Inverse zero-sum problems for certain groups of rank three

Benjamin Girard, Wolfgang Schmid

To cite this version:

Benjamin Girard, Wolfgang Schmid. Inverse zero-sum problems for certain groups of rank three. 2018. hal-01869161v1

HAL Id: hal-01869161
https://hal.science/hal-01869161v1
Preprint submitted on 6 Sep 2018 (v1), last revised 30 Jan 2020 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

INVERSE ZERO-SUM PROBLEMS FOR CERTAIN GROUPS OF RANK THREE

BENJAMIN GIRARD AND WOLFGANG A. SCHMID

Abstract

The inverse problem associated to the Erdős-Ginzburg-Ziv constant and the η-constant is solved for finite abelian groups of the form $C_{2} \oplus$ $C_{2} \oplus C_{2 n}$ where $n \geq 2$ is an integer.

1. Introduction

For $(G,+, 0)$ a finite abelian group with $\operatorname{exponent} \exp (G)$ the Erdős-GinzburgZiv constant, denoted by $s(G)$, is defined as the smallest nonnegative integer ℓ such that each sequence over G of length at least ℓ over G has a subsequence of length $\exp (G)$ whose sum is 0 . The η-constant, denoted by $\eta(G)$, is defined in the same way except that the length of the subsequence is at $\operatorname{most} \exp (G)$ and at least 1 .

These constants have been studied since the early 1960s; for an overview we refer to the survey article [9], in particular to Sections 6 and 7. Their exact values are only known for groups of rank at most two (see [9, Theorem 6.5] and [16, 19] for key-contributions), and for a few special types of other groups. On the one hand, the approach used for groups of rank two can be adapted to apply to some other groups (see [15, 18]). On the other hand, there are various results for homocyclic groups, that is, groups of the form C_{n}^{r} where C_{n} denotes a cyclic group of order n and groups that resemble (we refer to [3, Theorem B] for an overview). There is also considerable work on bounds; we refer to [5] and the references therein for recent results on upper bounds, and we refer to [1 for lower bounds.

Only recently the exact values were determined for groups of the form $C_{2} \oplus C_{2} \oplus$ $C_{2 n}$ (see [2, Theorem 1.3] and [4, Theorem 1.2.1]); this was further extended to groups of the form $C_{2} \oplus C_{2 m} \oplus C_{2 m n}$ in [13. Moreover, for $C_{2} \oplus C_{2} \oplus C_{2} \oplus C_{2 n}$ the value of the η-constant is known for all $n \geq 1$, and the value of the Erdős-Ginzburg-Ziv constant is known for $n \geq 36$ (see [4. Theorem 1.2.2]).

The associated inverse problems consist in determining all sequences of length $\mathrm{s}(G)-1$ (respectively $\eta(G)-1$) that have no zero-sum subsequence of length $\exp (G)$ (respectively of length at most $\exp (G)$ and at least 1). For $\eta(G)$ the inverse problem is solved for groups of rank at most two. For $s(G)$ the inverse problem is solved for cyclic groups, and for groups of rank at most two there is a well-supported conjecture and partial results towards this conjecture are known (see [23]).

In the current paper, we solve the inverse problems associated to $\eta(G)$ and to $\mathrm{s}(G)$ for groups of the form $C_{2} \oplus C_{2} \oplus C_{2 n}$. To solve the inverse problem associated to $\eta(G)$, which is done in Theorem 4.1 we use that the structure of minimal zero-sum sequences of maximal length is known for this type of groups (see Theorem4.2). We

[^0]recall that a similar approach was used to solve the inverse problem associated to $\eta(G)$ for groups of rank two (see [8, Theorem 10.7] or [17, Section 11.3]). Then, the result for the η-constant is used to solve the problem for the Erdős-Ginzburg-Ziv constant (see Theorem 5.1). Other tools used in the proof are well-known results on the inverse problem for cyclic groups that we recall in Section 3 as well as ideas used in the proofs of the corresponding direct results mentioned above.

Conjecturally, there is a tight link between these two constants, namely Gao conjectured (see [9, Conjecture 6.5]) that $\mathrm{s}(G)=\eta(G)+\exp (G)-1$ holds for all finite abelian groups. Furthermore, a close link can also be noted for the structure of extremal sequences in cases where the inverse problem is solved. A close link can also be observed in the current case, yet the exact link is more complex to describe than for groups of rank at most two and for homocyclic groups; we discuss this in more detail after Theorem 5.1.

2. Preliminaries

The notation used in this paper basically matches the one used in [9, 11, 12, 14 . For definitiveness, we give a brief summary.

In this paper, intervals are intervals of integers, specifically $[a, b]=\{z \in \mathbb{Z}: a \leq$ $z \leq b\}$.

Let $(G,+, 0)$ be a finite abelian group. For g in G, let $\operatorname{ord}(g)$ denote its order in G. For a subset $A \subset G$, let $\langle A\rangle$ denote the subgroup it generates; A is called a generating set if $\langle A\rangle=G$. Elements $g_{1}, \ldots, g_{k} \in G$ are called independent if $\sum_{i=1}^{k} a_{i} g_{i}=0$, with integers a_{i}, implies that $a_{i} g_{i}=0$ for each $i \in[1, k]$; a set is called independent when its elements are independent.

The exponent of G is the least common multiple of the orders of elements of G, it is denoted by $\exp (G)$; the rank of G, denoted by $r(G)$, is the minimum cardinality of a generating subset of G. For n a positive integer, C_{n} denotes a cyclic group of order n.

By a sequence over G we mean an element of the free abelian monoid over G, denoted by $\mathcal{F}(G)$. We use multiplicative notation for this monoid; its neutral element is denoted by 1 . For a sequence

$$
S=\prod_{g \in G} g^{v_{g}}
$$

where v_{g} is a nonnegative integer, for each $g \in G$, we denote by:

- $\mathrm{v}_{g}(S)=v_{g}$ the multiplicity of g in S.
- $\mathrm{h}(S)=\max \left\{\mathrm{v}_{g}(S): g \in G\right\}$ the height of S.
- $\sigma(S)=\sum_{g \in G} \vee_{g}(S) g$ the sum of S.
- $|S|=\sum_{g \in G} \vee_{g}(S)$ the length of S.
- $\operatorname{supp}(S)=\left\{g \in G \mid \mathrm{v}_{g}(S)>0\right\}$ the support of S.

Moreover, for $h \in G$, one denotes by $h+S$ the sequence where each element in S is translated by h, that is, $h+S=\prod_{g \in G}(h+g)^{v_{g}}$.

When one writes $S=g_{1} \cdots g_{\ell}$ with $g_{i} \in G$, then the g_{i} are not necessarily distinct, yet they are determined uniquely up to ordering. A sequence for which the g_{i} are pairwise distinct, equivalently $\mathrm{v}_{g}(S) \leq 1$ for each $g \in G$, is called squarefree. A nonempty sequence over G of length at most $\exp (G)$ is called short.

Let S be a sequence over G. A divisor T of S in $\mathcal{F}(G)$ is called a subsequence of S; by $S T^{-1}$ we denote the sequence such that $T\left(S T^{-1}\right)=S$. Subsequences T_{1}, \ldots, T_{k} of S are called disjoint if the product $T_{1} \cdots T_{k}$ is also a subsequence of S.

An element $s \in G$ is a subsum of S if $s=\sigma(T)$ for some $1 \neq T \mid S$. The sequence S is called a zero-sumfree sequence if 0 is not a subsum. If $\sigma(S)=0$, then S is called a zero-sum sequence; if, in addition, one has $\sigma(T) \neq 0$ for all proper and nonempty subsequences T of S, then S is called a minimal zero-sum sequence.

For L a set of integers, we set

$$
\Sigma_{L}(S)=\{\sigma(T): 1 \neq T \mid S \text { with }|T| \in L\}
$$

For $\Sigma_{\mathbb{Z}_{\geq 1}}(S)$ we just write $\Sigma(S)$, and for $\Sigma_{\{k\}}(S)$ we write $\Sigma_{k}(S)$.
Moreover, $\mathrm{s}_{L}(G)$ is the smallest nonnegative integer ℓ (if one exists) such that for each sequence $S \in \mathcal{F}(G)$ with $|S| \geq \ell$, one has $0 \in \Sigma_{L}(S)$; if no such integer exists, then one sets $\mathrm{s}_{L}(G)=\infty$. The constants we mentioned in the introduction are natural special cases; the choice of $\exp (G)$ in the definitions is natural, for example it is the smallest integer for which the respective constants are finite.

- The Davenport constant, denoted by $\mathrm{D}(G)$, is $\mathrm{s}_{\mathbb{Z}_{\geq 1}}(G)$.
- The Erdős-Ginzburg-Ziv constant, denoted by $\mathrm{s}(G)$, is $\mathrm{s}_{\exp (G)}(G)$.
- The η-constant, denoted by $\eta(G)$, is $\mathbf{s}_{[1, \exp (G)]}(G)$

The Davenport constant of G is also equal to the maximal length of a minimal zero-sum sequence over G.

3. Results for cyclic groups and auxiliary results

The $\eta(G)$ and $s(G)$ invariant for cyclic groups are well-known and the inverse problems are solved. Indeed, in the case of cyclic groups also the structure of sequences considerably shorter than $\eta(G)-1$ and $\mathrm{s}(G)-1$ without the respective zero-sum subsequences are known (for example, see [20, 21, 24, 10]). We only recall a special case we need for our proofs. While the result below is formulated for short zero-sum subsequences, since this fits the current context, having no short zerosum subsequence and having no nonempty zero-sum subsequence are equivalent for cyclic groups, and the result is usually phrased in the latter form.

The following result is a direct consequence of [20, Theorem 8] (also see [14, Theorem 11.1]).

