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The inverse problem associated to the Erdős-Ginzburg-Ziv constant and the η-constant is solved for finite abelian groups of the form C 2 ⊕ C 2 ⊕ C 2n where n ≥ 2 is an integer.

Introduction

For (G, +, 0) a finite abelian group with exponent exp(G) the Erdős-Ginzburg-Ziv constant, denoted by s(G), is defined as the smallest nonnegative integer ℓ such that each sequence over G of length at least ℓ has a subsequence of length exp(G) whose sum is 0. The η-constant, denoted by η(G), is defined in the same way except that the length of the subsequence is at most exp(G) and at least 1.

These constants have been studied since the early 1960s; for an overview we refer to the survey article [START_REF] Gao | Zero-sum problems in finite abelian groups: a survey[END_REF], in particular to Sections 6 and 7. Their exact values are only known for groups of rank at most two (see [START_REF] Gao | Zero-sum problems in finite abelian groups: a survey[END_REF]Theorem 6.5] and [START_REF] Reiher | On Kemnitz conjecture concerning lattice-points in the plane[END_REF][START_REF] Savchev | Kemnitz conjecture revisited[END_REF] for key-contributions), and for a few special types of other groups. On the one hand, the approach used for groups of rank two can be adapted to apply to some other groups (see [START_REF] Luo | Short zero-sum sequences over abelian p-groups of large exponent[END_REF][START_REF] Roy | On zero-sum subsequences in a finite abelian p-group of length not exceeding a given number[END_REF]). On the other hand, there are various results for homocyclic groups, that is, groups of the form C r n where C n denotes a cyclic group of order n and groups that resemble (we refer to [START_REF] Fan | On the Erdős-Ginzburg-Ziv constant of finite abelian groups of high rank[END_REF]Theorem B] for an overview). There is also considerable work on bounds; we refer to [START_REF] Fox | Erdős-Ginzburg-Ziv constants by avoiding three-term arithmetic progressions[END_REF] and the references therein for recent results on upper bounds, and we refer to [START_REF] Edel | Sequences in abelian groups G of odd order without zero-sum subsequences of length exp(G)[END_REF] for lower bounds.

Only recently the exact values were determined for groups of the form C 2 ⊕ C 2 ⊕ C 2n (see [START_REF] Fan | Remarks on tiny zero-sum sequences[END_REF]Theorem 1.3] and [4, Theorem 1.2.1]); this was further extended to groups of the form C 2 ⊕ C 2m ⊕ C 2mn in [START_REF] Girard | Direct zero-sum problems for certain groups of rank three[END_REF]. Moreover, for C 2 ⊕ C 2 ⊕ C 2 ⊕ C 2n the value of the η-constant is known for all n ≥ 1, and the value of the Erdős-Ginzburg-Ziv constant is known for n ≥ 36 (see [START_REF] Fan | On the Erdős-Ginzburg-Ziv constant of groups of the form C r 2 ⊕ Cn[END_REF]Theorem 1.2.2]).

The associated inverse problems consist in determining all sequences of length s(G)-1 (respectively η(G)-1) that have no zero-sum subsequence of length exp(G) (respectively of length at most exp(G) and at least 1). For η(G) the inverse problem is solved for groups of rank at most two. For s(G) the inverse problem is solved for cyclic groups, and for groups of rank at most two there is a well-supported conjecture and partial results towards this conjecture are known (see [START_REF] Schmid | Restricted inverse zero-sum problems in groups of rank 2[END_REF]). For recent results for certain nonabelian groups see [START_REF] Oh | On Erdős-Ginzburg-Ziv inverse theorems for Dihedral and Dicyclic groups[END_REF].

In the current paper, we solve the inverse problems associated to η(G) and to s(G) for groups of the form C 2 ⊕C 2 ⊕C 2n . To solve the inverse problem associated to η(G), which is done in Theorem 4.1, we use that the structure of minimal zero-sum sequences of maximal length is known for this type of groups (see Theorem 4.2). We recall that a similar approach was used to solve the inverse problem associated to η(G) for groups of rank two (see [START_REF] Gao | On long minimal zero sequences in finite abelian groups[END_REF]Theorem 10.7] or [START_REF] Reiher | A proof of the theorem according to which every prime number possesses property B[END_REF]Section 11.3]). Then, the result for the η-constant is used to solve the problem for the Erdős-Ginzburg-Ziv constant (see Theorem 5.1). Other tools used in the proof are well-known results on the inverse problem for cyclic groups that we recall in Section 3 as well as ideas used in the proofs of the corresponding direct results mentioned above.

Conjecturally, there is a tight link between these two constants, namely Gao conjectured (see [START_REF] Gao | Zero-sum problems in finite abelian groups: a survey[END_REF]Conjecture 6.5]) that s(G) = η(G) + exp(G) -1 holds for all finite abelian groups. Furthermore, a close link can also be noted for the structure of extremal sequences in cases where the inverse problem is solved. A close link can also be observed in the current case, yet the exact link is more complex to describe than for groups of rank at most two and for homocyclic groups; we discuss this in more detail after Theorem 5.1.

Preliminaries

The notation used in this paper basically matches the one used in [START_REF] Gao | Zero-sum problems in finite abelian groups: a survey[END_REF][START_REF] Geroldinger | Additive group theory and non-unique factorizations[END_REF][START_REF] Geroldinger | Non-unique factorizations. Algebraic, combinatorial and analytic theory[END_REF][START_REF] Grynkiewicz | Structural Additive Theory[END_REF]. For definiteness, we give a brief summary.

In this paper, intervals are intervals of integers, specifically [a, b] = {z ∈ Z : a ≤ z ≤ b}.

Let (G, +, 0) be a finite abelian group. For g in G, let ord(g) denote its order in G. For a subset A ⊂ G, let A denote the subgroup it generates; A is called a generating set if A = G. Elements g 1 , . . . , g k ∈ G are called independent if k i=1 a i g i = 0, with integers a i , implies that a i g i = 0 for each i ∈ [1, k]; a set is called independent when its elements are independent. We refer to an independent generating set as a basis.

The exponent of G is the least common multiple of the orders of elements of G, it is denoted by exp(G); the rank of G, denoted by r(G), is the minimum cardinality of a generating subset of G. For n a positive integer, C n denotes a cyclic group of order n.

By a sequence over G we mean an element of the free abelian monoid over G, denoted by F (G). We use multiplicative notation for this monoid; its neutral element is denoted by 1. For a sequence S = g∈G g vg where v g is a nonnegative integer, for each g ∈ G, we denote by:

• v g (S) = v g the multiplicity of g in S. • h(S) = max{v g (S) : g ∈ G} the height of S. • σ(S) = g∈G v g (S)g the sum of S. • |S| = g∈G v g (S) the length of S. • supp(S) = {g ∈ G | v g (S) > 0} the support of S.
Moreover, for h ∈ G, one denotes by h + S the sequence where each element in S is translated by h, that is, h + S = g∈G (h + g) vg .

When one writes S = g 1 • • • g ℓ with g i ∈ G, then the g i are not necessarily distinct, yet they are determined uniquely up to ordering. A sequence for which the g i are pairwise distinct, equivalently v g (S) ≤ 1 for each g ∈ G, is called squarefree. A nonempty sequence over G of length at most exp(G) is called short.

