Auerbach basis.

2. The singular values of P satisfy C ě σ 1 ě ¨¨¨ě σ d ě 1{C.

3. For every pλ 1 , . . . , λ d q P R d ,

1 C ´d ÿ j"1 |λ j | 2 ¯1{2 ď › › d ÿ j"1 λ j Ý Ñ C j › › 2 ď C ´d ÿ j"1 |λ j | 2 ¯1{2 .
In particular, since the singular values of P and P ˚coincide, the 3 conditions are also equivalent to 4. The row vectors Ý Ñ R i :" pP i, j q d j"1 form a C-Auerbach basis.

5. For every pλ 1 , . . . , λ d q P R d ,

1 C ´d ÿ i"1 |λ i | 2 ¯1{2 ď › › d ÿ i"1 λ i Ý Ñ R i › › 2 ď C ´d ÿ i"1 |λ i | 2 ¯1{2 .
If X is a Banach space, many previous results involving Auerbach families can be extended to C-Auerbach families. The volume distortion of a C-Auerbach family can be expressed using the volume distortion defined in A.4.

Lemma A.14. Let X be a Banach space, d ě 1, and C ě 1. Define K d :" ∆d pXq 2 . If pe 1 , . . . , e d q is a C-Auerbach family, then for every pλ 1 , . . . , λ d q P R d ,

1 CK d ´d ÿ j"1 |λ j | 2 ¯1{2 ď › › d ÿ j"1 λ j e j › › ď CK d ´d ÿ j"1 |λ j | 2 ¯1{2
We extend lemma A.10 to C-Auerbach families.

Lemma A.15. Let X be a Banach space, d ě 1 and C ě 1. Let X " U ' V be a C-orthogonal splitting with dimpUq " d. Define K d :" ∆2 pXq 4 ∆d pXq 4 . Then

@u P U, @v P V, 1 C 2 K d b }u} 2 `}v} 2 ď }u `v} ď C 2 K d b }u} 2 `}v} 2 .
We also extend lemma A.2 to C-Auerbach families.

Lemma A.16. Let X be a Banach space, C ě 1, d ě 1, and K d :" ∆2 pXq 3d ∆d pXq 2 .

• If pu 1 , . . . , u d q is a C-Auerbach family of X, then there exists a C-Auerbach family pη 1 , . . . , η d q of X ˚dual to pu 1 , . . . , u d q.

• If pη 1 , . . . , η d q is a C-Auerbach family of X ˚. Then for every ǫ ą 0, there exists a CK d p1 `ǫq-Auerbach family of X predual to pη 1 , . . . , η d q.

• If U is a subspace of dimension d, pη 1 , . . . , ηd q is a C-Auerbach basis of U ånd pη 1 , . . . , η d q is some Hahn-Banach extension such that }η i } " }η i }, then pη 1 , . . . , η d q is again a C-Auerbach family and there exists a C-Auerbach basis pu 1 , . . . , u d q in U predual to pη 1 , . . . , η d q.

The duality identity (A.10) is also valid for the minimal gap (see equation (4.14) Kato [START_REF] Kato | Perturbation Theory for Linear Operators[END_REF], chapter 4, section 4.2)

X " M ' N ñ γpN K , M K q " γpM, Nq.

(A.17)

The minimal gap can also be computed using duality between subspaces of complementary dimension. Let M Ă X, Ξ Ă X ˚, such that dimpMq " d and dimpΞq " d. Define xΞ|My :" sup detprxξ i |u j ys 1ďi, jďd q : ξ i P Ξ, u j P M, }ξ i } " }u j } " 1 ( . (A.18) Notice that

Σ d pXq " suptxΞ|My : M Ă X, Ξ Ă X ˚, dimpMq " dimpΞq " du.
Lemma A.20. Let X be a Banach space, d ě 1, M and N be two closed subspaces such that X " M ' N and dim M " d. Define K d :" ∆d pXq 2d and K 1 d :" ∆2 pXq 3d 2 ∆d pXq 2d . Then

pK 1 d q ´1γpM, Nq d ď xN K |My ď K d γpM, Nq.
The topology on the Grassmannian space Grasspd, Xq and coGrassmannian space coGrasspd, Xq is given by a fundamental system of open neighborhoods.

Definition A.21. Let X be a Banach space and V 0 be a subspace of X of finite dimension or codimension. The basic neighborhood complementary to V 0 is the subset NpV 0 q " tU Ă X : U is a closed subspace and X " U ' V 0 is topologicalu.

The set tNpV 0 q : codim pV 0 q " du defines a topology of Grasspd, Xq; similarly the set tNpU 0 q : dimpU 0 q " du defines a topology of coGrasspd, Xq.