Theorem 3.1. Let $G \simeq C_{n}$ where $n \geq 3$ is an integer.
(1) Every sequence T of length $|T|=\eta(G)-1=n-1$ not containing any short zero-sum sequence has the form

$$
T=g^{n-1} \text { where } \operatorname{ord}(g)=n
$$

(2) Every sequence S of length $|T|=\eta(G)-2=n-2$ not containing any short zero-sum sequence has the form:
(a) $T=g^{n-2}$ where $\operatorname{ord}(g)=n$, or
(b) $T=g^{n-3}(2 g)$ where $\operatorname{ord}(g)=n$.

In the former case $\Sigma(T)=H \backslash\{0,-g\}$, in the latter case $\Sigma(T)=H \backslash\{0\}$
(except for $n=3$ where the latter case coincides with the former).
For the following results see [21], especially the discussion after Corollary 7 there.
Theorem 3.2. Let $H \simeq C_{n}$ where $n \geq 3$ is an integer.
(1) Every sequence T of length $|T|=\mathrm{s}(G)-1=2 n-2$ not containing any short zero-sum sequence has the form $T=g^{n-1} h^{n-1}$ where $g, h \in G$ and $\operatorname{ord}(g-h)=n$.
(2) Every sequence S of length $|T|=\mathrm{s}(G)-2=2 n-3$ not containing any short zero-sum sequence has the form:
(a) $T=g^{n-1} h^{n-2}$ where $\operatorname{ord}(g-h)=n$ or
(b) $T=g^{n-1} h^{n-3}(2 h-g)$ where $\operatorname{ord}(g-h)=n$.

In the former case $\Sigma_{n-2}(T)=H \backslash\{-g-h\}$, in the latter case $\Sigma_{n-2}(T)=H$ (except for $n=3$ where the latter case coincides with the former).

We give two results on groups of the form C_{2}^{r} that are needed for the proofs of our main results. For the following well-known result see, e.g., [6, Theorem 7.2].

Lemma 3.3. For $r \geq 2$, one has $\mathrm{s}_{[1,3]}\left(C_{2}^{r}\right)=1+2^{r-1}$.
We also need a result on zero-sum sequences of length 4 .
Lemma 3.4. Let S be a squarefree sequence of length 5 over C_{2}^{3}. Then S has a unique zero-sum subsequence of length 4 .

Proof. Since the property is invariant under translation of the sequence, we can assume that $0 \mid S$. The four nonzero elements in S cannot be contained in a proper subgroup, and thus S contains three independent elements f_{1}, f_{2}, f_{3}.

Let g denote the fourth nonzero element. Either $g=f_{1}+f_{2}+f_{3}$ and the sequence $g f_{1} f_{2} f_{3}$ is the unique zero-sum subsequence of length four, or g is the sum of two of the independent elements, say $g=f_{1}+f_{2}$, and $0 g f_{1} f_{2}$ is the unique zero-sum subsequence of length four.

4. INVERSE PROBLEM ASSOCIATED TO $\eta\left(C_{2} \oplus C_{2} \oplus C_{2 n}\right)$ FOR $n \geq 2$

We determine the structure of all sequences over $C_{2} \oplus C_{2} \oplus C_{2 n}$, for $n \geq 2$, of length $\eta\left(C_{2} \oplus C_{2} \oplus C_{2 n}\right)-1=2 n+3$ that do not have a short zero-sum subsequence. The case $n=1$, that is, C_{2}^{3}, is different yet well-known and direct. For completeness we recall that $\eta\left(C_{2}^{3}\right)-1=7$, and the only example of a sequence of length 7 without zero-sum subsequence of length 2 is the squarefree sequence of all nonzero elements; in fact, this is true for any group of the form C_{2}^{r}, because the only zero-sum sequence of length at $\operatorname{most} \exp (G)$ are 0 and g^{2} for $g \in C_{2}^{r}$.

Theorem 4.1. Let $G \simeq C_{2} \oplus C_{2} \oplus C_{2 n}$, where $n \geq 2$. A sequence S over G of length $|S|=\eta(G)-1=2 n+3$ contains no short zero-sum subsequence if and only if there exists an independent generating set $\left\{f_{1}, f_{2}, f_{3}\right\}$ of G, where $\operatorname{ord}\left(f_{1}\right)=\operatorname{ord}\left(f_{2}\right)=2$ and $\operatorname{ord}\left(f_{3}\right)=2 n$, such that S is equal to one of the following sequences:
$(\eta 1) f_{3}^{2 n-1-2 v}\left(f_{3}+f_{2}\right)^{2 v+1} f_{2}\left(a f_{3}+f_{1}\right)\left((1-a) f_{3}+f_{2}+f_{1}\right)$ with $v \in[0, n-1]$ and $a \in[2, n-1]$.
$(\eta 2) f_{3}^{2 n-1}\left(a f_{3}+f_{2}\right)\left((1-a) f_{3}+f_{2}\right)\left(b f_{3}+f_{1}\right)\left((1-b) f_{3}+f_{1}\right)$ with $a, b \in[2, n-1]$ and $a \geq b$.
$(\eta 3) \prod_{i=1}^{2 n+1}\left(f_{3}+d_{i}\right) f_{2} f_{1}$ with $S^{\prime}=\prod_{i=1}^{2 n+1} d_{i} \in \mathcal{F}\left(\left\langle f_{1}, f_{2}\right\rangle\right)$ and $\sigma\left(S^{\prime}\right) \notin \operatorname{supp}\left(S^{\prime}\right)$.
For $n=2$, in fact only the last case can occur as $[2, n-1]$ is empty. To prove this result we use that the structure of all minimal zero-sum subsequences of maximal length is known (see [22, Theorem 3.13]).

Theorem 4.2. Let $G \simeq C_{2} \oplus C_{2} \oplus C_{2 n}$, where $n \geq 1$. A sequence S over G is a minimal zero-sum sequence of length $|S|=\mathrm{D}(G)$ if and only if there exists an independent generating set $\left\{f_{1}, f_{2}, f_{3}\right\}$ of G, where $\operatorname{ord}\left(f_{1}\right)=\operatorname{ord}\left(f_{2}\right)=2$ and $\operatorname{ord}\left(f_{3}\right)=2 n$, such that S is equal to one of the following sequences:
(D1) $f_{3}^{v_{3}}\left(f_{3}+f_{2}\right)^{v_{2}}\left(f_{3}+f_{1}\right)^{v_{1}}\left(-f_{3}+f_{2}+f_{1}\right)$ with $v_{i} \in \mathbb{N}$ odd, $v_{3} \geq v_{2} \geq v_{1}$ and $v_{3}+v_{2}+v_{1}=2 n+1$.
(D2) $f_{3}^{v_{3}}\left(f_{3}+f_{2}\right)^{v_{2}}\left(a f_{3}+f_{1}\right)\left(-a f_{3}+f_{2}+f_{1}\right)$ with $v_{2}, v_{3} \in \mathbb{N}$ odd $v_{3} \geq v_{2}$ and $v_{2}+v_{3}=2 n$ and $a \in[2, n-1]$.
(D3) $f_{3}^{2 n-1}\left(a f_{3}+f_{2}\right)\left(b f_{3}+f_{1}\right)\left(c f_{3}+f_{2}+f_{1}\right)$ with $a+b+c=2 n+1$ where $a \leq b \leq c$, and $a, b \in[2, n-1], c \in[2,2 n-3] \backslash\{n, n+1\}$.
(D4) $f_{3}^{2 n-1-2 v}\left(f_{3}+f_{2}\right)^{2 v} f_{2}\left(a f_{3}+f_{1}\right)\left((1-a) f_{3}+f_{2}+f_{1}\right)$ with $v \in[0, n-1]$ and $a \in[2, n-1]$.
(D5) $f_{3}^{2 n-2}\left(a f_{3}+f_{2}\right)\left((1-a) f_{3}+f_{2}\right)\left(b f_{3}+f_{1}\right)\left((1-b) f_{3}+f_{1}\right)$ with $a \geq b$ and $a, b \in[2, n-1]$.
(D6) $\prod_{i=1}^{2 n}\left(f_{3}+d_{i}\right) f_{2} f_{1}$ where $S^{\prime}=\prod_{i=1}^{2 n} d_{i} \in \mathcal{F}\left(\left\langle f_{1}, f_{2}\right\rangle\right)$ with $\sigma\left(S^{\prime}\right)=f_{1}+f_{2}$.
As above, for $n \leq 2$, only some of these cases occur, namely the first and the last. We now prove our result.

Proof of Theorem 4.1. Let $G \simeq C_{2} \oplus C_{2} \oplus C_{2 n}$ where $n \geq 2$, and let $H \simeq C_{n}$ be the subgroup of G such that $G / H \simeq C_{2}^{3}$. Note that there is indeed a unique such subgroup H. We use the inductive method with

$$
H \hookrightarrow G \xrightarrow{\pi} G / H .
$$

Let S be a sequence over G such that $|S|=\eta(G)-1=2 n+3$ that contains no short zero-sum subsequence.

First, let us prove that S contains no element g in H. Indeed, if it were the case, setting $g=T_{0}$, we have $S T_{0}^{-1}$ whose length is $\left|S T_{0}^{-1}\right|=2 n+2=\eta\left(C_{2}^{3}\right)+2(n-3)$ would contain $n-2$ disjoint nonempty subsequences $T_{1}, \ldots, T_{n-2} \mid S T_{0}^{-1}$ such that $\left|T_{i}\right| \leq 2$ and $\sigma\left(T_{i}\right) \in H$ for all $i \in[1, n-2]$. In particular, $S=T_{0} T_{1} \cdots T_{n-2} S_{0}$ where S_{0} has length $\left|S_{0}\right| \geq 6$.