Let S be a sequence over G. A divisor T of S in F (G) is called a subsequence of S; by ST -1 we denote the sequence such that T (ST -1 ) = S. Subsequences T 1 , . . . , T k of S are called disjoint if the product

T 1 • • • T k is also a subsequence of S.
An element s ∈ G is a subsum of S if s = σ(T ) for some 1 = T | S. The sequence S is called a zero-sum free sequence if 0 is not a subsum. If σ(S) = 0, then S is called a zero-sum sequence; if, in addition, one has σ(T ) = 0 for all proper and nonempty subsequences T of S, then S is called a minimal zero-sum sequence.

For L a set of integers, we set

Σ L (S) = {σ(T ) : 1 = T | S with |T | ∈ L}.
For Σ Z ≥1 (S) we just write Σ(S), and for Σ {k} (S) we write Σ k (S). Moreover, s L (G) is the smallest nonnegative integer ℓ (if one exists) such that for each sequence S ∈ F (G) with |S| ≥ ℓ, one has 0 ∈ Σ L (S); if no such integer exists, then one sets s L (G) = ∞. The constants we mentioned in the introduction are natural special cases; the choice of exp(G) in the definitions is natural, for example it is the smallest integer for which the respective constants are finite.

• The Davenport constant, denoted by

D(G), is s Z ≥1 (G). • The Erdős-Ginzburg-Ziv constant, denoted by s(G), is s exp(G) (G). • The η-constant, denoted by η(G), is s [1,exp(G)] (G).
The Davenport constant of G is also equal to the maximal length of a minimal zero-sum sequence over G.

Results for cyclic groups and auxiliary results

The η(G) and s(G) invariants for cyclic groups are well-known and the inverse problems are solved. Indeed, in the case of cyclic groups also the structure of sequences considerably shorter than η(G) -1 and s(G) -1 without the respective zero-sum subsequences is known (for example, see [START_REF] Gao | On the structure of long zero-sum free sequences and n-zero-sum free sequences over finite cyclic groups[END_REF][START_REF] Savchev | Long zero-free sequences in finite cyclic groups[END_REF][START_REF] Savchev | Long n-zero-free sequences in finite cyclic groups[END_REF][START_REF] Yuan | On the index of minimal zero-sum sequences over finite cyclic groups[END_REF]). We only recall a special case we need for our proofs. While the result below is formulated for short zero-sum subsequences, since this fits the current context, having no short zerosum subsequence and having no nonempty zero-sum subsequence are equivalent for cyclic groups, and the result is usually phrased in the latter form.

The following result is a direct consequence of [START_REF] Savchev | Long zero-free sequences in finite cyclic groups[END_REF]Theorem 8] (also see [START_REF] Grynkiewicz | Structural Additive Theory[END_REF]Theorem 11.1]). In the former case Σ(T ) = H \ {0, -g}, in the latter case Σ(T ) = H \ {0} (except for n = 3 where the latter case coincides with the former).

For the following results see [START_REF] Savchev | Long n-zero-free sequences in finite cyclic groups[END_REF], especially the discussion after Corollary 7 there.

Theorem 3.2. Let H ≃ C n where n ≥ 3 is an integer.

(1) Every sequence T of length |T | = s(H) -1 = 2n -2 not containing any short zero-sum sequence has the form T = g n-1 h n-1 where g, h ∈ H and ord(gh) = n. (2) Every sequence S of length |T | = s(H) -2 = 2n -3 not containing any short zero-sum sequence has the form:

(a) T = g n-1 h n-2 where ord(g -h) = n or (b) T = g n-1 h n-3 (2h -g) where ord(g -h) = n.
In the former case Σ n-2 (T ) = H \{-g-h}, in the latter case Σ n-2 (T ) = H (except for n = 3 where the latter case coincides with the former).

We give two results on groups of the form C r 2 that are needed for the proofs of our main results. For the following well-known result see, e.g., [START_REF] Freeze | Remarks on a generalization of the Davenport constant[END_REF]Theorem 7.2].

Lemma 3.3. For r ≥ 2, one has s [1,3] (C r 2 ) = 1 + 2 r-1 .
We also need a result on zero-sum sequences of length 4. Lemma 3.4. Let S be a squarefree sequence of length 5 over C 3 2 . Then S has a unique zero-sum subsequence of length 4.

Proof. Since the property is invariant under translation of the sequence, we can assume that 0 | S. The four nonzero elements in S cannot be contained in a proper subgroup, and thus S contains three independent elements f 1 , f 2 , f 3 .

Let g denote the fourth nonzero element. Either g = f 1 +f 2 +f 3 and the sequence gf 1 f 2 f 3 is the unique zero-sum subsequence of length four, or g is the sum of two of the independent elements, say g = f 1 + f 2 , and 0gf 1 f 2 is the unique zero-sum subsequence of length four.

Inverse problem associated to

η (C 2 ⊕ C 2 ⊕ C 2n ) for n ≥ 2
We determine the structure of all sequences over C 2 ⊕ C 2 ⊕ C 2n , for n ≥ 2, of length η (C 2 ⊕ C 2 ⊕ C 2n ) -1 = 2n + 3 that do not have a short zero-sum subsequence. The case n = 1, that is, C 3 2 , is different yet well-known and direct. For completeness we recall that η(C 3 2 ) -1 = 7, and the only example of a sequence of length 7 without zero-sum subsequence of length 2 is the squarefree sequence of all nonzero elements; in fact, this is true for any group of the form C r 2 , because the only zero-sum sequence of length at most exp(G) are 0 and

g 2 for g ∈ C r 2 . Theorem 4.1. Let G ≃ C 2 ⊕C 2 ⊕C 2n , where n ≥ 2. A sequence S over G of length |S| = η(G) -1 = 2n + 3 contains no short zero-sum subsequence if and only if there exists a basis {f 1 , f 2 , f 3 } of G, where ord(f 1 ) = ord(f 2 ) = 2 and ord(f 3 ) = 2n, such that S is equal to one of the following sequences: (η1) f 2n-1-2v 3 (f 3 + f 2 ) 2v+1 f 2 (af 3 + f 1 ) (1 -a)f 3 + f 2 + f 1 with v ∈ [0, n -1] and a ∈ [2, n -1]. (η2) f 2n-1 3 (af 3 + f 2 ) (1 -a)f 3 + f 2 (bf 3 + f 1 ) (1 -b)f 3 + f 1 with a, b ∈ [2, n -1] and a ≥ b. (η3) 2n+1 i=1 (f 3 +d i )f 2 f 1 with S ′ = 2n+1 i=1 d i ∈ F ( f 1 , f 2 ) and σ(S ′ ) / ∈ supp(S ′ ).
For n = 2, in fact only the last case can occur as [2, n-1] is empty. To prove this result we use that the structure of all minimal zero-sum subsequences of maximal length is known (see [START_REF] Schmid | The inverse problem associated to the Davenport constant for C 2 ⊕ C 2 ⊕ C 2n and applications to the arithmetical characterization of class groups[END_REF]Theorem 3.13]).