Each basic neighborhood is modeled on a Banach space. The following construction shows that NpU 0 q is bijectively mapped to BpV 0 , U 0 q. Definition A.22. Let X " U 0 ' V 0 be a topological splitting of closed subspaces.

1. If Θ P BpV 0 , U 0 q, the graph of Θ is the closed subspace GraphpΘq :" tv `Θv : v P V 0 u P NpU 0 q.

2. Conversely every V P NpU 0 q is the graph of some operator Θ P BpV 0 , U 0 q.

3. δpU 0 , Uq ď }Θ}, " 1 `δpU, U 0 q γpV 0 , U 0 q ı ´1δpU, U 1 q ď }Θ ´Θ1 }.

Let X " U 0 ' V 0 " U ' V be two splittings of X by closed subspaces where dimpU 0 q " d and dimpUq " d. Assume U 0 P NpVq or U P NpV 0 q. The following lemma shows that the minimal gap γpU 0 , Vq or γpU, V 0 q can be measured by a d-dimensional determinant adapted to pV K , U 0 q or pV K 0 , Uq that are both of dimension d.

Lemma A.26. Let X be a Banach space, d ě 1, C 0 ě 1, and X " U 0 ' V 0 be a C 0 -orthogonal splitting with dim U 0 " d. Let pe 1 , . . . , e d q and pφ 1 , . . . , φ d q be C 0 -Auerbach bases dual to each other generating U 0 and V K 0 . Let K d :" ∆d pXq 2d . 1. Let Θ K P BpV K 0 , U K 0 q, }Θ K } ď 1, V " GraphpΘ K q and pψ 1 , . . . , ψ d q be a C-Auerbach basis of V K . Then

pC 0 Cq d xV K |U 0 y ě ˇˇdetprxψ i |e j ys i j q ˇˇě 1 K d ´1 ´}Θ K } C 0 C ¯d.
2. Let Θ P BpU 0 , V 0 q, }Θ} ď 1, U " GraphpΘq and p f 1 , . . . , f d q be a C-Auerbach basis of U. Then

pC 0 Cq d xV K 0 |Uy ě ˇˇdetprxφ i | f j ys i j q ˇˇě 1 K d ´1 ´}Θ} C 0 C ¯d.

A.3 Singular values decomposition

The notion of singular values for operators in Banach spaces is not canonically well-defined. Our starting definition is the following.

Definition A.27. Let X, Y be Banach spaces, A P BpX, Yq, and d ě 1. We define the singular value of A of index d by

σ d pAq :" sup dimpUq"d inf ! }Aw} }w} : w P Uzt0u ) ,
where the supremum is realized over every subspace U of X of dimension d.

We recall some elementary properties. ) ,

where the infimum is realized over every closed subspace V of codimension d ´1.

It will be convenient to introduce a third notion of singular values using the notion of Jacobian.

Definition A.30. Let A P BpX, Yq. The Jacobian of A of index d is defined by, Σ d pAq :" sup det `rxζ i |Au j ys 1ďi, jďd ˘:

ζ i P Y ˚, u j P X, }ζ i } " }u j } " 1 ( , By convention Σ 0 pAq " 1. Notice that, if dimpUq " d, Σ d pA|Uq " 0 ô dimpAUq ă d ô A is not injective on U.
We may choose in the previous definition ηi P ImpAq ˚and take ζ i an extension of ηi to Y ˚by the Hahn-Banach theorem. If U is a closed subspace of X, we define the Jacobian of A restricted to U of index d, denoted Σ d pA|Uq, to be the Jacobian of A|U P BpU, Yq. If U has finite dimension and A|U is injective, the supremum is attained by vectors u j P U and linear forms ηi P Ũ˚, Ũ " AU, of norm one. Both pu 1 , . . . , u d q and pη 1 , . . . , ηd q are Auerbach bases by lemma A.3.

The third definition of singular values is based on the notion of Jacobian.

Definition A.31. Let A P BpX, Yq, define (assuming by convention Σ 0 pAq " 1),

σ 2 d pAq :" Σ d pAq Σ d´1 pAq if Σ d´1 pAq 0, σ 2 d pAq " 0 if Σ d´1 pAq " 0.
If U is a closed subspace of X, we define similarly σ 2 d pA|Uq of the restriction of pA|Uq P BpU, Yq. It may not be true that the singular values of A and A ˚coincide. On the other hand the Jacobian admits a very symmetric definition using the identity xη|Auy " xA ˚η|uy, @u P X, @ η P Y ˚.

Proposition A.32 and the following proposition shows that σ d pAq and σ d pA ˚q are comparable modulo a constant depending only on the Banach norm of X. This constant is 1 for Hilbert spaces.