Now, note that all elements of $\pi\left(S_{0}\right)$ must be nonzero and distinct, otherwise we could extract from S_{0} yet another subsequence $T_{n-1} \mid S_{0}$ satisfying $\left|T_{n-1}\right| \leq 2$ and $\sigma\left(T_{n-1}\right) \in H$. Then, we have $T=\prod_{i=0}^{n-1} \sigma\left(T_{i}\right)$ is a sequence over H of length $|T|=n$, so it contains a nonempty zero-sum subsequence, say $\sum_{i \in I} \sigma\left(T_{i}\right)=0$ with $\emptyset \neq I \subset[0, n-1]$. Thus, $\prod_{i \in I} T_{i}$ is a subsequence of S with sum 0 and length at most $2|I| \leq 2 n$.

However, a squarefree sequence of at least 6 nonzero elements over C_{2}^{3} has a zerosum subsequence of length at most 3 (see Lemma 3.3). Applying this to $\pi\left(S_{0}\right)$ gives that S_{0} contains a subsequence T_{n-1} of length $\left|T_{n-1}\right|=3$ such that $\sigma\left(T_{n-1}\right) \in H$. Then, again $T=\prod_{i=0}^{n-1} \sigma\left(T_{i}\right)$ is a sequence over H of length $|T|=n$. It contains a nonempty zero-sum subsequence, and whence $\prod_{i=0}^{n-1} T_{i}$ contains a nonempty zerosum subsequence. Since $\left|\prod_{i=0}^{n-1} T_{i}\right| \leq 2 n$, it follows that this is a short zero-sum subsequence. Since $\prod_{i=0}^{n-1} T_{i}$ is a subsequence of S, we see that S contains a short zero-sum subsequence, which is a contradiction.

Thus, we know that S contains no element in H. Similarly as above, since $|S|=2(n-3)+9 \geq \eta\left(C_{2}^{3}\right)+2(n-3)$, there exist $n-2$ disjoint subsequences $T_{1}, \ldots, T_{n-2} \mid S$ such that $\sigma\left(T_{i}\right) \in H$ and $\left|T_{i}\right| \leq 2$ for all $i \in[1, n-2]$; yet, since
S contains no element from H in fact $\left|T_{i}\right|=2$ for all $i \in[1, n-2]$. In particular, $S=T_{1} \cdots T_{n-2} S_{0}$ where S_{0} has length $\left|S_{0}\right|=7$.

We now try to obtain further information on both S_{0} and the sequences T_{i} for $i \in[1, n-2]$. On the one hand, at most one of the elements in $\pi\left(S_{0}\right)$ has multiplicity at least 2 and none has multiplicity at least 4 . To see this it suffices to note that otherwise we could extract from S_{0} two disjoint subsequences T_{n-1} and T_{n} of length 2 whose sums are in H. Then, arguing as above, S would contain a short zero-sum subsequence, a contradiction. In particular, we have $\left|\operatorname{supp}\left(\pi\left(S_{0}\right)\right)\right| \geq 5$.

On the other hand, $T=\prod_{i=1}^{n-2} \sigma\left(T_{i}\right)$ is a sequence over H of length $|T|=n-2$, containing no nonempty zero-sum subsequence, otherwise S would contain a short zero-sum subsequence, a contradiction.

By Theorem 3.1 we get $|H \backslash-(\Sigma(T) \cup\{0\})| \leq 1$. Since $\left|\operatorname{supp}\left(\pi\left(S_{0}\right)\right)\right| \geq 5$, one can extract from S_{0} a subsequence $U \mid S_{0}$ such that $|U| \leq 4$ and $\sigma(U) \in H$ (see Lemma 3.3); in fact, we could even find a sequence of length at most 3 . Since S contains no short zero-sum subsequence, it follows that $\sigma(U) \in H \backslash-(\Sigma(T) \cup\{0\})$.

For $n=2$, this directly yields that $\sigma(U)=g$ where g is the nonzero element of H. For $n=3$, we first infer that $H \backslash-(\Sigma(T) \cup\{0\}) \neq \emptyset$, which by Theorem 3.1 implies that $T=g^{n-2}$ for some $g \in H$ with $\operatorname{ord}(g)=n$, and $\sigma(U)=g$. It follows that there exists an element $g \in H$ satisfying $\operatorname{ord}(g)=n$ such that S can be decomposed as $T_{1} \cdots T_{n-2} S_{0}$ where $\sigma\left(T_{i}\right)=g$ for all $i \in[1, n-2]$, and for each $U \mid S_{0}$ such that $|U| \leq 4$ and $\sigma(U) \in H$ one has $\sigma(U)=g$.

Case 1. $\pi\left(S_{0}\right)$ is squarefree. Then, S_{0} itself is squarefree and $\operatorname{supp}\left(\pi\left(S_{0}\right)\right)=$ $G / H \backslash\{0\}$. We now fix an independent generating set $\left\{e_{1}, e_{2}, e_{3}\right\}$ of G / H; this quotient group is isomorphic to C_{2}^{3}. For every set $\emptyset \neq I \subset\{1,2,3\}$, we denote by $e_{I}=\sum_{i \in I} e_{i}$ and we denote by a_{I} be the unique element of S_{0} such that $\pi\left(a_{I}\right)=e_{I}$. We have $U_{0}=a_{\{1,2\}} a_{\{2,3\}} a_{\{1,3\}}, U_{k}=a_{i} a_{j} a_{\{i, j\}}$ and $V_{i}=a_{\{i, j\}} a_{\{i, k\}} a_{j} a_{k}$ for $\{i, j, k\}=\{1,2,3\}$ are subsequences of S_{0} satisfying $\left|U_{k}\right|=3$ and $\sigma\left(U_{k}\right) \in H$ as well as $\left|V_{i}\right|=4$ and $\sigma\left(V_{i}\right) \in H$. In addition, we have $U_{0} U_{1} U_{2} U_{3}=V_{1} V_{2} V_{3}$.

By the argument above it follows that $\sigma\left(U_{k}\right)=\sigma\left(V_{i}\right)=g$ for all $i, k \in[1,3]$, which yields $4 g=\sigma\left(U_{0} U_{1} U_{2} U_{3}\right)=\sigma\left(V_{1} V_{2} V_{3}\right)=3 g$. It follows that $g=0$, which is a contradiction.

Case 2. $\pi\left(S_{0}\right)$ is not squarefree. We recall that there is a unique element with multiplicity at least 2 . In this case, S_{0} contains a subsequence $T_{n-1} \mid S_{0}$ such that $\left|T_{n-1}\right|=2$ and $\sigma\left(T_{n-1}\right) \in H$. We get again $\sigma\left(T_{n-1}\right)=g$. Thus $S=T_{1} \cdots T_{n-1} S_{0}^{\prime}$ where $\sigma\left(T_{i}\right)=g$ for all $i \in[1, n-1]$ and S_{0}^{\prime} has length $\left|S_{0}^{\prime}\right|=5$. We know that $\pi\left(S_{0}^{\prime}\right)$ is squarefree and does not contain 0 .

By Lemma 3.4, S_{0}^{\prime} contains a unique subsequence $U=$ stuv $\mid S_{0}^{\prime}$ such that $|U|=4$ and $\sigma(U) \in H$. First, we have $\sigma(U)=s+t+u+v=g$. Now, setting $S_{0}^{\prime}=U w$, and since $\pi(s)+\pi(t), \pi(s)+\pi(u), \pi(s)+\pi(v)$ are nonzero and pairwise distinct elements of the set $C_{2}^{3} \backslash\{0, \pi(s), \pi(t), \pi(u), \pi(v)\}$ containing $\pi(w)$, exactly one of them, say $\pi(s)+\pi(t)$, is equal to $\pi(w)$. Thus $\pi(w)=\pi(s)+\pi(t)=\pi(u)+\pi(v)$. Now, $U_{1}=w s t$ and $U_{2}=w u v$ are two subsequences of S_{0}^{\prime} satisfying $\left|U_{1}\right|=\left|U_{2}\right|=3$ and $\sigma\left(U_{1}\right), \sigma\left(U_{2}\right) \in H$. This yields $\sigma\left(U_{1}\right)=w+s+t=g$ and $\sigma\left(U_{2}\right)=w+u+v=g$, so that $s+t=u+v$. Since also $s+t+u+v=g$, it follows that $2 w=g$ and $w=s+t=u+v$.

In addition, $V=T_{1} \cdots T_{n-1} U$ is a zero-sum subsequence of S of length $|V|=$ $2(n-1)+4=2 n+2=\mathrm{D}(G)$. Since S contains no short zero-sum subsequence, it cannot be decomposed into two zero-sum subsequences, as one of them would be short. That is, V is a minimal zero-sum sequence over G of length $|V|=\mathrm{D}(G)$.

Let us now give a summary of everything we proved so far. For every sequence S over G such that $|S|=2 n+3$ and containing no short zero-sum subsequence, there exists an element $g \in H$ with $\operatorname{ord}(g)=n$ such that S can be decomposed as $T_{1} \cdots T_{n-1} S_{0}^{\prime}$ where $T_{1}, \ldots, T_{n-1} \mid S$ satisfy $\left|T_{i}\right|=2$ and $\sigma\left(T_{i}\right)=g$ for all $i \in[1, n-1]$, and where S_{0}^{\prime} is a sequence of length $\left|S_{0}^{\prime}\right|=5$. Moreover, in every such decomposition of S, the sequence $\pi\left(S_{0}^{\prime}\right)$ is squarefree and does not contain 0 , more precisely the sequence S_{0}^{\prime} is squarefree and can be uniquely decomposed as $S_{0}^{\prime}=U w$ where $U \mid S_{0}^{\prime}$ satisfies $|U|=4$ and $\sigma(U) \in H$. Also, we can write $U=$ stuv so that the equalities $s+t=u+v=w$ and $\sigma(U)=2 w=g$ hold. Finally, $V=T_{1} \cdots T_{n-1} U$ is a minimal zero-sum sequence over G of length $|V|=2 n+2=\mathrm{D}(G)$.

In particular, using Theorem4.2, we know there exists an independent generating set $\left\{f_{1}, f_{2}, f_{3}\right\}$ of G, where $\operatorname{ord}\left(f_{1}\right)=\operatorname{ord}\left(f_{2}\right)=2$ and $\operatorname{ord}\left(f_{3}\right)=2 n$, such that V has one out of six possible forms. We treat each of theses cases separately; we recall that for $n=2$ only the first and the last can occur, so that for the others we can assume that $n \geq 3$.