Theorem 4.2. Let G ≃ C 2 ⊕ C 2 ⊕ C 2n , where n ≥ 1. A sequence S over G is a minimal zero-sum sequence of length |S| = D(G) if and only if there exists a basis {f 1 , f 2 , f 3 } of G, where ord(f 1 ) = ord(f 2 ) = 2 and ord(f 3 ) = 2n
, such that S is equal to one of the following sequences:

(D1) f v3 3 (f 3 + f 2 ) v2 (f 3 + f 1 ) v1 (-f 3 + f 2 + f 1 ) with v i ∈ N odd, v 3 ≥ v 2 ≥ v 1 and v 3 + v 2 + v 1 = 2n + 1. (D2) f v3 3 (f 3 + f 2 ) v2 (af 3 + f 1 )(-af 3 + f 2 + f 1 ) with v 2 , v 3 ∈ N odd v 3 ≥ v 2 and v 2 + v 3 = 2n and a ∈ [2, n -1]. (D3) f 2n-1 3 (af 3 + f 2 )(bf 3 + f 1 )(cf 3 + f 2 + f 1 ) with a + b + c = 2n + 1 where a ≤ b ≤ c, and a, b ∈ [2, n -1], c ∈ [2, 2n -3] \ {n, n + 1}. (D4) f 2n-1-2v 3 (f 3 + f 2 ) 2v f 2 (af 3 + f 1 ) (1 -a)f 3 + f 2 + f 1 with v ∈ [0, n -1] and a ∈ [2, n -1]. (D5) f 2n-2 3 (af 3 + f 2 ) (1 -a)f 3 + f 2 (bf 3 + f 1 ) (1 -b)f 3 + f 1 with a ≥ b and a, b ∈ [2, n -1]. (D6) 2n i=1 (f 3 + d i )f 2 f 1 where S ′ = 2n i=1 d i ∈ F ( f 1 , f 2 ) with σ(S ′ ) = f 1 + f 2 .
As above, for n ≤ 2, only some of these cases occur, namely the first and the last. We now prove our result.

Proof of Theorem 4.1. Let G ≃ C 2 ⊕ C 2 ⊕ C 2n where n ≥ 2, and let H ≃ C n be the subgroup of G such that G/H ≃ C 3 2 .
Note that there is indeed a unique such subgroup H. We use the inductive method with

H ֒→ G π → G/H.
Let S be a sequence over G such that |S| = η(G) -1 = 2n + 3 that contains no short zero-sum subsequence.

First, let us prove that S contains no element g in H. Indeed, if it were the case, setting g = T 0 , we have ST -1

0 whose length is |ST -1 0 | = 2n+ 2 = η(G/H)+ 2(n-3) would contain n-2 disjoint nonempty subsequences T 1 , . . . , T n-2 such that |T i | ≤ 2 and σ (T i ) ∈ H for all i ∈ [1, n -2]. In particular, S = T 0 T 1 • • • T n-2 S 0 where S 0 has length |S 0 | ≥ 6.
Now, note that all elements of π(S 0 ) must be nonzero and distinct, otherwise we could extract from S 0 yet another subsequence

T n-1 | S 0 satisfying |T n-1 | ≤ 2 and σ (T n-1 ) ∈ H. Then, we have T = n-1 i=0 σ(T i ) is a sequence over H of length |T | = n, so it contains a nonempty zero-sum subsequence, say i∈I σ(T i ) = 0 with ∅ = I ⊂ [0, n -1]. Thus, i∈I T i is a subsequence of S with sum 0 and length at most 2|I| ≤ 2n.
However, a squarefree sequence of at least 6 nonzero elements over G/H ≃ C 3 2 has a zero-sum subsequence of length at most 3 (see Lemma 3.3). Applying this to π(S 0 ) gives that S 0 contains a subsequence

T n-1 of length |T n-1 | = 3 such that σ (T n-1 ) ∈ H. Then, again T = n-1 i=0 σ(T i ) is a sequence over H of length |T | = n.
It contains a nonempty zero-sum subsequence, and whence n-1 i=0 T i contains a nonempty zero-sum subsequence. Since | n-1 i=0 T i | ≤ 2n, it follows that this is a short zero-sum subsequence. Since n-1 i=0 T i is a subsequence of S, we see that S contains a short zero-sum subsequence, which is a contradiction. Thus, we know that S contains no element in H. Similarly as above, since

|S| = 2(n -3) + 9 ≥ η(G/H) + 2(n -3), there exist n -2 disjoint subsequences T 1 , . . . , T n-2 of S such that σ (T i ) ∈ H and |T i | ≤ 2 for all i ∈ [1, n -2]; yet, since S contains no element from H in fact |T i | = 2 for all i ∈ [1, n -2]. In particular, S = T 1 • • • T n-2 S 0 where S 0 has length |S 0 | = 7.
We now try to obtain further information on both S 0 and the sequences T i for i ∈ [1, n-2]. On the one hand, at most one of the elements in π(S 0 ) has multiplicity at least 2 and none has multiplicity at least 4. To see this it suffices to note that otherwise we could extract from S 0 two disjoint subsequences T n-1 and T n of length 2 whose sums are in H. Then, arguing as above, S would contain a short zero-sum subsequence, a contradiction. In particular, we have | supp(π(S 0 ))| ≥ 5.

On the other hand, For n = 2, this directly yields that σ(U ) = g where g is the nonzero element of H. For n = 3, we first infer that H \ -(Σ (T ) ∪ {0}) = ∅, which by Theorem 3.1 implies that T = g n-2 for some g ∈ H with ord(g) = n, and σ(U ) = g. It follows that there exists an element g ∈ H satisfying ord(g) = n such that S can be decomposed as

T = n-2 i=1 σ(T i ) is a sequence over H of length |T | = n -2,
T 1 • • • T n-2 S 0 where σ(T i ) = g for all i ∈ [1, n -2], and for each U | S 0 such that |U | ≤ 4 and σ (U ) ∈ H one has σ(U ) = g.
Case 1. π(S 0 ) is squarefree. Then, S 0 itself is squarefree and supp(π(S 0 )) = G/H \{0}. We now fix a basis {e 1 , e 2 , e 3 } of G/H; this quotient group is isomorphic to C 3 2 . For every set ∅ = I ⊂ {1, 2, 3}, we write e I = i∈I e i and we denote by a I the unique element of S 0 such that π(a I ) = e I . We have U 0 = a {1,2} a {2,3} a {1,3} , U k = a i a j a {i,j} and V i = a {i,j} a {i,k} a j a k for {i, j, k} = {1, 2, 3} are subsequences of S 0 satisfying |U k | = 3 and σ(U k ) ∈ H as well as |V i | = 4 and σ(V i ) ∈ H. In addition, we have

U 0 U 1 U 2 U 3 = V 1 V 2 V 3 .