Proposition A.33. Let X, Y be Banach spaces, A P BpX, Yq, d ě 1, and K d :" maxp ∆d pXq, ∆d pYqq 2d . Then

1. Σ d pAq " Σ d pA ˚q, 2. K ´1 d σ d pAq ď σ d pA ˚q ď K d σ d pAq.
The following lemma shows that the projective distortion Σ d pXq, equation (A.1), may not be equal to one and that the Jacobian may not be multiplicative. This anomaly disappears when the spaces are Hilbert. In the case X, Y are Hilbert spaces, the previous inequalities are equalities.

The following theorem is the main result of this appendix. The existence of singular vectors depends on a small parameter ǫ ą 0 that can be as small as we want. We do not assume that the operators are compact nor asymptotically compact, and there is thus no reason to find true eigenvectors even in Hilbert spaces. The parameter ǫ measures the discrepancy between a true and an approximate eigenvector. The estimates depend moreover in Banach spaces on the volume distortion introduced in the definition A.4. Although the following result is certainly well known to specialists, we did not find a good reference adapted to our needs. Then A admits an approximate singular value decomposition of index d and distortion C ǫ,d " C ǫ,d pX, Yq, defined in the following way:

• there exist two C ǫ,d -orthogonal splittings X " U ' V, Y " Ũ ' Ṽ,
• there exist C ǫ,d -Auerbach bases, pe 1 , . . . , e d q of U and pφ 1 , . . . , φ d q of V K dual to each over, such that U " spanpe 1 , . . . , e d q and V " spanpφ 1 , . . . , φ d q ,

• there exist C ǫ,d -Auerbach bases, pẽ 1 , . . . , ẽd q of Ũ and p φ1 , . . . , φd q of ṼK dual to each over, such that Ũ " spanpẽ 1 , . . . , ẽd q and Ṽ " spanp φ1 , . . . , φd q , satisfying the following properties, for every i " 1, . . . , d,

1. AU " Ũ, AV Ă Ṽ, A ˚Ṽ K " V K , A ˚Ũ K Ă U K , dimpUq " dimp Ũq " d, 2. Ae i " σ i pAqẽ i , A ˚φ i " σ i pAqφ i , 3. C ´1 ǫ,d σ i pAq ď σ i pA|Uq ď σ i pAq, 4. C ´1 ǫ,d σ i pAq ď σ i pA ˚| ṼK q ď σ i pAq, 5. σ d`1 pAq ď }A|V} ď C ǫ,d σ d`1 pAq 6. σ d`1 pAq ď }A ˚| ŨK } ď C ǫ,d σ d`1 pAq, 7. γpU, Vq, γpV, Uq, γp Ũ, Ṽq, γp Ṽ, Ũq ě C ´1 ǫ,d .
If X is a Hilbert space, one may choose C ǫ,d " 1`ǫ. If X, Y are of finite dimension, one may choose ǫ " 0. If X, Y are Hilbert spaces of finite dimension, one may choose V " U K , Ṽ " ŨK , C ǫ,d " 1, e i " φ i , ẽi " φi , pe 1 , . . . , e d q and pẽ 1 , . . . , ẽd q are orthonormal bases.

A.4 Exterior product

The algebraic exterior product Ź d X is defined canonically of the following procedure. We first consider the space of almost null functions of X d Ñ R,

F :" ! ÿ wPX d λ w δ w : λ w P R, cardtw : λ w 0u ă `8)
where δ w : X d Ñ R is the Dirac function at w P X d . We next consider the subspace G of F defined by G :" span ! δ pλw 1 `µw 1 1 ,w 2 ,...,w d q ´λδ pw 1 ,w 2 ,...,w d q ´µδ pw 1 1 ,w 2 ,...,w d q , δ pw 1 ,...,w i´1 ,w 1 i ,w 1 i`1 ,w i`2 ,...,x d q `δpw 1 ,...,w i´1 ,w 1 i`1 ,w 1 i ,w i`2 ,...,w d q : 1 ď i ď d ´1, w 1 , . . . , w d , w 1 1 , . . . , w 1 d P X d , λ, µ P R

) .

The algebraic exterior product the vector space of equivalent classes Ź d X :" F{G " tw `G : w P Fu

We define the canonical injection X d Ñ Ź d X into the quotient space by pw 1 , . . . , w d q P X d Þ Ñ w 1 ^. Several norms may be chosen for the exterior product. In the case where X is a Banach space, we choose the projective norm defined in the following way. Every w P Ź d X is a finite sum of vectors of the form w α 1 ^. . . ^wα d where α is an index. As this representation is not unique, we introduce the projective norm of }w} defined by }w} :" inf ÿ It is easy to check that } ¨} is a genuine norm: w 0 ñ }w} 0. In the case X is a Hilbert space, we choose instead the Euclidean norm associated to the scalar product defined by extending by bilinearity to Ź d X ˆŹd X xw 1 ^. . . ^wd |w 1 1 ^. . . ^w1 d y :" detprxw i |w 1 j ys 1ďi, jďd q. The projective norm and the Euclidean norm are not equal in general when X is a Hilbert space. We call the completion of the algebraic exterior product with respect to the chosen norm, the normed exterior product, and we denote it by Ź d X. We point out that Ź d pX ˚q denotes the normed exterior product of X ˚and not the dual of Ź d X. If X is a Hilbert space, X ˚" X and