If V is of type (D1), then in order to have a support of size at least five, S_{0}^{\prime} must contain one copy of every member of $\operatorname{supp}(V)$. Since the four elements of $\operatorname{supp}(V)$ sum up to $2 f_{3} \in H$, we obtain $U=f_{3}\left(f_{3}+f_{2}\right)\left(f_{3}+f_{1}\right)\left(-f_{3}+f_{2}+f_{1}\right)$, but it is easily seen that U cannot be decomposed as the product of two sequences of length 2 having same sum.

If V is of type (D2), then in order to have a support of size at least five, S_{0}^{\prime} must contain one copy of every member of $\operatorname{supp}(V)$. Since the four elements of $\operatorname{supp}(V)$ sum up to $2 f_{3} \in H$, we obtain $U=f_{3}\left(f_{3}+f_{2}\right)\left(a f_{3}+f_{1}\right)\left(-a f_{3}+f_{2}+f_{1}\right)$ with $a \in[2, n-1]$. In addition, U can be decomposed as the product of two sequences of length 2 having same sum only if $1-a=1+a(\bmod 2 n)$, that is to say only if $a \in\{0, n\}$, which is a contradiction.

If V is of type (D3), then in order to have a support of size at least five, S_{0}^{\prime} must contain one copy of every member of $\operatorname{supp}(V)$. Since the four elements of $\operatorname{supp}(V)$ sum up to $2 f_{3} \in H$, we obtain $U=f_{3}\left(a f_{3}+f_{2}\right)\left(b f_{3}+f_{1}\right)\left(c f_{3}+f_{2}+f_{1}\right)$ with $a+b+c=2 n+1$ where $a \leq b \leq c$, and $a, b \in[2, n-1]$, and $c \in[2,2 n-3] \backslash\{n, n+1\}$. Now, U can be decomposed as the product of two sequences of length 2 having same sum only if $1+a=b+c(\bmod 2 n)$ or $1+b=a+c(\bmod 2 n)$ or $1+c=a+b$ $(\bmod 2 n)$; recall that $a+b+c=1(\bmod 2 n)$. This is possible only if $a \in\{0, n\}$ or $b \in\{0, n\}$ or $c \in\{0, n\}$, which yields a contradiction.

If V is of type (D4), then in order to have a support of size at least five, S_{0}^{\prime} must contain at least four elements of $\operatorname{supp}(V)$. First, note that S_{0}^{\prime} contains at most one copy of f_{3} and at most one copy of $f_{3}+f_{2}$. In other words, $T_{1} \cdots T_{n-1}$ contains at least $2 n-2 v-2$ copies of f_{3} and at least $2 v-1$ copies of $f_{3}+f_{2}$. Assume that there exists no $i \in[1, n-1]$ satisfying $T_{i}=f_{3}^{2}$ or $T_{i}=\left(f_{3}+f_{2}\right)^{2}$. Since $(2 n-2 v-2)+(2 v-1)=2 n-3 \geq n$, there exists $i \in[1, n-1]$ satisfying $S_{i}=f_{3}\left(f_{3}+f_{2}\right)$ so that $g=2 f_{3}+f_{2}$. Yet, this is not an element of H, which is a contradiction. It follows that $T_{i}=f_{3}^{2}$ or $T_{i}=\left(f_{3}+f_{2}\right)^{2}$ for at least one $i \in[1, n-1]$
which yields $g=2 f_{3}$. In particular, for every $i \in[1, n-1]$ such that T_{i} contains $\left(f_{3}+f_{2}\right)$, we have $T_{i}=\left(f_{3}+f_{2}\right)^{2}$ so that $T_{1} \cdots T_{n-1}$ contains an even number of copies of $f_{3}+f_{2}$. Therefore, the number of copies of $f_{3}+f_{2}$ contained in S_{0}^{\prime}, which is at most one, must be zero. We thus obtain $U=f_{3} f_{2}\left(a f_{3}+f_{1}\right)\left((1-a) f_{3}+f_{2}+f_{1}\right)$ with $a \in[2, n-1]$.

Since $1+a \neq 1-a(\bmod 2 n)$ and $1+(1-a) \neq a(\bmod 2 n)$, there is only one possible decomposition of U as the product of two sequences of length 2 having same sum, which yields $w=f_{3}+f_{2}$. Therefore,

$$
S=f_{3}^{2 n-1-2 v}\left(f_{3}+f_{2}\right)^{2 v+1} f_{2}\left(a f_{3}+f_{1}\right)\left((1-a) f_{3}+f_{2}+f_{1}\right)
$$

with $v \in[0, n-1]$ and $a \in[2, n-1]$. It remains to check that this sequence contains no short zero-sum subsequence. Indeed, since V is a minimal zero-sum sequence over G, any short zero-sum subsequence $S^{\prime} \mid S$ must satisfy $\left(f_{3}+f_{2}\right)^{2 v+1} \mid S^{\prime}$. Now, if S^{\prime} contains neither $\left(a f_{3}+f_{1}\right)$ nor $\left((1-a) f_{3}+f_{2}+f_{1}\right)$, we must have $S^{\prime}=f_{3}^{2 n-1-2 v}\left(f_{3}+f_{2}\right)^{2 v+1} f_{2}$ so that $\left|S^{\prime}\right|=2 n+1>2 n$ which is a contradiction. If S^{\prime} contains either $\left(a f_{3}+f_{1}\right)$ or $\left((1-a) f_{3}+f_{2}+f_{1}\right)$ then it must contain both of them, which yields $S^{\prime}=f_{3}^{2 n-2-2 v}\left(f_{3}+f_{2}\right)^{2 v+1}\left(a f_{3}+f_{1}\right)\left((1-a) f_{3}+f_{2}+f_{1}\right)$ so that $\left|S^{\prime}\right|=2 n+1>2 n$, which is a contradiction.

If V is of type (D5), then in order to have a support of size at least five, S_{0}^{\prime} must contain at least four elements of $\operatorname{supp}(V)$. Since S_{0}^{\prime} contains at most one copy of f_{3}, the sequences $T_{1} \cdots T_{n-1}$ contains at least $2 n-3 \geq n$ copies of f_{3}. This implies that every T_{i} contains at least one copy of f_{3} and that at most one of them is different from f_{3}^{2}. This yields $g=2 f_{3}$ so that $T_{i}=f_{3}^{2}$ for every $i \in[1, n-1]$. Therefore, the elements $\left(a f_{3}+f_{2}\right),\left((1-a) f_{3}+f_{2}\right),\left(b f_{3}+f_{1}\right)$ and $\left((1-b) f_{3}+f_{1}\right)$ belong to S_{0}^{\prime} and since their sum is equal to $2 f_{3} \in H$, we have $U=\left(a f_{3}+f_{2}\right)((1-$ a) $\left.f_{3}+f_{2}\right)\left(b f_{3}+f_{1}\right)\left((1-b) f_{3}+f_{1}\right)$ with $a \geq b$ and $a, b \in[2, n-1]$.

Now, let $w=\alpha f_{3}+d$ where $\alpha \in[0,2 n-1]$ and $d \in\left\langle f_{1}, f_{2}\right\rangle$. On the one hand, $2 w=g=2 f_{3}$ yields $\alpha \in\{1, n+1\}$. On the other hand, since w must be equal to the sum of two elements of U, we have $d \in\left\{0, f_{1}+f_{2}\right\}$.

In case $d=0$, we get that $\alpha=1$ which yields $w=f_{3}$ so that

$$
S=f_{3}^{2 n-1}\left(a f_{3}+f_{2}\right)\left((1-a) f_{3}+f_{2}\right)\left(b f_{3}+f_{1}\right)\left((1-b) f_{3}+f_{1}\right)
$$

with $a \geq b$ and $a, b \in[2, n-1]$. It remains to check that this sequence contains no short zero-sum subsequence. Indeed, since V is a minimal zero-sum sequence over G, any short zero-sum subsequence $S^{\prime} \mid S$ must satisfy $f_{3}^{2 n-1} \mid S^{\prime}$, which implies $\left|S^{\prime}\right|=2 n$ so that $S^{\prime}=f_{3}^{2 n} \nmid S$, a contradiction.

In the case $d=f_{1}+f_{2}$ and $\alpha=1$, we have $w=f_{3}+f_{2}+f_{1}$. Since $a+b=$ $(1-a)+(1-b)(\bmod 2 n)$ if and only if $a+b=n+1 \neq 1(\bmod 2 n)$, we have $a+(1-b)=(1-a)+b(\bmod 2 n)$ that is to say $a=b$. We thus obtain

$$
S=f_{3}^{2 n-2}\left(a f_{3}+f_{2}\right)\left((1-a) f_{3}+f_{2}\right)\left(a f_{3}+f_{1}\right)\left((1-a) f_{3}+f_{1}\right)\left(f_{3}+f_{2}+f_{1}\right)
$$

with $a \in[2, n-1]$. Yet, $S^{\prime}=f_{3}^{2 n-2 a-1}\left(a f_{3}+f_{2}\right)\left(a f_{3}+f_{1}\right)\left(f_{3}+f_{2}+f_{1}\right) \mid S$ is a nonempty zero-sum subsequence of length $\left|S^{\prime}\right|=2 n-2 a+2 \leq 2 n$.