By the argument above it follows that σ(U

k ) = σ(V i ) = g for all i, k ∈ [1, 3], which yields 4g = σ(U 0 U 1 U 2 U 3 ) = σ(V 1 V 2 V 3 ) = 3g. It follows that g = 0, which is a contradiction.
Case 2. π(S 0 ) is not squarefree. We recall that there is a unique element with multiplicity at least 2. In this case, S 0 contains a subsequence

T n-1 | S 0 such that |T n-1 | = 2 and σ (T n-1 ) ∈ H. We get again σ(T n-1 ) = g. Thus S = T 1 • • • T n-1 S ′ 0 where σ (T i ) = g for all i ∈ [1, n -1] and S ′ 0 has length |S ′ 0 | = 5.
We know that π(S ′ 0 ) is squarefree and does not contain 0. By Lemma 3.4, S ′ 0 contains a unique subsequence U = stuv | S ′ 0 such that |U | = 4 and σ (U ) ∈ H. First, we have σ(U ) = s+t+u+v = g. Now, setting S ′ 0 = U w, and since π(s) + π(t), π(s) + π(u), π(s) + π(v) are nonzero and pairwise distinct elements of the set G/H \ {0, π(s), π(t), π(u), π(v)} containing π(w), exactly one of them, say π(s) + π(t), is equal to π(w). Thus π(w) = π(s) + π(t) = π(u) + π(v). Now, U 1 = wst and U 2 = wuv are two subsequences of

S ′ 0 satisfying |U 1 | = |U 2 | = 3 and σ(U 1 ), σ(U 2 ) ∈ H. This yields σ(U 1 ) = w + s + t = g and σ(U 2 ) = w + u + v = g, so that s + t = u + v. Since also s + t + u + v = g, it follows that 2w = g and w = s + t = u + v. In addition, V = T 1 • • • T n-1 U is a zero-sum subsequence of S of length |V | = 2(n -1) + 4 = 2n + 2 = D(G).
Since S contains no short zero-sum subsequence, it cannot be decomposed into two zero-sum subsequences, as one of them would be short. That is, V is a minimal zero-sum sequence over G of length |V | = D(G).

Let us now give a summary of everything we proved so far. For every sequence S over G such that |S| = 2n + 3 and containing no short zero-sum subsequence, there exists an element g ∈ H with ord(g) = n such that S can be decomposed as

T 1 • • • T n-1 S ′ 0 where T 1 , . . . , T n-1 are subsequences of S that satisfy |T i | = 2 and σ (T i ) = g for all i ∈ [1, n -1]
, and where S ′ 0 is a sequence of length |S ′ 0 | = 5. Moreover, in every such decomposition of S, the sequence π(S ′ 0 ) is squarefree and does not contain 0, more precisely the sequence S ′ 0 is squarefree and can be uniquely decomposed as S ′ 0 = U w where U | S ′ 0 satisfies |U | = 4 and σ(U ) ∈ H. Also, we can write U = stuv so that the equalities s

+ t = u + v = w and σ(U ) = 2w = g hold. Finally, V = T 1 • • • T n-1 U is a minimal zero-sum sequence over G of length |V | = 2n + 2 = D(G).
In particular, using Theorem 4.2, we know there exists a basis {f 1 , f 2 , f 3 } of G, where ord(f 1 ) = ord(f 2 ) = 2 and ord(f 3 ) = 2n, such that V has one out of six possible forms. We treat each of these cases separately; we recall that for n = 2 only the first and the last can occur, so that for the others we can assume that n ≥ 3.

If V is of type (D1), then in order to have a support of size at least five, S ′ 0 must contain one copy of every member of supp(V ). Since the four elements of supp(V ) sum up to 2f 3 ∈ H, we obtain

U = f 3 (f 3 + f 2 )(f 3 + f 1 )(-f 3 + f 2 + f 1
), but it is easily seen that U cannot be decomposed as the product of two sequences of length 2 having the same sum.

If V is of type (D2), then in order to have a support of size at least five, S ′ 0 must contain one copy of every member of supp(V ). Since the four elements of supp(V ) sum up to 2f 3 ∈ H, we obtain

U = f 3 (f 3 + f 2 )(af 3 + f 1 )(-af 3 + f 2 + f 1 ) with a ∈ [2, n -1].
In addition, U can be decomposed as the product of two sequences of length 2 having the same sum only if 1a = 1 + a (mod 2n), that is to say only if a ∈ {0, n}, which is a contradiction.

If V is of type (D3), then in order to have a support of size at least five, S ′ 0 must contain one copy of every member of supp(V ). Since the four elements of supp(V ) sum up to 2f 3 ∈ H, we obtain If V is of type (D4), then in order to have a support of size at least five, S ′ 0 must contain at least four elements of supp(V ). First, note that S ′ 0 contains at most one copy of f 3 and at most one copy of f 3 + f 2 . In other words, T 1 • • • T n-1 contains at least 2n -2v -2 copies of f 3 and at least 2v -1 copies of

U = f 3 (af 3 + f 2 )(bf 3 + f 1 )(cf 3 + f 2 + f 1 ) with a+b+c = 2n+1
f 3 + f 2 . Assume that there exists no i ∈ [1, n -1] satisfying T i = f 2 3 or T i = (f 3 + f 2 ) 2 . Since (2n -2v -2) + (2v -1) = 2n -3 ≥ n, there exists i ∈ [1, n -1] satisfying S i = f 3 (f 3 + f 2 ) so that g = 2f 3 + f 2 . Yet, this is not an element of H, which is a contradiction. It follows that T i = f 2 3 or T i = (f 3 + f 2 ) 2 for at least one i ∈ [1, n -1] which yields g = 2f 3 . In particular, for every i ∈ [1, n -1] such that T i contains (f 3 + f 2 ), we have T i = (f 3 + f 2 ) 2 so that T 1 • • • T n-1 contains
an even number of copies of f 3 + f 2 . Therefore, the number of copies of f 3 + f 2 contained in S ′ 0 , which is at most one, must be zero. We thus obtain

U = f 3 f 2 (af 3 +f 1 ) (1-a)f 3 +f 2 +f 1 with a ∈ [2, n -1].
Since 1 + a = 1a (mod 2n) and 1 + (1a) = a (mod 2n), there is only one possible decomposition of U as the product of two sequences of length 2 having the same sum, which yields w = f 3 + f 2 . Therefore,

S = f 2n-1-2v 3 (f 3 + f 2 ) 2v+1 f 2 (af 3 + f 1 ) (1 -a)f 3 + f 2 + f 1 with v ∈ [0, n -1] and a ∈ [2, n -1]
. It remains to check that this sequence contains no short zero-sum subsequence. Indeed, since V is a minimal zero-sum sequence over G, any short zero-sum subsequence S ′ | S must satisfy (

f 3 + f 2 ) 2v+1 | S ′ . Now, if S ′ contains neither (af 3 + f 1 ) nor ((1 -a)f 3 + f 2 + f 1 ), we must have S ′ = f 2n-1-2v 3 (f 3 + f 2 ) 2v+1 f 2 so that |S ′ | = 2n + 1 > 2n which is a contradiction. If S ′ contains either (af 3 + f 1 ) or (1 -a)f 3 + f 2 + f 1 then it must contain both of them, which yields S ′ = f 2n-2-2v 3 (f 3 + f 2 ) 2v+1 (af 3 + f 1 ) (1 -a)f 3 + f 2 + f 1 so that |S ′ | = 2n + 1 > 2n, which is a contradiction.
If V is of type (D5), then in order to have a support of size at least five, S ′ 0 must contain at least four elements of supp(V ). Since S ′ 0 contains at most one copy of f 3 , the sequence T 1 • • • T n-1 contains at least 2n -3 ≥ n copies of f 3 . This implies that every T i contains at least one copy of f 3 and that at most one of them is different from f 2 3 . This yields g = 2f 3 so that T i = f 2 3 for every i ∈ [1, n -1]. Therefore, the elements (af 3 + f 2 ), (1a)f 3 + f 2 , (bf 3 + f 1 ) and

(1b)f 3 + f 1 belong to S ′ 0 and since their sum is equal to 2f 3 ∈ H, we have

U = (af 3 +f 2 ) (1-a)f 3 +f 2 (bf 3 +f 1 ) (1-b)f 3 +f 1 with a ≥ b and a, b ∈ [2, n-1].
Now, let w = αf 3 + d where α ∈ [0, 2n -1] and d ∈ f 1 , f 2 . On the one hand, 2w = g = 2f 3 yields α ∈ {1, n + 1}. On the other hand, since w must be equal to the sum of two elements of U , we have d ∈ {0, f 1 + f 2 }.