Ź d pX ˚q " Ź d X " p Ź d Xq ˚.
We define a canonical duality between Ź d pX ˚q and Ź d X by extending by linearity for every θ i P X ˚and w j P X, Let pu 1 , . . . , u d q be a linearly independent family of X, U " spanpu 1 , . . . , u d q, and 1 ď r ď d. For every sequence I " pi 1 , . . . , i r q of r ordered elements in t1, . . . , du, we denote u I :" u i 1 ^. . . ^ui r . Then tu I u I is a basis of Ź r X spanning Ź r U. The following lemma gives an estimate on the volume distortion of this basis in Ź r X.

xθ
Lemma A.36. Let X be a Banach space, 1 ď r ď d, pu 1 , . . . , u d q be a C-Auerbach family of X dual to a C-Auerbach family pη 1 , . . . , η d q of X ˚. Then tu I u I and tη I u I are a C r Σ r pXq-Auerbach families dual to each other of Ź r X and Ź r X ˚respectively.

Let 0 ď r ď d. We denote by pw, w 1 q P Ź r X ˆŹd´r X Þ Ñ w ^w1 P Ź d X the canonical bilinear map extending pw 1 ^. . . ^wr q ^pw r`1 ^. . . ^wd q " w 1 ^. . . ^wd .

Lemma A.37. If X is a Banach space and } ¨} is the projective norm, or if X is a Hilbert space and } ¨} is the Euclidean norm, then for every 0 ď r ď d @w P Ź r X, @w 1 P Ź d´r X, }w ^w1 } ď }w}}w 1 }.

The following lemma extends the volume distortion estimate of lemma A.36.

Lemma A.38. Let X be a Banach space, d ě 1, C ě 1, X " U ' V be a Corthogonal splitting of closed subspaces with dimpUq " d. Let pu 1 , . . . , u d q and pη 1 , . . . , η d q be C-Auerbach bases dual to each other spanning U and V K . Let V 1 Ă V be a subspace of V of dimension d 1 ě 0 and X 1 :" U ' V 1 . Define K d :" Σ d pXq ∆p d`d 1 d q p Ź d Xq 2 max 0ďrďd 1 ´Σr pXq ∆p d 1 r q p Ź r Xq 2 ¯∆ 2 pXq 8d ∆d pXq 8d .

Then every w P Ź d X 1 admits a unique decomposition w " ř I u I ^vI where the summation is realized over every ordered sequence I " pi 1 , . . . , i r q of t1, . . . , du, u I " u i 1 ^¨¨¨^u i r , v I P Ź d´r V 1 is any vector, and 0 ď r ď d. Moreover

C ´2d K ´1 d `ÿ I }v I } 2 ˘1{2 ď }w} ď C 2d K d `ÿ I }v I } 2 ˘1{2 .
Non-zero simple vectors in Ź d X are in one-to-one correspondence with subspaces of X of dimension d. We introduce the following notations to clarify this correspondence.

Lemma A.42. Let X be a Banach space, d ě 1, C ě 1, and X " U 0 ' V 0 be a C-orthogonal splitting of closed subspaces with dimpU 0 q " d. Let pu 1 , . . . , u d q and pη 1 , . . . , η d q be C-Auerbach families in X and X ˚respectively, dual to each over, such that U 0 " spanpu 1 , . . . , u d q and V 0 " spanpη 1 , . . . , η d q . Let Θ K P BpV K 0 , U K 0 q and V " GraphpΘ K q . Then • q V " spanp Ź d i"1 pId ' Θ K qη i q " Graphp p Θq for some p Θ P Bp q V 0 , p U 0 q,

• @w P q V 0 , p Θpwq " ´xŹ d i"1 pη i `ΘK η i q|wy Ź d i"1 u i ,

• } p Θ} ď C 2d Σ d pXq}Θ K }p1 `}Θ K }q d´1 .
The next theorem shows that the approximate singular value decomposition of index d of a bounded operator A P BpX, Yq admits a particular form when the operator is considered in the exterior product. Let Then 1. p Ź d i"1 e i q and p Ź d i"1 φ i q are p C ǫ,d -orthogonal bases dual to each over, p U " spanp Ź d i"1 e i q, q V " spanp Ź d i"1 φ i q , 2. p Ź d i"1 ẽi q and p Ź d i"1 φi q are p C ǫ,d -orthogonal bases dual to each over, p Ũ " spanp Ź d i"1 ẽi q, q Ṽ " spanp 