In the case $d=f_{1}+f_{2}$ and $\alpha=n+1$, we have $w=(n+1) f_{3}+f_{2}+f_{1}$. Since $a+(1-b)=(1-a)+b(\bmod 2 n)$ if and only if $a=b$ which implies $a+1-b=1 \neq n+1$
$(\bmod 2 n)$, we have $a+b=(1-a)+(1-b)(\bmod 2 n)$ if and only if $a+b=n+1$ $(\bmod 2 n)$. We thus obtain
$S=f_{3}^{2 n-2}\left(a f_{3}+f_{2}\right)\left((1-a) f_{3}+f_{2}\right)\left((n+1-a) f_{3}+f_{1}\right)\left((a-n) f_{3}+f_{1}\right)\left((n+1) f_{3}+f_{2}+f_{1}\right)$
with $a \in[2, n-1]$. Yet, $S^{\prime}=f_{3}^{2 n-2 a-1}\left(a f_{3}+f_{2}\right)\left((a-n) f_{3}+f_{1}\right)\left((n+1) f_{3}+f_{2}+f_{1}\right) \mid S$ is a nonempty zero-sum subsequence of length $\left|S^{\prime}\right|=2 n-2 a+2 \leq 2 n$.

If V is of type (D6), we have $V=\prod_{i=1}^{2 n}\left(f_{3}+d_{i}\right) f_{2} f_{1}$ where $\prod_{i=1}^{2 n} d_{i} \in \mathcal{F}\left(\left\langle f_{1}, f_{2}\right\rangle\right)$ is such that $\sum_{i=1}^{2 n} d_{i}=f_{1}+f_{2}$. Then $w=f_{3}+d$ for some $d \in\left\langle f_{1}, f_{2}\right\rangle$ so that we can write $S=\prod_{i=1}^{2 n+1}\left(f_{3}+d_{i}\right) f_{2} f_{1}$ where $S^{\prime}=\prod_{i=1}^{2 n+1} d_{i} \in \mathcal{F}\left(\left\langle f_{1}, f_{2}\right\rangle\right)$. It is easily seen that such a sequence S contains no short zero-sum subsequence if and only if $S^{\prime}=\prod_{i=1}^{2 n+1} d_{i} \in \mathcal{F}\left(\left\langle f_{1}, f_{2}\right\rangle\right)$ contains no zero-sum subsequence of size $2 n$, that is to say if and only if $\sigma\left(S^{\prime}\right) \notin \operatorname{supp}\left(S^{\prime}\right)$.

5. INVERSE PROBLEM ASSOCIATED TO s $\left(C_{2} \oplus C_{2} \oplus C_{2 n}\right)$ FOR $n \geq 2$

We turn to the inverse problem associated to s $\left(C_{2} \oplus C_{2} \oplus C_{2 n}\right)$ for $n \geq 2$. Again, the case $n=1$, that is, C_{2}^{3}, is different yet well-known and direct; $s\left(C_{2}^{3}\right)-1=8$ and the only example of a sequence of length 8 without zero-sum subsequence of length 2 is the squarefree sequence of all elements, because the only zero-sum sequence of length $\exp (G)$ are g^{2} for $g \in C_{2}^{r}$. The proof of this result uses Theorem 4.1.

Theorem 5.1. Let $G \simeq C_{2} \oplus C_{2} \oplus C_{2 n}$, where $n \geq 2$. A sequence S over G of length $|S|=\mathrm{s}(G)-1=4 n+2$ contains no zero-sum subsequence of length $\exp (G)$ if and only if there exists an independent generating set $\left\{f_{1}, f_{2}, f_{3}\right\}$ of G, where $\operatorname{ord}\left(f_{1}\right)=\operatorname{ord}\left(f_{2}\right)=2$ and $\operatorname{ord}\left(f_{3}\right)=2 n$, and an $f \in G$ such that $-f+S$ is equal to one of the following sequences:
(s1) $0^{2 \alpha+1} f_{2}^{2 n-2 \alpha-1} f_{3}^{2 n-1-2 \beta}\left(f_{3}+f_{2}\right)^{2 \beta+1}\left(a f_{3}+f_{1}\right)\left((1-a) f_{3}+f_{2}+f_{1}\right)$ with $a \in[2, n-1]$ and $\alpha, \beta \in[0, n-1]$.
(s2) $0^{2 n-1} f_{3}^{2 n-1}\left(a f_{3}+f_{2}\right)\left((1-a) f_{3}+f_{2}\right)\left(b f_{3}+f_{1}\right)\left((1-b) f_{3}+f_{1}\right)$ with $a, b \in$ [2, $n-1]$ and $a \geq b$.
(s3) $0^{2 \alpha+1} f_{1}^{2 \beta+1} f_{2}^{2 \gamma+1} \prod_{i=1}^{2 n+1}\left(f_{3}+d_{i}\right)$ where $\alpha, \beta, \gamma \in[0, n-1]$ are such that $\alpha+\beta+\gamma=n-1, S^{\prime}=\prod_{i=1}^{2 n+1} d_{i} \in \mathcal{F}\left(\left\langle f_{1}, f_{2}\right\rangle\right)$ and $\sigma\left(S^{\prime}\right) \notin \operatorname{supp}\left(S^{\prime}\right)$.
As in the result for the η-constant, for $n=2$ only the last case can occur. Before giving the proof of this result we put the result in context and derive two corollaries. The first is about the height of these extremal sequences, that is, the maximal multiplicity of an element in theses sequences.

Corollary 5.2. Let $G \simeq C_{2} \oplus C_{2} \oplus C_{2 n}$, where $n \geq 2$. For every sequence S over G of length $|S|=\mathbf{s}(G)-1$ without zero-sum subsequence of length $\exp (G)$ one has

$$
\mathrm{h}(S) \geq\left\{\begin{array}{lll}
\frac{2 n+3}{3} & \text { if } n \equiv 0 & (\bmod 3) \\
\frac{2 n+1}{3} & \text { if } n \equiv 1 & (\bmod 3) \\
\frac{2 n+5}{3} & \text { if } n \equiv 2 & (\bmod 3)
\end{array}\right.
$$

and these bounds are attained.
Proof. For sequences of the second type in Theorem 5.1, it is clear that $\mathrm{h}(S)=$ $2 n-1$, and the claim follows. For sequences of the first type in Theorem 5.1 considering for example 0 and f_{2} we see that $\mathrm{h}(S)>2 n / 2$; again the claim follows.

For sequences of the third type in Theorem 5.1, considering $0, f_{1}$, and f_{2} we see that $\mathrm{h}(S) \geq 2\lfloor(n-1) / 3\rfloor+1$, which yields the claimed bounds.

To see that the bounds are attained we consider the sequence, where $\left\{f_{1}, f_{2}, f_{3}\right\}$ is an independent generating set of G with $\operatorname{ord}\left(f_{1}\right)=\operatorname{ord}\left(f_{2}\right)=2$ and $\operatorname{ord}\left(f_{3}\right)=2 n$,

$$
0^{2 \alpha+1} f_{1}^{2 \beta+1} f_{2}^{2 \gamma+1}\left(f_{3}+f_{1}\right)^{2 \alpha+1}\left(f_{3}+f_{2}\right)^{2 \beta+1}\left(f_{3}+\left(f_{1}+f_{2}\right)\right)^{2 \gamma+1}
$$

where

$$
(\alpha, \beta, \gamma)=\left\{\begin{array}{lll}
\left(\frac{n}{3}, \frac{n}{3}, \frac{n-3}{3}\right) & \text { if } n \equiv 0 & (\bmod 3) \\
\left(\frac{n-1}{3}, \frac{n-1}{3}, \frac{n-1}{3}\right) & \text { if } n \equiv 1 & (\bmod 3) \\
\left(\frac{n+1}{3}, \frac{n-2}{3}, \frac{n-2}{3}\right) & \text { if } n \equiv 2 & (\bmod 3)
\end{array}\right.
$$

which is of the form given in Theorem 5.1 as the sum of $f_{1}^{2 \alpha+1} f_{2}^{2 \beta+1}\left(f_{1}+f_{2}\right)^{2 \gamma+1}$ is 0 .

An interesting aspect is that for $C_{2} \oplus C_{2} \oplus C_{2 n}$ there are extremal sequences of height significantly below $\exp (G) / 2$, contrary to all results established so far (see the discussion in [23, in particular Corollary 3.3 there, where the still stronger conjecture that the height is always $\exp (G)-1$ was refuted). This seems noteworthy as there is a well-known technical result (see [7, Proposition 2.7] or also [23, Lemma 4.3]) that implies that if $\mathrm{h}(S) \geq\lfloor(\exp (G)-1) / 2\rfloor$ for each sequence S over G of length $s(G)-1$ without zero-sum subsequence of length $\exp (G)$, then Gao's conjecture $s(G)=\eta(G)+\exp (G)-1$ that we recalled in the introduction holds true for the group G. Thus, it seems interesting that despite the relatively low height of some extremal sequences over $C_{2} \oplus C_{2} \oplus C_{2 n}$ Gao's conjecture still holds. An explanation for this can be given by a more detailed analysis of the structure of extremal sequences and a recent refinement of the above mentioned technical result (see Lemma 5.4 below).

Corollary 5.3. Let $G \simeq C_{2} \oplus C_{2} \oplus C_{2 n}$, where $n \geq 2$. For every sequence S over G of length $|S|=\mathbf{s}(G)-1$ without zero-sum subsequence of length $\exp (G)$ there is some $f \in G$ such that $-f+S=C T$ where T is a sequence over G of length $|T|=\eta(G)-1$ without short zero-sum subsequence and C is a sequence of length $\exp (G)-1$ of the form $0^{2 u+1} f_{1}^{2 v} f_{2}^{2 w}$ with nonnegative integers u, v, w, and $f_{1}, f_{2} \in G$ with $\operatorname{ord}\left(f_{1}\right)=\operatorname{ord}\left(f_{2}\right)=2$.

Proof. This follows rather directly by comparing the sequences given in Theorems 4.1 and 5.1 For a sequence S of the form given in point (s1) the sequence T is of the form given in ($\eta 1$) and likewise for the other points; for the sequences in (s1) and (s2) only more special forms of sequences C arise.

We note that the sequences $(f+C)$, with C as in the corollary above, have the property $j f \in \Sigma_{j}(f+C)$ for each $j \leq|f+C|$ thus the following lemma (see [13, Lemma 4.4]) is applicable.