In case d = 0, we get that α = 1 which yields w = f 3 so that

S = f 2n-1 3 (af 3 + f 2 ) (1 -a)f 3 + f 2 (bf 3 + f 1 ) (1 -b)f 3 + f 1 with a ≥ b and a, b ∈ [2, n -1]
. It remains to check that this sequence contains no short zero-sum subsequence. Indeed, since V is a minimal zero-sum sequence over G, any short zero-sum subsequence

S ′ | S must satisfy f 2n-1 3 | S ′ , which implies |S ′ | = 2n so that S ′ = f 2n 3 ∤ S, a contradiction. In the case d = f 1 + f 2 and α = 1, we have w = f 3 + f 2 + f 1 . Since a + b = (1 -a) + (1 -b) (mod 2n) if and only if a + b = n + 1 = 1 (mod 2n), we have a + (1 -b) = (1 -a) + b (mod 2n) that is to say a = b. We thus obtain S = f 2n-2 3 (af 3 + f 2 ) (1 -a)f 3 + f 2 (af 3 + f 1 ) (1 -a)f 3 + f 1 (f 3 + f 2 + f 1 ) with a ∈ [2, n -1]. Yet, S ′ = f 2n-2a-1 3 (af 3 + f 2 )(af 3 + f 1 )(f 3 + f 2 + f 1 ) | S is a nonempty zero-sum subsequence of length |S ′ | = 2n -2a + 2 ≤ 2n.
In the case d = f 1 + f 2 and α = n + 1, we have w = (n + 1) 

f 3 + f 2 + f 1 . Since a+(1-b) = (1-a)
S = f 2n-2 3 (af 3 +f 2 ) (1-a)f 3 +f 2 (n+1-a)f 3 +f 1 (a-n)f 3 +f 1 (n+1)f 3 +f 2 +f 1 with a ∈ [2, n-1]. Yet, S ′ = f 2n-2a-1 3 (af 3 +f 2 ) (a-n)f 3 +f 1 (n+1)f 3 +f 2 +f 1 | S is a nonempty zero-sum subsequence of length |S ′ | = 2n -2a + 2 ≤ 2n. If V is of type (D6), we have V = 2n i=1 (f 3 + d i )f 2 f 1 where 2n i=1 d i ∈ F ( f 1 , f 2 ) is such that 2n i=1 d i = f 1 + f 2 . Then w = f 3 + d for some d ∈ f 1 , f 2 so that we can write S = 2n+1 i=1 (f 3 + d i )f 2 f 1 where S ′ = 2n+1 i=1 d i ∈ F ( f 1 , f 2 ).
It is easily seen that such a sequence S contains no short zero-sum subsequence if and only if

S ′ = 2n+1 i=1 d i ∈ F ( f 1 , f 2 )
contains no zero-sum subsequence of size 2n, that is to say if and only if σ(S ′ ) / ∈ supp(S ′ ).

Inverse problem associated to

s (C 2 ⊕ C 2 ⊕ C 2n ) for n ≥ 2
We turn to the inverse problem associated to s

(C 2 ⊕ C 2 ⊕ C 2n ) for n ≥ 2. Again, the case n = 1, that is, C 3 2 ,
is different yet well-known and direct; s(C 3 2 ) -1 = 8 and the only example of a sequence of length 8 without zero-sum subsequence of length 2 is the squarefree sequence of all elements, because the only zero-sum sequences of length exp(G) are g 2 for g ∈ C r

2 . The proof of this result uses Theorem 4.1.

Theorem 5.1. Let G ≃ C 2 ⊕ C 2 ⊕ C 2n , where n ≥ 2. A sequence S over G of length |S| = s(G) -1 = 4n + 2 contains no zero-sum subsequence of length exp(G)
if and only if there exist a basis {f 1 , f 2 , f 3 } of G, where ord(f 1 ) = ord(f 2 ) = 2 and ord(f 3 ) = 2n, and an f ∈ G such that -f + S is equal to one of the following sequences:

(s1) 0 2α+1 f 2n-2α-1 2 f 2n-1-2β 3 (f 3 + f 2 ) 2β+1 (af 3 + f 1 ) (1 -a)f 3 + f 2 + f 1 with a ∈ [2, n -1] and α, β ∈ [0, n -1]. (s2) 0 2n-1 f 2n-1 3 (af 3 + f 2 ) (1 -a)f 3 + f 2 (bf 3 + f 1 ) (1 -b)f 3 + f 1 with a, b ∈ [2, n -1] and a ≥ b. (s3) 0 2α+1 f 2β+1 1 f 2γ+1 2 2n+1 i=1 (f 3 + d i ) where α, β, γ ∈ [0, n -1] are such that α + β + γ = n -1, S ′ = 2n+1 i=1 d i ∈ F ( f 1 , f 2 ) and σ(S ′ ) / ∈ supp(S ′ ).
As in the result for the η-constant, for n = 2 only the last case can occur. Before giving the proof of this result we put the result in context and derive two corollaries. The first is about the height of these extremal sequences, that is, the maximal multiplicity of an element in these sequences.

Corollary 5.2. Let G ≃ C 2 ⊕ C 2 ⊕ C 2n , where n ≥ 2. For every sequence S over G of length |S| = s(G) -1 without zero-sum subsequence of length exp(G) one has h(S) ≥      2n+3 3 if n ≡ 0 (mod 3) 2n+1 3 if n ≡ 1 (mod 3) 2n+5 3 if n ≡ 2 (mod 3)
and these bounds are attained.

Proof. For sequences of the second type in Theorem 5.1, it is clear that h(S) = 2n -1, and the claim follows. For sequences of the first type in Theorem 5.1, considering for example 0 and f 2 we see that h(S) > 2n/2; again the claim follows.

Proof of Theorem 5.1.

Let G ≃ C 2 ⊕ C 2 ⊕ C 2n
, where n ≥ 2. As in the previous proof, we use the inductive method with

H ֒→ G π → G/H
where H is the unique cyclic subgroup of order n such that G/H ≃ C 3 2 . Let S be a sequence over G such that |S| = 4n + 2 that contains no zero-sum subsequence of length 2n. Since |S| = 2(2n -4) + 10 ≥ s(G/H) + 2(2n -4), there exist 2n -3 disjoint subsequences S 1 , . . . , S 2n-3 of S such that

|S i | = 2 and σ (S i ) ∈ H for all i ∈ [1, 2n -3]. In particular, S = S 1 • • • S 2n-3 S 0 where S 0 has length |S 0 | = 8.
On the one hand, all elements of π(S 0 ) have multiplicity at most three and at most one of them has multiplicity at least two, otherwise we could extract from S 0 two disjoint subsequences S 2n-2 and S 2n-1 satisfying |S 2n-2 | = |S 2n-1 | = 2 and σ (S 2n-2 ) , σ (S 2n-1 ) ∈ H so that S would contain a zero-sum subsequence of length 2n, a contradiction. In particular, we have | supp(π(S 0 ))| ≥ 6.