Ź d i"1 φi q , 3. Ź d X " p U ' q V, Ź d Y " p Ũ ' q Ṽ, dimp p Uq " dimp p Ũq " 1, 4. p A p U " p Ũ, p A q V Ă q Ṽ, p A ˚q ṼK " q V K , p A ˚p ŨK Ă p U K ,

  1 pk, nq}A k`n } σ d pk, n `1q ď D SVG e ´nτ }A k }σ d`1 pk `1, nq σ d pk, n `1q ď D SVG e ´nτ

Lemma 2 . 3 (

 23 Raghunathan estimate I). Suppose that the sequence of operators pA k q satisfies (SVG). Then for every k P Z and n ě 1, δpVpk, nq, Vpk, n `1qq ď C 2 ǫ,d D SVG e ´nτ , δpVpk, n `1q, Vpk, nqq ď C 2 ǫ,d D SVG e ´nτ {p1 ´C2 ǫ,d D SVG e ´nτ q.

Lemma 2 . 4 (

 24 Existence of the slow space). Let θ ˚P p0, 1q and N ˚satisfy D SVG e ´N˚τ ď θ ˚p1 ´θ˚q 6

Lemma 3 . 3 .

 33 Let θ ˚P p0, 1q and N ˚satisfy D SVG e ´N˚τ ď θ ˚p1 ´θ˚q 7 1 ´e´τ C 5 ǫ,d .

Lemma 3 . 4 (

 34 First crucial step). Let θ ˚P p0, 1q, N ˚satisfy equation (5), k P Z, and m ě N ˚. Denote p W k :" p Apk ´N˚, N ˚q p Upk ´N˚, mq. Then

Lemma A. 28 .

 28 Let X, Y be Banach spaces, A P BpX, Yq, and d ě 1. Then 1. σ d pAq ě σ d`1 pAq, 2. σ d pABq ď }A}σ d pBq, σ d pABq ď σ d pAq}B}, 3. σ d pAq ą 0 and σ d`1 pAq " 0 ðñ codim pkerpAqq " d. Another definition could be used instead of σ d pAq. It coincides with the first one when X and Y are Hilbert spaces. Definition A.29. Let A P BpX, Yq. For every d ě 1

The three definitions σ d pAq, σ 1 d pAq and σ 2 d

 2 pAq are comparable in Banach spaces, and equal in Hilbert spaces. Proposition A.32. Let X, Y be Banach spaces, d ě 1, and K d :" r∆ d pY ˚q∆ d pXqs d . Then for every A P BpX, Yq, σ d pAq ď σ 1 d pAq ď σ 2 d pAq ď K d σ d pAq.

  Proposition A.34. Let X, Y, Z be Banach spaces, A P BpX, Yq, B P BpY, Zq, d ě 1, and K d :" ∆d pXq d . Then 1. 1 ď Σ d pXq ď K d , 2. Σ d pBAq ď Σ d pBqΣ d pAq, 3. if U is a subspace of dimension d, Σ d pB|AUqΣ d pA|Uq ď Σ d pXqΣ d pBAq.

Theorem A. 35 ( 4 d∆ 3d 2 `4d`4 2 .

 35422 Approximate singular value decomposition). Let X, Y be Banach spaces, A P BpX, Yq, and d ě 1. Assume σ d pAq ą 0 and choose ǫ ą 0. Define ∆ d " maxp ∆d pXq, ∆d pYqq, C ǫ,d pX, Yq :" p1 `ǫq∆ 6d 2 `15d`

(A. 22 )

 22 In particular, for every Auerbach family pu 1 , . . . , u d q of X,Σ d pXq ´1 ď }u 1 ^. . . ^ud } ď 1.(A.23)

  p A :" Ź d A P Bp Ź d X, Ź d Yq. Theorem A.43. Let X, Y be Banach spaces, d ě 1, ǫ ą 0, and A P BpX, Yq satisfying σ d pAq ą 0. Let X " U ' V and Y " Ũ ' Ṽ, be the approximate singular value decomposition of index d and distortion C ǫ,d given in theorem A.35. Let p C ǫ,d :" C 17d ǫ,d Σ d pXqp ∆p 2d d q p Ź d Xqq 2 max 0ďrďd ´Σr pXqp ∆p d r q p Ź r Xqq 2 ¯∆ 2 pXq 24d ∆d pXq 28d .

1 .

 1 Vpk, nq " GraphpΘpk, nqq for some Θpk, nq P BpVpk, N ˚q, Upk, N ˚qq δpVpk, N ˚q, Vpk, nqq ď }Θpk, nq} ď θ ˚, δpVpk, nq, Vpk, N ˚qq ď θ ˚.