Lemma 5.4. Let G be a finite abelian group. Let S be a sequence over G of length $\eta(G)+\exp (G)-1$. Let $C^{\prime} \mid S$ be a subsequence such that there exists some $f \in G$ with $j f \in \Sigma_{j}\left(C^{\prime}\right)$ for each $j \leq\left|C^{\prime}\right|$. If $\left|C^{\prime}\right| \geq\lfloor(\exp (G)-1) / 2\rfloor$, then S has a zero-sum subsequence of length $\exp (G)$.

After this discussion we now turn to the proof the theorem itself.

Proof of Theorem 5.1. Let $G \simeq C_{2} \oplus C_{2} \oplus C_{2 n}$, where $n \geq 2$. As in the previous proof, we use the inductive method with

$$
H \hookrightarrow G \xrightarrow{\pi} G / H
$$

where H is the unique cyclic subgroup of order n such that $G / H \simeq C_{2}^{3}$.
Let S be a sequence over G such that $|S|=4 n+2$ that contains no zero-sum subsequence of length $2 n$. Since $|S|=2(2 n-4)+10 \geq \mathrm{s}\left(C_{2}^{3}\right)+2(2 n-4)$, there exist $2 n-3$ disjoint subsequences $S_{1}, \ldots, S_{2 n-3} \mid S$ such that $\left|S_{i}\right|=2$ and $\sigma\left(S_{i}\right) \in H$ for all $i \in[1,2 n-3]$. In particular, $S=S_{1} \cdots S_{2 n-3} S_{0}$ where S_{0} has length $\left|S_{0}\right|=8$.

On the one hand, all elements of $\pi\left(S_{0}\right)$ have multiplicity at most three and at most one of them has multiplicity at least two, otherwise we could extract from S_{0} two disjoint subsequences $S_{2 n-2}$ and $S_{2 n-1}$ satisfying $\left|S_{2 n-2}\right|=\left|S_{2 n-1}\right|=2$ and $\sigma\left(S_{2 n-2}\right), \sigma\left(S_{2 n-1}\right) \in H$ so that S would contain a zero-sum subsequence of length $2 n$, a contradiction. In particular, we have $\left|\operatorname{supp}\left(\pi\left(S_{0}\right)\right)\right| \geq 6$.

On the other hand, $T=\prod_{i=1}^{2 n-3} \sigma\left(S_{i}\right)$ is a sequence over H of length $|T|=2 n-3$, containing no zero-sum subsequence of length n, otherwise S would contain a zerosum subsequence of length $2 n$, a contradiction.

By Theorem 3.2 we get that $\left|H \backslash\left(-\Sigma_{n-2}(T)\right)\right| \leq 1$. Since $\left|\operatorname{supp}\left(\pi\left(S_{0}\right)\right)\right| \geq 6$ it follows by Lemma 3.4 that one can extract from S_{0} a subsequence $U \mid S_{0}$ such that $|U|=4$ and $\sigma(U) \in H$. Since S contains no zero-sum subsequence of length $2 n$, it follows that $\sigma(U)$ is an element of $H \backslash-\left(\Sigma_{n-2}(T)\right)$. Since we saw that $\left|H \backslash-\left(\Sigma_{n-2}(T)\right)\right| \leq 1$, it follows that this element is uniquely determined and $\left|H \backslash\left(-\Sigma_{n-2}(T)\right)\right|=1$.

By Theorem 3.2 we get that there exist two elements $g, h \in H$ satisfying ord $(h-$ $g)=n$ such that, by relabeling the S_{i} for $i \in[1,2 n-3]$ if necessary, S can be decomposed as $S_{1} \cdots S_{2 n-3} S_{0}$ where $\sigma\left(S_{i}\right)=g$ for all $i \in[1, n-1]$ and $\sigma\left(S_{i}\right)=h$ for all $i \in[n, 2 n-3]$. In particular, $H \backslash\left(-\Sigma_{n-2}(T)\right)=\{g+h\}$. We now distinguish cases according to the cardinality of $\mid \operatorname{supp}\left(\pi\left(S_{0}\right) \mid\right.$.

Case 1. $\left|\operatorname{supp}\left(\pi\left(S_{0}\right)\right)\right|=8$. In this case, let x be any element of S_{0} and $S_{0}^{\prime}=S_{0} x^{-1}$. Note that S_{0}^{\prime} is a subsequence of S_{0} of length $\left|S_{0}^{\prime}\right|=7$ and that $\pi\left(S_{0}^{\prime}\right)$ consists of seven distinct elements of G / H. Now, let q, r be two distinct elements of S_{0}^{\prime} and decompose $S_{0}^{\prime} r^{-1}$ in such a way that $S_{0}^{\prime} r^{-1}=q s t u v w$, where $\pi(q)+\pi(s)=\pi(t)+\pi(u)=\pi(v)+\pi(w)=\pi(r)+\pi(x)$. It is easily seen that $\pi(s)+\pi(t)+\pi(v)$ and $\pi(s)+\pi(t)+\pi(w)$ are two distinct elements of the set $(G / H) \backslash \pi\left(S_{0}^{\prime} r^{-1}\right)=\{\pi(r), \pi(x)\}$, so that one of them, say $\pi(s)+\pi(t)+\pi(w)$, is equal to $\pi(r)$. It follows that $U_{1}=s q t u, U_{2}=s q v w, U_{3}=s t r w, U_{4}=s u v r$ and $U_{5}=t u v w$ are five subsequences of S_{0}^{\prime} of length 4 with sum in H.

If $n=2$, let y be the only element of H satisfying ord $(y)=n$. Since S contains no zero-sum subsequence of length 4 , we have $\sigma\left(U_{i}\right)=y$ for every $i \in[1,5]$. Therefore, we have $\sigma\left(U_{1}\right)+\sigma\left(U_{2}\right)-\sigma\left(U_{3}\right)-\sigma\left(U_{4}\right)=0$ which is equivalent to $2 q=2 r$. Since the argument applies to any three distinct elements q, r, x of S_{0}, we obtain that $2 a \in H$ is constant over all elements a of S_{0}. Now, $\sigma\left(U_{1}\right)+\sigma\left(U_{2}\right)-\sigma\left(U_{5}\right)=y$ readily gives $0=2(2 q)=2 s+2 q=y$, which is a contradiction.

If $n \geq 3$, then $\sigma\left(U_{i}\right) \in H \backslash\left(-\Sigma_{n-2}(T)\right)=\{g+h\}$ for all $i \in[1,5]$. Therefore, $\sigma\left(U_{i}\right)=g+h$ for all $i \in[1,5]$ which yields $\sigma\left(U_{1}\right)+\sigma\left(U_{2}\right)-\sigma\left(U_{3}\right)-\sigma\left(U_{4}\right)=0$ which is equivalent to $2 q=2 r$. Since the argument applies to any three distinct
elements q, r, x of S_{0}, we obtain that $2 a \in H$ is constant over all elements a of S_{0}. The equality $\sigma\left(U_{1}\right)+\sigma\left(U_{2}\right)-\sigma\left(U_{5}\right)=g+h$ readily gives $4 q=2(s+q)=g+h$ so that $4 a=g+h$ for any element a of S_{0}.

Since $\operatorname{supp}\left(\pi\left(S_{0}\right)\right)=G / H$, for any $i \in[1,2 n-3]$ and any $a_{i} \mid S_{i}$, there exists an element a of S_{0} such that $\pi(a)=\pi\left(a_{i}\right)$. Setting $T_{0}=S_{0} a^{-1} a_{i}, T_{i}=S_{i} a_{i}^{-1} a$ and $T_{j}=S_{j}$ for all $j \in[1,2 n-3]$ such that $i \neq j$, we obtain a new decomposition of S having the form

$$
S=T_{1} \cdots T_{2 n-3} T_{0}
$$

where there exist two elements $g^{\prime}, h^{\prime} \in H$ satisfying $\operatorname{ord}\left(h^{\prime}-g^{\prime}\right)=n$ such that, by relabeling the T_{i} for $i \in[1,2 n-3]$ if necessary, we have $\sigma\left(T_{i}\right)=g^{\prime}$ for all $i \in[1, n-1]$ and $\sigma\left(T_{i}\right)=h^{\prime}$ for all $i \in[n, 2 n-3]$. Using the same argument as above, we obtain that $2 x \in H$ is constant over all elements x of T_{0}, and that $4 x=g^{\prime}+h^{\prime}$ for any x of T_{0}. Since at least seven elements of T_{0} and S_{0} are equal, it follows that $g^{\prime}+h^{\prime}=g+h$, and $4 a=4 a_{i}$.

Case 1.1. n is odd. Since $4 a=4 a_{i}$, it follows that $2 a=2 a_{i}$, and since moreover $\pi(a)=\pi\left(a_{i}\right)$, we get that $a=a_{i}$. Since a_{i} was chosen arbitrarily, it follows that $\operatorname{supp}(S)=\operatorname{supp}\left(S_{0}\right)$. In particular, this implies that $S_{i}=a_{i}^{2}$ for each $i \in[1,2 n-3]$; to see this just recall that $\sigma\left(S_{i}\right) \in H$ implies that both elements in S_{i} have the same image under π.

We recall that $2 a$ is constant over all elements in S_{0}, and thus in S. Yet, this would mean that $\sigma\left(S_{i}\right)$ is equal for all $i \in[1,2 n-3]$, that is, $g=h$, a contradiction.

Case 1.2. n is even. Since we assumed $n \geq 3$, we have $n \geq 4$ (and this is actually all that we use). Applying the replacement above with some $i \in[n, 2 n-3]$, it can be seen that $h^{\prime}=h$ (here we use $n \geq 4$, so that the original sequence contains h not only once). Moreover, it follows that $S_{i}=a^{2}$ where a is again the element of S_{0} such that $\pi\left(a_{i}\right)=\pi(a)$.

