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Abstract

We consider the division of a territory into administrative districts respon-

sible for providing a set of goods and services to residents who are sensitive to

service congestion. We deduce the optimal architecture of public governance

(i.e. the division of government into several levels, the distribution of services

among them, their number of jurisdictions and the size of their administrations),

which depends on how citizens weigh the performance capacity of administrations

and the services they produce. We compare it to a decentralized organization

where each jurisdiction is free to choose the size and scope of its administra-

tion. The resulting architecture generally involves more countries with fewer

levels of administration than the optimal one. We use our results to estimate

citizen preferences using U.S. data. We find that the country is divided into two

zones (“Northeast & West” and “Midwest & South”) whose estimated values are

statistically different.
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1 Introduction

The architecture of government (AG), i.e. the organizational layout and functionality

of a country’s public administration in totality (the number of its tiers and jurisdic-

tions per tier, their geographical distribution, the size of their administrations, and

the services they are in charge of providing to their citizenry), differs widely over the

world. The number of tiers of sub-national authorities ranges from five, such as in the

Philippines, to only one, such as in Kuwait. The number of jurisdictions in each tier

also varies widely: focusing on the bottom-most tier of municipal authorities in Europe,

40% are located in a single country: France. Moreover, forms of public governance are

regularly changing. As pointed out by the OECD (2014), half of OECD countries (often

guided by cost reduction considerations) have planned or completed reforms to redraw

the map of AGs in the past 15 years, through municipal-mergers, inter-municipal co-

operation, or metropolitan governance. Denmark totally reorganized its AG in 2007;

the number of municipalities dropped from 271 to 98 through a series of mergers, and

its 13 counties were replaced by 5 regions (Dexia, 2007). Latvia reduced the number of

municipalities from 527 to 105 in 2009, and France its number of metropolitan regions

from 22 to 13 in 2016. Fewer countries have acted in the opposite direction by increas-

ing the number of municipalities. The United States, however, is one such country;

its number of municipalities (including towns and townships) increased from 1952 to

2012 by 5.5%. Although these opposing approaches are admittedly the outcome of

country-specific differences in geography, history, and political and social movements,

they nevertheless raise the question of the desirable properties of an ideal AG (if any

such exist).

In this paper, we analyze this issue in a theoretical framework that allows us to

derive the optimal AG, i.e. the number of countries, tiers and jurisdictions per tier, the

size of the administrations, and the goods they produce at each level, and to compare

it to a “decentralized” form of government where sub-national jurisdictions have some

leeway in determining the scope and the capacity of their administration.

Our analytical framework is rooted in the nations (one-tier jurisdiction) formation

model of Alesina & Spolaore (1997, hereafter AS). In their model, the world is a linear

segment populated by a continuum of individuals uniformly distributed and identi-

fied by their geographical locations. They consider the emergence of countries, i.e.

independent jurisdictions, whose governments provide a composite public good. Indi-

viduals face two types of costs, namely a “cost of distance” (to reach the location of

their jurisdiction’s seat of government) and a “cost of government” (i.e. the production
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cost of the public good). We extend this framework to determine the internal orga-

nization of a country, detailing the public task into the many goods and services that

a government is responsible for, each of them being characterized by an accessibility

parameter that determines the citizens’ access cost (which, like the “cost of distance”

in AS, is also a function of the distance between the citizen and the location of the

corresponding public facility) and the production cost. We allow for as many layers of

overlapping jurisdictions as necessary for governments to best serve their citizenry. It

is thus a multi-tier, multi-good setup where the linear segment is partitioned at each

tier into jurisdictions, each jurisdiction being in charge of producing the tier-specific

bundle of public goods. We also detail the production cost that depends both on

the jurisdiction’s scope (i.e., the set of public goods that its administration produces)

and on the size of its administration (i.e., the productive capital and labor involved).

The administration size matters for citizens, since the resources devoted to its activity

enable it to better meet their needs, and in particular to contain congestion effects.

It thus determines the quality of public activity as experienced by citizens. In the

following, we use interchangeably “size”, “performance ability” or “capability” of the

administration to refer to its capacity to contain congestion effects. Hence, increasing

the capacity of the administration comes with higher production costs. Economies of

scope can be achieved by increasing the number of services produced by a jurisdiction,

but there is a trade-off between the quality and the number of services provided by the

same administration. The optimal balance depends on citizen preferences and affects

the overall organization of the government.