On the other hand, T = 2n-3 i=1 σ(S i ) is a sequence over H of length |T | = 2n-3, containing no zero-sum subsequence of length n, otherwise S would contain a zerosum subsequence of length 2n, a contradiction.

By Theorem 3.2 we get that |H \ (-Σ n-2 (T )) | ≤ 1. Since | supp(π(S 0 ))| ≥ 6 it follows by Lemma 3.4 that one can extract from S 0 a subsequence U | S 0 such that |U | = 4 and σ (U ) ∈ H. Since S contains no zero-sum subsequence of length 2n, it follows that σ (U ) is an element of H \ -(Σ n-2 (T )). Since we saw that |H \ -(Σ n-2 (T )) | ≤ 1, it follows that this element is uniquely determined and |H \ (-Σ n-2 (T )) | = 1.
By Theorem 3.2 we get that there exist two elements g, h ∈ H satisfying ord(hg) = n such that, by relabeling the S i for i ∈ [1, 2n -3] if necessary, S can be decomposed as S 1 • • • S 2n-3 S 0 where σ(S i ) = g for all i ∈ [1, n -1] and σ(S i ) = h for all i ∈ [n, 2n -3]. In particular, H \ (-Σ n-2 (T )) = {g + h}. We now distinguish cases according to the cardinality of | supp(π(S 0 )|.

Case 1. | supp(π(S 0 ))| = 8. In this case, let x be any element of S 0 and S ′ 0 = S 0 x -1 . Note that S ′ 0 is a subsequence of S 0 of length |S ′ 0 | = 7 and that π(S ′ 0 ) consists of seven distinct elements of G/H. Now, let q, r be two distinct elements of S ′ 0 and decompose S ′ 0 r -1 in such a way that S ′ 0 r -1 = qstuvw, where

π(q) + π(s) = π(t) + π(u) = π(v) + π(w) = π(r) + π(x). It is easily seen that π(s) + π(t) + π(v) and π(s) + π(t) + π(w) are two distinct elements of the set (G/H) \ π(S ′ 0 r -1 ) = {π(r), π (x) 
}, so that one of them, say π(s) + π(t) + π(w), is equal to π(r). It follows that U 1 = sqtu, U 2 = sqvw, U 3 = strw, U 4 = suvr and U 5 = tuvw are five subsequences of S ′ 0 of length 4 with sum in H. If n = 2, let y be the only element of H satisfying ord(y) = n. Since S contains no zero-sum subsequence of length 4, we have σ(U i ) = y for every i ∈ [START_REF] Edel | Sequences in abelian groups G of odd order without zero-sum subsequences of length exp(G)[END_REF][START_REF] Fox | Erdős-Ginzburg-Ziv constants by avoiding three-term arithmetic progressions[END_REF]. Therefore, we have σ(U 1 ) + σ(U 2 )σ(U 3 )σ(U 4 ) = 0 which is equivalent to 2q = 2r. Since the argument applies to any three distinct elements q, r, x of S 0 , we obtain that 2a ∈ H is constant over all elements a of S 0 . Now, σ(U 1 ) + σ(U 2 )σ(U 5 ) = y readily gives 0 = 2(2q) = 2s + 2q = y, which is a contradiction.

If n ≥ 3, then σ(U i ) ∈ H \ (-Σ n-2 (T )) = {g + h} for all i ∈ [START_REF] Edel | Sequences in abelian groups G of odd order without zero-sum subsequences of length exp(G)[END_REF][START_REF] Fox | Erdős-Ginzburg-Ziv constants by avoiding three-term arithmetic progressions[END_REF]. Therefore, σ(U i ) = g + h for all i ∈ [START_REF] Edel | Sequences in abelian groups G of odd order without zero-sum subsequences of length exp(G)[END_REF][START_REF] Fox | Erdős-Ginzburg-Ziv constants by avoiding three-term arithmetic progressions[END_REF] which yields σ(U 1 ) + σ(U 2 )σ(U 3 )σ(U 4 ) = 0 which is equivalent to 2q = 2r. Since the argument applies to any three distinct elements q, r, x of S 0 , we obtain that 2a ∈ H is constant over all elements a of S 0 . The equality σ(U 1 ) + σ(U 2 )σ(U 5 ) = g + h readily gives 4q = 2(s + q) = g + h so that 4a = g + h for any element a of S 0 .

Since supp(π(S 0 )) = G/H, for any i ∈ [1, 2n -3] and any a i | S i , there exists an element a of S 0 such that π(a) = π(a i ). Setting T 0 = S 0 a -1 a i , T i = S i a -1 i a and T j = S j for all j ∈ [1, 2n -3] such that i = j, we obtain a new decomposition of S having the form

S = T 1 • • • T 2n-3 T 0 ,
where there exist two elements g ′ , h ′ ∈ H satisfying ord(h ′g ′ ) = n such that, by relabeling the T i for i ∈ [1, 2n -3] if necessary, we have σ(T i ) = g ′ for all i ∈ [1, n -1] and σ(T i ) = h ′ for all i ∈ [n, 2n -3]. Using the same argument as above, we obtain that 2x ∈ H is constant over all elements x of T 0 , and that 4x = g ′ + h ′ for any x of T 0 . Since at least seven elements of T 0 and S 0 are equal, it follows that g ′ + h ′ = g + h, and 4a = 4a i .

Case 1.1. n is odd. Since 4a = 4a i , it follows that 2a = 2a i , and since moreover π(a) = π(a i ), we get that a = a i . Since a i was chosen arbitrarily, it follows that supp(S) = supp(S 0 ). In particular, this implies that S i = a 2 i for each i ∈ [1, 2n -3]; to see this just recall that σ(S i ) ∈ H implies that both elements in S i have the same image under π.

We recall that 2a is constant over all elements in S 0 , and thus in S. Yet, this would mean that σ(S i ) is the same for all i ∈ [1, 2n -3], that is, g = h, a contradiction.

Case 1.2. n is even. Since we assumed n ≥ 3, we have n ≥ 4 (and this is actually all that we use). Applying the replacement above with some i ∈ [n, 2n -3], it can be seen that h ′ = h (here we use n ≥ 4, so that the original sequence contains h not only once). Moreover, it follows that S i = a 2 where a is again the element of S 0 such that π(a i ) = π(a).