In particular, $h=\sigma\left(S_{i}\right)=2 a$. Since we already know that $4 a=g+h$, we obtain $g+h=4 a=2(2 a)=2 h$, that is, $g=h$, a contradiction.

Case 2. $\left|\operatorname{supp}\left(\pi\left(S_{0}\right)\right)\right|=7$. The argument is similar to the preceding case. There exists a subsequence $S_{0}^{\prime} \mid S_{0}$ of length $\left|S_{0}^{\prime}\right|=7$ such that $\pi\left(S_{0}^{\prime}\right)$ consists of seven distinct elements of H. Now, let q, r be two distinct elements of S_{0}^{\prime}. We denote by γ the only element in $G / H \backslash\left\{\pi\left(S_{0}^{\prime}\right)\right\}$ and decompose $S_{0}^{\prime} r^{-1}$ in such a way that $S_{0}^{\prime} r^{-1}=q$ stuvw, where $\pi(q)+\pi(s)=\pi(t)+\pi(u)=\pi(v)+\pi(w)=\pi(r)+\gamma$. It is easily seen that $\pi(s)+\pi(t)+\pi(v)$ and $\pi(s)+\pi(t)+\pi(w)$ are two distinct elements of the set $G / H \backslash \pi\left(S_{0}^{\prime} r^{-1}\right)=\{\pi(r), \gamma\}$, so that one of them, say $\pi(s)+\pi(t)+\pi(w)$ is equal to $\pi(r)$. It follows that $U_{1}=s q t u, U_{2}=s q v w, U_{3}=s t r w, U_{4}=s u v r$ and $U_{5}=t u v w$ are five subsequences of S_{0}^{\prime} of length 4 with sum in H.

If $n=2$, let y be the only element of H satisfying $\operatorname{ord}(y)=n$. Since S contains no zero-sum subsequence of length 4 , we have $\sigma\left(U_{i}\right)=y$ for every $i \in[1,5]$. Therefore, we have $\sigma\left(U_{1}\right)+\sigma\left(U_{2}\right)-\sigma\left(U_{3}\right)-\sigma\left(U_{4}\right)=0$ which is equivalent to $2 q=2 r$. Since the argument applies to any two distinct elements of S_{0}^{\prime}, we obtain that $2 a \in H$ is constant over all elements a of S_{0}^{\prime}. Now, $\sigma\left(U_{1}\right)+\sigma\left(U_{2}\right)-\sigma\left(U_{5}\right)=y$ readily gives $0=2(2 q)=2(s+q)=y$, which is a contradiction.

We can thus assume that $n \geq 3$, so that $\sigma\left(U_{i}\right) \in H \backslash\left(-\Sigma_{n-2}(T)\right)=\{g+h\}$ for all $i \in[1,5]$. Therefore, $\sigma\left(U_{i}\right)=g+h$ for all $i \in[1,5]$ which yields $\sigma\left(U_{1}\right)+$ $\sigma\left(U_{2}\right)-\sigma\left(U_{3}\right)-\sigma\left(U_{4}\right)=0$ which is equivalent to $2 q=2 r$. Since the argument
applies to any two distinct elements of S_{0}^{\prime}, we obtain that $2 a \in H$ is constant over all elements a of S_{0}^{\prime}. The equality $\sigma\left(U_{1}\right)+\sigma\left(U_{2}\right)-\sigma\left(U_{5}\right)=g+h$ readily gives $4 q=2(s+q)=g+h$ so that $4 a=g+h$ for any element a of S_{0}^{\prime}.

Now, let a be an element of S_{0}^{\prime} and let V_{1} be a subsequence of S_{0} such that $\left|V_{1}\right|=6$ and $\sigma\left(V_{1}\right) \in H$; such a sequence exists as $\pi\left(S_{0}\right)$, not being squarefree, has a zero-sum subsequence of length 2 , and the remaining squarefree sequence of length 6 has a zero-sum subsequence of length 4 by Lemma 3.4. If $n=3$, then $\sigma\left(V_{1}\right) \in$ $H \backslash\{0\}=\{2 h+g, h+2 g\}$. If $n \geq 4$, then $\sigma\left(V_{1}\right) \in H \backslash\left(-\Sigma_{n-3}(T)\right)=\{2 h+g, h+2 g\}$ also. In all cases, we obtain either $2(2 h+g)=2 \sigma\left(V_{1}\right)=6(2 a)=3(4 a)=3(g+h)$ or $2(h+2 g)=2 \sigma\left(V_{1}\right)=6(2 a)=3(4 a)=3(g+h)$ which both imply $g=h$, a contradiction.

Case 3. $\operatorname{supp}\left(\pi\left(S_{0}\right)\right)=6$. We get that $\pi\left(S_{0}\right)$ consists of one element repeated three times and five other elements; recall that at most one element of $\pi\left(S_{0}\right)$ has multiplicity greater than one. Thus S_{0} contains a subsequence $S_{2 n-2} \mid S_{0}$ such that $\left|S_{2 n-2}\right|=2$ and $\sigma\left(S_{2 n-2}\right) \in H$. It follows that, whatever $n \geq 2$ we consider, there exist two elements $g, h \in H$ satisfying $\operatorname{ord}(h-g)=n$ such that S can be decomposed as $S_{1} \cdots S_{2 n-2} S_{0}^{\prime}$ where $\sigma\left(S_{i}\right)=g$ for all $i \in[1, n-1], \sigma\left(S_{i}\right)=h$ for all $i \in[n, 2 n-2]$, and S_{0}^{\prime} has length $\left|S_{0}^{\prime}\right|=6$; furthermore, $\operatorname{supp}\left(\pi\left(S_{1} \cdots S_{2 n-2}\right)\right) \cap \operatorname{supp}\left(\pi\left(S_{0}^{\prime}\right)\right) \neq \emptyset$.

Now, let us prove that, after a translation by an element of G, the sequence S can be decomposed as $0 T_{1} \cdots T_{n-1} V$ where $\left|T_{i}\right|=2$ and $\sigma\left(T_{i}\right)=0$ for all $i \in[1, n-1]$, and where V, which has length $|V|=2 n+3=\eta(G)-1$, contains no short zero-sum subsequence.

Since $\operatorname{supp}\left(\pi\left(S_{1} \cdots S_{2 n-2}\right)\right) \cap \operatorname{supp}\left(\pi\left(S_{0}^{\prime}\right)\right) \neq \emptyset$, there exist an element f of S_{0}^{\prime} and an element a_{i} of some S_{i}, where $i \in[1,2 n-2]$, such that $\pi(f)=\pi\left(a_{i}\right)$. If $i \in[1, n-1]$, then replacing S_{i} by $f a_{i}$ or $f\left(g-a_{i}\right)$, we easily infer that $f=a_{i}=g-a_{i}$. In particular, $2 f=g$, so that

$$
-f+S=0\left(-f+S_{1}\right) \cdots\left(-f+S_{n-1}\right) V
$$

where V has length $|V|=4 n+2-2(n-1)-1=2 n+3=\eta(G)-1$. We set $T_{i}=-f+S_{i}$ for each $i \in[1, n-1]$. Since for every $t \in[1,2 n-1]$, the sequence $0 T_{1} \cdots T_{n-1}$ contains a zero-sum subsequence of length t, it follows that V has no short zero-sum subsequence; otherwise $-f+S$ and thus S would have a zero-sum subsequence of length $2 n$.

If $i \in[n, 2 n-2]$, the argument is analogous, just replacing g by h and considering the sequence $S_{n}, \ldots, S_{2 n-2}$.

We now know that for every sequence S over G such that $|S|=4 n+2$ and containing no zero-sum subsequence of length $2 n$, there is an $f \in G$ such that $-f+S$ can be decomposed as $0 T_{1} \cdots T_{n-1} V$ where $\left|T_{i}\right|=2$ and $\sigma\left(T_{i}\right)=0$ for all $i \in[1, n-1]$, and where V, which has length $|V|=2 n+3=\eta(G)-1$, contains no short zero-sum subsequence.

We recall that S has a zero-sum subsequence of length $2 n$ if and only if $-f+S$ has a zero-sum subsequence of length $2 n$. Thus, $-f+S$ has no zero-sum subsequence of length $2 n$. To simplify notation, we assume without loss that $f=0$.

On the one hand, note that $\Sigma_{[1,2 n-1]}(V)=G \backslash\{0\}$. On the other hand, we assert that: if $x \mid T_{i}$ for some $i \in[1, n-1]$, then $x \notin-\Sigma_{[2,2 n-1]}(V)$. To see this note that otherwise V would contain a subsequence $V^{\prime} \mid V$ of length $\left|V^{\prime}\right|=k \in[2,2 n-1]$
such that $x=-\sigma\left(V^{\prime}\right)$. If k were odd, then the subsequence $S^{\prime}=x V^{\prime} \prod_{j \in J} T_{j} \mid S$, where J is any subset of $[1, n-1] \backslash\{i\}$ satisfying $|J|=n-(k+1) / 2 \in[0, n-2]$ would have length $\left|S^{\prime}\right|=2 n$ and sum zero, a contradiction. If k were even, then the subsequence $S^{\prime}=0 x V^{\prime} \prod_{j \in J} T_{j} \mid S$, where J is any subset of $[1, n-1] \backslash\{i\}$ satisfying $|J|=n-(k+2) / 2 \in[0, n-2]$ would have length $\left|S^{\prime}\right|=2 n$ and sum zero, a contradiction. Therefore, any $x \in \operatorname{supp}\left(T_{1} \cdots T_{n-1}\right)$ is either zero or an element of $G \backslash\{0\} \backslash\left(-\Sigma_{[2,2 n-1]}(V)\right)=-\Sigma_{[1,2 n-1]}(V) \backslash\left(-\Sigma_{[2,2 n-1]}(V)\right)=-\operatorname{supp}(V)$.