	2. pΘpk, nqq něN ˚is a Cauchy sequence, for every n ě 1
	}Θpk, n `1q ´Θpk, nq} ď θ ˚e´pn´N ˚qτ p1 ´e´τ q.
	3. Let Θ

k pN ˚q :" lim nÑ`8 Θpk, nq and F k :" GraphpΘ k pN ˚qq. Then δpVpk, N ˚q,

  

  This theorem is a direct consequence of theorem A.43. We now recall some notations introduced in item 3 and 4 of lemma 2.4. We consider E k and F k as graphs over a fixed splitting X " Ũpk, N ˚q ' Ṽpk, N ˚q and X " Upk, N ˚q ' Vpk, N ˚q respectively.

	6. p C ´1 ǫ,d	ś d i"1 σ i pk, nq ď } p Apk, nq| p Upk, nq} ď p C ǫ,d	ś d i"1 σ i pk, nq,
	7. p C ´1 ǫ,d	ś d i"1 σ i pk, nq ď } p Apk, nq ˚|q Ṽpk `n, nq K } ď p C ǫ,d	ś d i"1 σ i pk, nq,
	8. } p Apk, nq| q Vpk, nq} ď p C ǫ,d σ 1 pk, nq ¨¨¨σ d´1 pk, nqσ d`1 pk, nq,
	9. γp p Upk, nq, q Vpk, nqq ě p C ´1 ǫ,d , γp q Vpk, nq, p Upk, nqq ě p C ´1 ǫ,d .
				nqq ,
	4. dimp p Upk, nqq " dimp p Ũpk, nqq " 1,	
	5. p Apk, nq p Upk, nq " p Ũpk `n, nq, p Apk, nq q Vpk, nq Ă q Ṽpk `n, nq,

Notations 3.2. Let θ ˚P p0, 1q and N ˚satisfy equation (2). Then • E k " Graphp Θk pN ˚qq for some Θk pN ˚q : Ũpk, N ˚q Ñ Ṽpk, N ˚q,

  ´nN ˚, nN ˚q‰ e ´pn´1qN ˚τ,

	with K 1 d " ∆d pXq d . Part 2. We bound from above }Id ' Ξn`1 0 } in terms of }Id ' Ξn 0 }. Notice first that Γ´n " ĉ´n´1 pâ ´n´1 q ´1. Moreover Ân`1 ´n´1 " « ân`1 ´n´1 0 ĉn`1 ´n´1 dn`1 ´n´1 ff " " ân ´n 0 ĉn ´n dn ´n " â´n´1  0 ĉ´n´1 d´n´1 ,
	ĉn`1 ´n´1 " ĉn ´n â´n´1 `d n ´n ĉ´n´1 , ´n´1 q ´1 " ĉn ´n´1 pâ n`1 ĉn`1 ´np ân ´nq ´1 `d n ´n ĉ´n´1 pâ ´n´1 q ´1p ân ´nq ´1.

  αqN ˚µ inf ´1 FI e ´αN ˚µ inf něαN ˚Σd pk ´mN ˚, mN ˚`nq Σ d pk ´mN ˚, mN ˚qΣ d pk, nq . It is enough to bound from below in the definition of f mN ˚pkq, inf 1ďnďαN ˚Σd pk ´mN ˚, mN ˚`nq Σ d pk ´mN ˚, mN ˚q.Σ d pk, nq Consider 1 ď n ď αN ˚and choose p such that αN ˚ď p. Then Σ d pk ´mN ˚, mN ˚`nqΣ d pk `n, p ´nq ě Σ d pk ´mN ˚, mN ˚`pq.

	Proof. We claim for every m ě 1,	
	f mN ˚pkq ě K ´1 d D	
	mě1, něαN ˚Σd pk ´mN ˚, mN ˚`nq Σ d pk ´mN ˚, mN ˚qΣ d pk, nq	,
	where K d " ∆d pXq 8d 2 .	

  35, we have for every w P E k , We estimate γpF k , Ũpk, nqq by γpF k , E k q. Using equation (A.16) and item 1 of lemma 2.7, we have

	}Apk, nqw} ě |x φ|Apk, nqwy|, }Apk, nq ˚φ} ě C ´1 ǫ,d σ d pk, nq}, }Apk, nqw} ě x Apk, nq ˚φ |wy}Apk, nq ˚φ}, p@ φ P Ṽpk `n, nq K , } φ} " 1q (item 2 of theorem 2.2) }Apk, nq ˚φ} ě supt|xφ|wy| : φ P Vpk, nq K , }φ} " 1uC ´1 ǫ,d σ d pk, nq ě γpE k , Vpk, nqqC ´1 (equation (A.12)) ǫ,d σ d pk, nq}w}, ě 3 5 γpE k , F k qC ´1 ǫ,d σ d pk, nq}w}.
	Part 2.