In particular, h = σ(S i ) = 2a. Since we already know that 4a = g + h, we obtain g + h = 4a = 2(2a) = 2h, that is, g = h, a contradiction. Case 2. | supp(π(S 0 ))| = 7. The argument is similar to the preceding case. There exists a subsequence S ′ 0 | S 0 of length |S ′ 0 | = 7 such that π(S ′ 0 ) consists of seven distinct elements of H. Now, let q, r be two distinct elements of S ′ 0 . We denote by γ the only element in G/H \ {π(S ′ 0 )} and decompose S ′ 0 r -1 in such a way that S ′ 0 r -1 = qstuvw, where π(q) + π(s) = π(t) + π(u) = π(v) + π(w) = π(r) + γ. It is easily seen that π(s)+π(t)+π(v) and π(s)+π(t)+π(w) are two distinct elements of the set G/H \ π(S ′ 0 r -1 ) = {π(r), γ}, so that one of them, say π(s) + π(t) + π(w) is equal to π(r). It follows that U 1 = sqtu, U 2 = sqvw, U 3 = strw, U 4 = suvr and U 5 = tuvw are five subsequences of S ′ 0 of length 4 with sum in H. If n = 2, let y be the only element of H satisfying ord(y) = n. Since S contains no zero-sum subsequence of length 4, we have σ(U i ) = y for every i ∈ [START_REF] Edel | Sequences in abelian groups G of odd order without zero-sum subsequences of length exp(G)[END_REF][START_REF] Fox | Erdős-Ginzburg-Ziv constants by avoiding three-term arithmetic progressions[END_REF]. Therefore, we have σ(U 1 ) + σ(U 2 )σ(U 3 )σ(U 4 ) = 0 which is equivalent to 2q = 2r. Since the argument applies to any two distinct elements of S ′ 0 , we obtain that 2a ∈ H is constant over all elements a of S ′ 0 . Now, σ(U 1 ) + σ(U 2 )σ(U 5 ) = y readily gives 0 = 2(2q) = 2(s + q) = y, which is a contradiction.

We can thus assume that n ≥ 3, so that σ(U i ) ∈ H \ (-Σ n-2 (T )) = {g + h} for all i ∈ [START_REF] Edel | Sequences in abelian groups G of odd order without zero-sum subsequences of length exp(G)[END_REF][START_REF] Fox | Erdős-Ginzburg-Ziv constants by avoiding three-term arithmetic progressions[END_REF]. Therefore, σ(U i ) = g + h for all i ∈ [1, 5] which yields σ(U 1 ) + σ(U 2 )σ(U 3 )σ(U 4 ) = 0 which is equivalent to 2q = 2r. Since the argument applies to any two distinct elements of S ′ 0 , we obtain that 2a ∈ H is constant over all elements a of S ′ 0 . The equality σ(U 1 ) + σ(U 2 )σ(U 5 ) = g + h readily gives 4q = 2(s + q) = g + h so that 4a = g + h for any element a of S ′ 0 . Now, let a be an element of S ′ 0 and let V 1 be a subsequence of S 0 such that |V 1 | = 6 and σ(V 1 ) ∈ H; such a sequence exists as π(S 0 ), not being squarefree, has a zero-sum subsequence of length 2, and the remaining squarefree sequence of length 6 has a zero-sum subsequence of length 4 by Lemma 3.4.

If n = 3, then σ(V 1 ) ∈ H \{0} = {2h+g, h+2g}. If n ≥ 4, then σ(V 1 ) ∈ H \(-Σ n-3 (T )) = {2h+g, h+2g} also. In all cases, we obtain either 2(2h + g) = 2σ(V 1 ) = 6(2a) = 3(4a) = 3(g + h) or 2(h + 2g) = 2σ(V 1 ) = 6(2a) = 3(4a) = 3(g + h) which both imply g = h, a contradiction.
Case 3. supp(π(S 0 )) = 6. We get that π(S 0 ) consists of one element repeated three times and five other elements; recall that at most one element of π(S 0 ) has multiplicity greater than one. Thus S 0 contains a subsequence S 2n-2 | S 0 such that |S 2n-2 | = 2 and σ (S 2n-2 ) ∈ H. It follows that, whatever n ≥ 2 we consider, there exist two elements g, h ∈ H satisfying ord(h-g) = n such that S can be decomposed as

S 1 • • • S 2n-2 S ′ 0 where σ(S i ) = g for all i ∈ [1, n-1], σ(S i ) = h for all i ∈ [n, 2n-2], and S ′ 0 has length |S ′ 0 | = 6; furthermore, supp(π(S 1 • • • S 2n-2 )) ∩ supp(π(S ′ 0 
)) = ∅. Now, let us prove that, after a translation by an element of G, the sequence S can be decomposed as 0T 

(f ) = π(a i ). If i ∈ [1, n-1]
, then replacing S i by f a i or f (g-a i ), we easily infer that f = a i = g-a i .

In particular, 2f = g, so that We now know that for every sequence S over G such that |S| = 4n + 2 and containing no zero-sum subsequence of length 2n, there is an f ∈ G such that -f + S can be decomposed as 0T 

-f + S = 0(-f + S 1 ) • • • (-f + S n-1 )V where V has length |V | = 4n + 2 -2(n -1) -1 = 2n + 3 = η(G) -1. We set T i = -f + S i for each i ∈ [1, n -1]. Since for every t ∈ [1, 2n -1], the sequence 0T 1 • • • T n-1 contains a zero-
• • • T n-1 V where |T i | = 2 and σ(T i ) = 0 for all i ∈ [1, n -1],
and where V , which has length |V | = 2n + 3 = η(G) -1, contains no short zero-sum subsequence.

We recall that S has a zero-sum subsequence of length 2n if and only if -f +S has a zero-sum subsequence of length 2n. Thus, -f + S has no zero-sum subsequence of length 2n. To simplify notation, we assume without loss that f = 0.

On the one hand, note that Σ [1,2n-1] (V ) = G\{0}. On the other hand, we assert that: if x | T i for some i ∈ [1, n -1], then x / ∈ -Σ [2,2n-1] (V ). To see this note that otherwise V would contain a subsequence ). The former is a consequence of Theorem 4.1 and the latter follows by noting that we need at least ord(f 3 ) = 2n elements in a subsequence of 2n+1 i=1 (f 3 + d i ) whose sum is in f 1 , f 2 .

V ′ | V of length |V ′ | = k ∈ [2,
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 3112 Let H ≃ C n where n ≥ 3 is an integer. (Every sequence T of length |T | = η(H) -1 = n -1 not containing any short zero-sum sequence has the form T = g n-1 where ord(g) = n. Every sequence S of length |T | = η(H) -2 = n -2 not containing any short zero-sum sequence has the form: (a) T = g n-2 where ord(g) = n, or (b) T = g n-3 (2g) where ord(g) = n.

  containing no nonempty zero-sum subsequence, otherwise S would contain a short zero-sum subsequence, a contradiction. By Theorem 3.1 we get |H \ -(Σ (T ) ∪ {0}) | ≤ 1. Since | supp(π(S 0 ))| ≥ 5, one can extract from S 0 a subsequence U | S 0 such that |U | ≤ 4 and σ (U ) ∈ H (see Lemma 3.3); in fact, we could even find a sequence of length at most 3. Since S contains no short zero-sum subsequence, it follows that σ (U ) ∈ H \-(Σ (T ) ∪ {0}).

  where a ≤ b ≤ c, and a, b ∈ [2, n-1], and c ∈ [2, 2n-3]\{n, n+1}. Now, U can be decomposed as the product of two sequences of length 2 having the same sum only if 1 + a = b + c (mod 2n) or 1 + b = a + c (mod 2n) or 1 + c = a + b (mod 2n); recall that a + b + c = 1 (mod 2n). This is possible only if a ∈ {0, n} or b ∈ {0, n} or c ∈ {0, n}, which yields a contradiction.