Since $x \mid T_{i}$ if and only if $-x \mid T_{i}$, we obtain

$$
\operatorname{supp}\left(T_{1} \cdots T_{n-1}\right) \subset\{0\} \cup(\operatorname{supp}(V) \cap(-\operatorname{supp}(V)))
$$

Finally, using Theorem 4.1, we know that there exists an independent generating set $\left\{f_{1}, f_{2}, f_{3}\right\}$ of G, where $\operatorname{ord}\left(f_{1}\right)=\operatorname{ord}\left(f_{2}\right)=2$ and $\operatorname{ord}\left(f_{3}\right)=2 n$, such that V has one out of three possible forms.

If V is of type $(\eta 1)$, then

$$
\operatorname{supp}\left(T_{1} \cdots T_{n-1}\right) \subset\{0\} \cup(\operatorname{supp}(V) \cap(-\operatorname{supp}(V)))=\left\{0, f_{2}\right\}
$$

so that we have

$$
S=0^{2 \alpha+1} f_{2}^{2 n-2 \alpha-2} f_{3}^{2 n-1-2 v}\left(f_{3}+f_{2}\right)^{2 v+1}\left(a f_{3}+f_{1}\right)\left((1-a) f_{3}+f_{2}+f_{1}\right)
$$

with $\alpha, \beta \in[0, n-1]$ and $a \in[2, n-1]$. It remains to check that such a sequence contains no zero-sum subsequence of length $2 n$. Since $\Sigma\left(0^{2 \alpha+1} f_{2}^{2 n-2 \alpha-2}\right) \subset\left\{0, f_{2}\right\}$, it suffices to check that $0 \notin \Sigma_{[1,2 n]}\left(f_{3}^{2 n-1-2 v}\left(f_{3}+f_{2}\right)^{2 v+1}\left(a f_{3}+f_{1}\right)\left((1-a) f_{3}+f_{2}+\right.\right.$ $\left.f_{1}\right)$) and that $f_{2} \notin \Sigma_{[1,2 n-1]}\left(f_{3}^{2 n-1-2 v}\left(f_{3}+f_{2}\right)^{2 v+1}\left(a f_{3}+f_{1}\right)\left((1-a) f_{3}+f_{2}+f_{1}\right)\right)$. The former is a consequence of Theorem 4.1 and the latter follows by noting that if a subsequence with sum f_{2} contains $\left(a f_{3}+f_{1}\right)$ or $\left.\left((1-a) f_{3}+f_{2}+f_{1}\right)\right)$, then it contains both, so that we need at least $\operatorname{ord}\left(f_{3}\right)=2 n$ elements in this subsequence.

If V is of type $(\eta 2)$, then

$$
\operatorname{supp}\left(T_{1} \cdots T_{n-1}\right) \subset\{0\} \cup(\operatorname{supp}(V) \cap(-\operatorname{supp}(V)))=\{0\}
$$

so that, up to translation by an element of G, we have

$$
S=0^{2 n-1} f_{3}^{2 n-1}\left(a f_{3}+f_{2}\right)\left((1-a) f_{3}+f_{2}\right)\left(b f_{3}+f_{1}\right)\left((1-b) f_{3}+f_{1}\right)
$$

with $a, b \in[2, n-1]$ and $a \geq b$. Such a sequence contains no zero-sum subsequence of length $2 n$ indeed.

If V is of type $(\eta 3)$, then

$$
\operatorname{supp}\left(T_{1} \cdots T_{n-1}\right) \subset\{0\} \cup(\operatorname{supp}(V) \cap(-\operatorname{supp}(V)))=\left\{0, f_{1}, f_{2}\right\}
$$

so that, up to translation by an element of G, we have

$$
S=0^{2 \alpha+1} f_{1}^{2 \beta+1} f_{2}^{2 \gamma+1} \prod_{i=1}^{2 n+1}\left(f_{3}+d_{i}\right)
$$

where $\alpha, \beta, \gamma \in[0, n-1]$ are such that $\alpha+\beta+\gamma=n-1$, and $S^{\prime}=\prod_{i=1}^{2 n+1} d_{i} \in$ $\mathcal{F}\left(\left\langle f_{1}, f_{2}\right\rangle\right)$ and $\sigma\left(S^{\prime}\right) \notin \operatorname{supp}\left(S^{\prime}\right)$. It remains to check that such a sequence contains no zero-sum subsequence of length $2 n$. Since $\Sigma\left(0^{2 \alpha+1} f_{1}^{2 \beta+1} f_{2}^{2 \gamma+1}\right)=$ $\left\{0, f_{1}, f_{2}\right\}$, it suffices to check that $0 \notin \Sigma_{[1,2 n]}\left(\prod_{i=1}^{2 n+1}\left(f_{3}+d_{i}\right)\right)$ and that $f_{1}, f_{2} \notin$ $\Sigma_{[1,2 n-1]}\left(\prod_{i=1}^{2 n+1}\left(f_{3}+d_{i}\right)\right)$. The former is a consequence of Theorem4.1 and the latter follows by noting that we need at least ord $\left(f_{3}\right)=2 n$ elements in a subsequence of $\prod_{i=1}^{2 n+1}\left(f_{3}+d_{i}\right)$ whose sum is in $\left\langle f_{1}, f_{2}\right\rangle$.

References

[1] Y. Edel Sequences in abelian groups G of odd order without zero-sum subsequences of length $\exp (G)$, Des. Codes Cryptogr. 47 (2008), 125-134.
[2] Y. Fan, W. Gao, J. Peng, L. Wang and Q. Zhong Remarks on tiny zero-sum sequences, Integers 13 (2013), \#A52.
[3] Y. Fan, W. GaO, And Q. Zhong On the Erdős-Ginzburg-Ziv constant of finite abelian groups of high rank, J. Number Theory, 131 (2011) 1864-1874.
[4] Y. FAn and Q. Zhong On the Erdős-Ginzburg-Ziv constant of groups of the form $C_{2}^{r} \oplus C_{n}$, Int. J. Number Theory 12 (4) (2016), 913-943.
[5] J. Fox and L. Sauermann Erdős-Ginzburg-Ziv constants by avoiding three-term arithmetic progressions, Electron. J. Combin. 25 (2) (2018), \#P2.14.
[6] M. Freeze and W. A. Schmid Remarks on a generalization of the Davenport constant, Discrete Math. 310 (23) (2010), 3373-3389.
[7] W. D. Gao On zero-sum subsequences of restricted size II, Discrete Math. 271 (1-3) (2003), 51-59.
[8] W. D. Gao and A. Geroldinger On long minimal zero sequences in finite abelian groups, Period. Math. Hung., 38 (1999) 179-211.
[9] W. D. Gao and A. Geroldinger Zero-sum problems in finite abelian groups: a survey, Expo. Math. 24 (2006), 337-369.
[10] W. D. Gao, Y. Li, P. Yuan and J. Zhuang On the structure of long zero-sum free sequences and n-zero-sum free sequences over finite cyclic groups, Arch. Math. 105(4) (2015), 361-370.
[11] A. Geroldinger Additive group theory and non-unique factorizations, In A. Geroldinger and I. Ruzsa, Combinatorial Number Theory and Additive Group Theory, Advanced Courses in Mathematics, CRM Barcelona, Birkhäuser (2009), 1-86.
[12] A. Geroldinger and F. Halter-Koch Non-unique factorizations. Algebraic, combinatorial and analytic theory, Pure and Applied Mathematics 278, Chapman \& Hall/CRC (2006).
[13] B. Girard and W. A. Schmid Direct zero-sum problems for certain groups of rank three, arXiv:1806.07636 [math.NT]
[14] D. Grynkiewicz Structural Additive Theory, Springer (2013).
[15] S. Luo Short zero-sum sequences over abelian p-groups of large exponent, J. Number Theory 177 (2017), 28-36.
[16] C. Reiner On Kemnitz conjecture concerning lattice-points in the plane, Ramanujan J., 13 (2007) (1-3), 333-337.
[17] C. Reiner A proof of the theorem according to which every prime number possesses property B, doctoral thesis, University of Rostock, Germany (2010).
[18] B. Roy and R. Thangadurai On zero-sum subsequences in a finite abelian p-group of length not exceeding a given number J. Number Theory, to appear.
[19] S. Savchev and F. Chen Kemnitz conjecture revisited, Discrete Math. 297 (1-3) (2005), 196-201.
[20] S. Savchev and F. Chen Long zero-free sequences in finite cyclic groups, Discrete Math. 307 (2007), 2671-2679.
[21] S. Savchev and F. Chen Long n-zero-free sequences in finite cyclic groups, Discrete Math. 308 (2008), 1-8.
[22] W. A. Schmid The inverse problem associated to the Davenport constant for $C_{2} \oplus C_{2} \oplus C_{2 n}$ and applications to the arithmetical characterization of class groups, Electron. J. Combin. 18 (1) (2011), \#P33.
[23] W. A. Schmid Restricted inverse zero-sum problems in groups of rank 2, Q. J. Math. 63 (2) (2012), 477-487.
[24] P. Yuan On the index of minimal zero-sum sequences over finite cyclic groups, J. Combin. Th., Ser. A 114 (8) (2007), 1545-1551.

Sorbonne Université, Université Paris Diderot, CNRS, Institut de Mathématiques de Jussieu - Paris Rive Gauche, IMJ-PRG, F-75005, Paris, France

E-mail address: benjamin.girard@imj-prg.fr
Université Paris 13, Sorbonne Paris Cité, LAGA, CNRS, UMR 7539, Université Paris 8, F-93430, Villetaneuse, France, and Laboratoire Analyse, Géométrie et Applications (LAGA, UMR 7539), COMUE Université Paris Lumières, Université Paris 8, CNRS, 93526 Saint-Denis cedex, France

E-mail address: schmid@math.univ-paris13.fr

[^0]: 2010 Mathematics Subject Classification. 11B30, 11P70, 20 K 01.
 Key words and phrases. finite abelian group, zero-sum sequence, inverse problem, Erdős-Ginzburg-Ziv constant, inductive method.