  . . ^wd :" δ pw 1 ,...,w d q `G P Ź d X It is then easy to check that Ź d X is spanned by simple vectors, vectors of the form w 1 ^. . . ^wd . The canonical map pw 1 , . . . , w d q Þ Ñ w 1 ^. . . ^wd is multilinear alternating, and its image generates Ź d X. Moreover Ź d X satisfies the universal property: every multilinear and alternating function f : X d Ñ Y, where Y is any vector space, factorizes uniquely through a linear map F : Ź d X Ñ Y by Fpw 1 ^. . . ^wd q " f pw 1 , . . . , w d q.

  1 ^. . . ^θd |w 1 ^. . . ^wd y :" det `rxθ i |w j ys 1ďi, jďd ˘. (A.21) We notice that the canonical linear map Ź d pX ˚q Ñ p Ź d Xq ˚is injective but may have a norm Σ d pXq greater than one (see A.34 for a bound from above of Σ d pXq),

	@θ P @w j P X, Ź d pX ˚q, @w P sup }θ i }"1 x Ź d Ź d X, |xθ|wy| ď Σ d pXq}θ}}w}, i"1 θ i | Ź d j"1 w j y ě } Ź d j"1 w j }.

A.2 Grassmannian, gaps, and graphs

The geometry of Grassmannian spaces is a well studied object in the case of Hilbert spaces. For Banach spaces, the notion of angle is not canonically well-defined and several equivalent definition could be used. The d-dimensional Grassmannian space is the set, Grasspd, Xq, of all subspaces of X of dimension d ě 1. The d-dimensional coGrassmannian space is the set, coGrasspd, Xq, of all closed subspaces of X of codimension d. We denote by S X the unit sphere of X. We first recall two estimates (see also Kato [START_REF] Kato | Perturbation Theory for Linear Operators[END_REF], chapter 4, section 2.3); for every closed non trivial subspace N of X, distpu, Nq " suptxφ|uy : φ P N K , }φ} " 1u, @u P X, distpφ, N K q " suptxφ|uy : u P N, }u} " 1u, @φ P X ˚.

(A.6)

Definition A.17. Let X be a Banach space and M, N be two closed non-trivial subspaces of X. The maximal gap between M and N is δpM, Nq :" sup distpu, Nq : u P M, }u} "

" sup xφ|uy : u P M, φ P N K , }u} " }φ} " 1 ( .

We also define another equivalent distance dpM, Nq :" sup distpu, S N q : u P M, }u} " 1 ( , (A.8)

and observe that d satisfies the triangle inequality and the estimate δpM, Nq ď dpM, Nq ď 2δpM, Nq.

(A.9)

The notion of maximal gap between subspaces δpM, Nq was introduced by Gohberg and Marcus [START_REF] Gohberg | Two theorems on the opening of subspaces of Banach space[END_REF], (see also Kato [START_REF] Kato | Perturbation Theory for Linear Operators[END_REF], chapter 4, section 2.1), under the name opening or aperture. We use mainly δpM, Nq in two cases: either for dimpMq " dimpNq ă `8 or for codim pMq " codim pNq ă `8. We recall the duality identity (see equation (2.19) in Kato [START_REF] Kato | Perturbation Theory for Linear Operators[END_REF], chapter 4, section 2.3) δpM, Nq " δpN K , M K q, @M, N closed subspace of X.

(A.10)

In general the maximal gap is not symmetric, but for finite-dimensional subspaces of equal dimension we have (see [START_REF] Kato | Perturbation theory for nullity, deficiency and other quantities of linear operators[END_REF], Lemma 213

We use another estimate which enables us to recover the standard estimate in the Hilbert case.

Lemma A.18. Let X be a Banach space and d ě 1. Define K 2 :" minp2, ∆ 2 pXq 2 ∆ 2 pX ˚q2 q.

For every subspaces M, N of X, if dim M " dim N " d, then δpM, Nq ď K 2 δpN, Mq.

In particular, if X is a Hilbert space, δpM, Nq " δpN, Mq.

For complementary subspaces we use another notion called the minimal gap (see Kato [START_REF] Kato | Perturbation Theory for Linear Operators[END_REF], chapter 4, section 4.1).

Definition A.19. Let X be a Banach space and M, N be two closed non trivial subspaces of X. Theminimal gap is γpM, Nq :" inf distpu, Nq : u P M, }u} " 1 ( . (A.12)

A similar notion has been introduced in [START_REF] Froyland | Stochastic stability of Lyapunov exponents and Oseledets splitting for semi-invertible matrix cocycles[END_REF] KpM, Nq :" inf }u ´v}

The second definition is more symmetric and equivalent to the first one γpM, Nq ď KpM, Nq ď 2γpM, Nq.