  +b (mod 2n) if and only if a = b which implies a+1-b = 1 = n+1 (mod 2n), we have a + b = (1a) + (1b) (mod 2n) if and only if a + b = n + 1 (mod 2n) . We thus obtain

  • • T n-1 V where |T i | = 2 and σ (T i ) = 0 for all i ∈ [1, n -1], and where V , which has length |V | = 2n + 3 = η(G) -1, contains no short zero-sum subsequence. Since supp(π(S 1 • • • S 2n-2 )) ∩ supp(π(S ′ 0 )) = ∅, there exist an element f of S ′ 0 and an element a i of some S i , where i ∈ [1, 2n -2], such that π

2 f 2n- 1 -2v 3 (f 3 + f 2 ) 2 ) 3 (f 3 + f 2 ) 3 (f 3 + f 2 ) 3 ((f 3 +

 21332233233233 2n -1] such that x = -σ(V ′ ). If k were odd, then the subsequence S ′ = xV ′ j∈J T j | S, where J is any subset of [1, n -1] \ {i} satisfying |J| = n -(k + 1)/2 ∈ [0, n -2] would have length |S ′ | = 2n and sum zero, a contradiction. If k were even, then the subsequenceS ′ = 0xV ′ j∈J T j | S, where J is any subset of [1, n -1] \ {i} satisfying |J| = n -(k + 2)/2 ∈ [0, n -2] would have length |S ′ | = 2n and sum zero, a contradiction. Therefore, any x ∈ supp(T 1 • • • T n-1 ) is either zero or an element of G \ {0} \ (-Σ [2,2n-1] (V )) = -Σ [1,2n-1] (V ) \ (-Σ [2,2n-1] (V )) =supp(V ). Since x | T i if and only if -x | T i , we obtain supp(T 1 • • • T n-1 ) ⊂ {0} ∪ supp(V ) ∩ (-supp(V )) .Finally, using Theorem 4.1, we know that there exists a basis {f 1 , f 2 , f 3 } of G, where ord(f 1 ) = ord(f 2 ) = 2 and ord(f 3 ) = 2n, such that has one out of three possible forms.If V is of type (η1), then supp(T 1 • • • T n-1 ) ⊂ {0} ∪ supp(V ) ∩ (-supp(V )) = {0, f 2 },so that we haveS = 0 2α+1 f 2n-2α-2 2v+1 (af 3 + f 1 ) (1a)f 3 + f 2 + f 1 with α, β ∈ [0, n -1] and a ∈ [2, n -1]. It remains to check that such a sequence contains no zero-sum subsequence of length 2n. Since Σ(02α+1 f 2n-2α-2 ⊂ {0, f 2 }, it suffices to check that 0 / ∈ Σ [1,2n] f 2n-1-2v 2v+1 (af 3 + f 1 ) (1a)f 3 + f 2 + f 1 and that f 2 / ∈ Σ [1,2n-1] (f 2n-1-2v 2v+1 (af 3 + f 1 ) (1a)f 3 + f 2 + f 1 .The former is a consequence of Theorem 4.1 and the latter follows by noting that if a subsequence with sum f 2 contains (af 3 + f 1 ) or (1a)f 3 + f 2 + f 1 , then it contains both, so that we need at least ord(f 3 ) = 2n elements in this subsequence.If V is of type (η2), then supp(T 1 • • • T n-1 ) ⊂ {0} ∪ supp(V ) ∩ (-supp(V )) = {0},so that, up to translation by an element of G, we haveS = 0 2n-1 f 2n-1 af 3 + f 2 ) (1a)f 3 + f 2 (bf 3 + f 1 ) (1b)f 3 + f 1 with a, b ∈ [2, n -1] and a ≥ b. Such a sequence contains no zero-sum subsequence of length 2n indeed. If V is of type (η3), then supp(T 1 • • • T n-1 ) ⊂ {0} ∪ supp(V ) ∩ (-supp(V )) = {0, f 1 , f 2 },so that, up to translation by an element of G, we have S = 0 2α+1 f d i ) where α, β, γ ∈ [0, n -1] are such that α + β + γ = n -1, and S ′ = 2n+1 i=1 d i ∈ F ( f 1 , f 2 ) and σ(S ′ ) / ∈ supp(S ′ ). It remains to check that such a sequence contains no zero-sum subsequence of length 2n. Since Σ(0 2α+1 f 2β+1 1 f 2γ+1 2 ) = {0, f 1 , f 2 }, it suffices to check that 0 / ∈ Σ [1,2n] ( 2n+1 i=1 (f 3 + d i )) and that f 1 , f 2 / ∈ Σ [1,2n-1] ( 2n+1 i=1 (f 3 + d i )

  sum subsequence of length t, it follows that V has no short zero-sum subsequence; otherwise -f + S and thus S would have a zero-sum subsequence of length 2n.If i ∈ [n, 2n-2], the argument is analogous, just replacing g by h and considering the sequence S n , . . . , S 2n-2 .
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For sequences of the third type in Theorem 5.1, considering 0, f 1 , and f 2 we see that h(S) ≥ 2⌊(n -1)/3⌋ + 1, which yields the claimed bounds.

To see that the bounds are attained we consider the sequence, where {f 1 , f 2 , f 3 } is a basis of G with ord(f 1 ) = ord(f 2 ) = 2 and ord(f 3 ) = 2n,

which is of the form given in Theorem 5.1 as the sum of f 2α+1 1

An interesting aspect is that for C 2 ⊕ C 2 ⊕ C 2n there are extremal sequences of height significantly below exp(G)/2, contrary to all results established so far (see the discussion in [START_REF] Schmid | Restricted inverse zero-sum problems in groups of rank 2[END_REF], in particular Corollary 3.3 there, where the still stronger conjecture that the height is always exp(G)-1 was refuted). This seems noteworthy as there is a well-known technical result (see [START_REF] Gao | On zero-sum subsequences of restricted size II[END_REF]Proposition 2.7] or also [START_REF] Schmid | Restricted inverse zero-sum problems in groups of rank 2[END_REF]Lemma 4.3]) that implies that if h(S) ≥ ⌊(exp(G) -1)/2⌋ for each sequence S over G of length s(G) -1 without zero-sum subsequence of length exp(G), then Gao's conjecture s(G) = η(G) + exp(G) -1 that we recalled in the introduction holds true for the group G. Thus, it seems interesting that despite the relatively low height of some extremal sequences over C 2 ⊕ C 2 ⊕ C 2n Gao's conjecture still holds. An explanation for this can be given by a more detailed analysis of the structure of extremal sequences and a recent refinement of the above mentioned technical result (see Lemma 5.4 below).

with nonnegative integers u, v, w, and

Proof. This follows rather directly by comparing the sequences given in Theorems 4.1 and 5.1. For a sequence S of the form given in point (s1) the sequence T is of the form given in (η1) and likewise for the other points; for the sequences in (s1) and (s2) only more special forms of sequences C arise.

We note that the sequences (f + C), with C as in the corollary above, have the property jf ∈ Σ j (f + C) for each j ≤ |f + C| thus the following lemma (see [START_REF] Girard | Direct zero-sum problems for certain groups of rank three[END_REF]Lemma 4.4]) is applicable. After this discussion we now turn to the proof of the theorem itself.