The notion of minimal gap is equivalent to the notion of minimal angle θpM, Nq that is used in Gohberg and Krein [START_REF] Gohberg | Introduction to the Theory of Linear Nonselfadjoint Operators[END_REF] (chapter VI, section 5.1) where θpM, Nq :" arcsin γpM, Nq, θ P r0, π{2s, We use mainly the notion of minimal gap for complementary subspaces X " M'N where M and N are closed. The norm of the projector onto M parallel to N is not necessarily bounded. Whether it is bounded or not, we have (see equation (4.7) in Kato [START_REF] Kato | Perturbation Theory for Linear Operators[END_REF], chapter 4, section 4.1),

If X is an Hilbert space, γpM, M K q " 1. If two closed subspaces N and N 1 are complementary with respect to the same M, X " M ' N " M ' N 1 , then their minimal gaps are comparable (see equation (4.34) in Kato [START_REF] Kato | Perturbation Theory for Linear Operators[END_REF], chapter 4, section 4.5) provided δpN, N 1 q is small enough

Notice that V P NpU 0 q if and only if V K " GraphpΘ K q P NpU K 0 q for some Θ K P BpV K 0 , U K 0 q.

Lemma A.23. Let X be a Banach space, d ě 1, and X " U 0 ' V 0 be a splitting of closed subspaces of X where dimpU 0 q " d. Assume U 0 " spanpu 1 , . . . , u d q and V 0 " spanpη 1 , . . . , η d q . Let V P NpU 0 q, Θ P BpV 0 , U 0 q such that V " GraphpΘq, and

In the following lemma, we show that the norm of Id ' Θ and the minimal gap γpU, V 0 q are inverse proportional. We interpret

as an isomorphism between U 0 and U and call it the canonical isomorphism between U 0 and U parallel to V 0 . Notice that pId ' Θq ´1 " pπ U 0 |V 0 |Uq.

Lemma A.24. Let X be a Banach space and X " U 0 'V 0 be a topological splitting of X of subspaces of finite dimension or codimension. Then for every U P NpV 0 q and Θ P BpU 0 , V 0 q such that U " GraphpΘq, γpU 0 , V 0 q ď γpU, V 0 q}Id ' Θ} ď 1.

The following lemma shows that the maximal gap between two subspaces U and U 1 of NpV 0 q sufficiently close to some fixed U 0 P NpV 0 q is equivalent to the distance }Θ ´Θ1 }.

Lemma A.25. Let X be a Banach space, X " U 0 ' V 0 be a topological direct sum of subspaces of X of finite dimension or codimension. For every Θ, Θ 1 P BpU 0 , V 0 q define U :" GraphpΘq and U 1 :" GraphpΘ 1 q. Then 1. if δpU, U 0 q ă γpV 0 , U 0 q, then }Θ} ď δpU, U 0 q γpV 0 , U 0 q ´δpU, U 0 q , 2. if δpU, U 0 q ă γpV 0 , U 0 q and δpU 1 , Uq ă γpV 0 , Uq, then

Definition A.39. Let X be a vector space and d ě 1.

1. If U is a subspace of X of dimension d, we call

2. If V is a subspace of codimension d, we call

Then dimp p Uq " 1 and codim p q Vq " 1.

If pη 1 , . . . , η d q are linearly independent and V " spanpη 1 , . . . , η d q , then q V is the kernel of a simple linear form of

The following lemma compares the angle between U and V and the angle between p U and q V. Using equation (A.15), we also obtain a comparison between }π U|V } and }π p U| q V }, (see (A.4) for the definition of π U|V ). Lemma A.40. Let X be a Banach space, d ě 1, X " U ' V be a splitting of closed subspaces with dimpUq " d and K d :" ∆2 pXq 4 ∆d pXq 3 . Then

V }. In the case the splitting X " U ' V is C-orthogonal, using lemma A.9, the norm of the two projectors admits a simpler estimate.

Lemma A.41. Let X be a Banach space, d ě 1, C ě 1, X " U ' V be a Corthogonal splitting with dim U " d and K d :" ∆2 p Ź d Xq 3 . Then

Angles between subspaces can also be measured by the norm of some graphs over a reference splitting as in lemma A.24. Consider a splitting X " U 0 ' V 0 with dimpU 0 q " d and a subspace V P NpU 0 q. Then V " GraphpΘq for some operator Θ P BpV 0 , U 0 q or equivalently, as explained in lemma A.23, V K " GraphpΘ K q for some Θ

and in particular q V P Np Û0 q is equal to the graph of some p Θ P Bp q V 0 , p U 0 q. The following lemma gives an estimate of } p Θ} with respect to }Θ K }.