The territorial organization also depends on the leeway given to jurisdictions. We

consider two cases: the first-best situation where all jurisdictions are ruled by a benev-

olent and omniscient planner, and a decentralized organization where decision-makers

at each tier decide on the scope of activities and the size of their administration to

maximize the welfare of their constituency without accounting for the decisions made

by other tiers. We derive the optimal AG in the latter case by assuming that a social

planner decides on the number of countries, tiers and jurisdictions per tier and makes

sure that there is no overlap of activities, i.e., no public good is produced by jurisdic-

tions belonging to two different tiers. It is a second-best optimum because the social

planner delegates to jurisdictional authorities with narrow objectives the management

of their administration. We assume in both cases that the budget of each jurisdiction

is balanced and that its production cost is financed by a lump-sum tax.1

1AS offers a study of the process of democratization which is different from decentralization.
Following Friedman (1977), they compare a democratic world, where the number of nations results
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The optimal AG is driven by four parameters, one related to the valuation of the

public activity (the weights citizens assign to the administration’s capacity and scope

of activities are given by β and 1− β respectively), one that reflects the preference for

a simple AG, and the last two related to the production cost of the administration and

the residents’ access cost. We first derive the characteristics of the one-tier equivalent

of AS in our setup. While an increase of the production cost diminishes the number

of jurisdictions in AS, it decreases the administration capacity of each jurisdiction

but increases their number in our one-tier equivalent. Hence, the capacity of each

administration is reduced, but this is somewhat compensated by a reduction in the

citizens’ access cost. These properties remain true when allowing for several layers of

governments. Our setup also allows us to derive the effect of a change in the citizens’

preferences. In the one-tier case, the number of jurisdictions decreases when β increases

because of the increase in the production cost due to the increase in the administrations’

size. In the multi-tier case, the shape of the AG depends on β being larger or smaller

than 1/4 (the mid-value of (0, 1/2), the relevant interval for β). When β > 1/4 the

number of jurisdictions per level increases, and the perimeter of their administration

are increasingly wider, the one of the central government being reduced compared to

the β = 1/4 case. This is the reverse when β < 1/4, with the scope of the upper

tier being enlarged compared to β = 1/4, and the sub-national tiers having decreasing

scopes. We also obtain that, proceeding downward in the vertical structure of the

AG, the administration’s size decreases (both in absolute and per capita terms), the

degree of jurisdictional dispersion (i.e. the ratio of the numbers of jurisdictions of two

consecutive tiers) increases when β > 1/4 and decreases otherwise. As a result, the

per capita production cost, and the satisfaction that citizens derive from the activity

of each level of government, may decrease or increase as one moves down the AG. We

obtain that both increase if β is lower than 1/4 and decrease otherwise.

Allowing for decentralized decision-making, i.e. jurisdictions that are free to select

their range of services and the capacity of their administration to perform them, we

obtain that the jurisdiction scopes relative to their administration capacity is larger

than under the first-best AG. Indeed, while the social planner would arbitrate between

two consecutive tiers to determines their scopes, jurisdictions’ choices under decentral-

ization are based solely on the satisfaction of their residents with their own activity,

from majority votes, to a world of dictators, i.e. rent-maximizing governments who decide on the
size and shape of nations such as to maximize their joint potential net revenues. Also note that the
democratic world is composed of an excessive number of nations compared to the first-best (that
would be reached if the world were ruled by a social planner) unless individuals located far from the
seat of government were compensated so that they would not vote in favor of creating a new country.
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neglecting the detrimental impact of increasing their scope on the lower tier in the

AG. To limit this negative effect, the social planner modifies the AG by adjusting the

number of tiers and jurisdictions per tier. Hence, decentralization affects the whole

AG, which generally involves more states with fewer levels of administration than the

optimal one.

The results of our structural model permit estimation of the citizen preference pa-

rameter β using standard panel data procedures. We conducted this empirical investi-

gation using U.S. data on annual federal and state expenditures, share of population,

and density (together with data on income per capita and on the partisan composition

of the state legislatures) over the period 1977-2015. Assuming the same citizen pref-

erences across the country, we obtain an overall estimate for β equal to 0.18, a value

that is neither influenced by the partisan composition of state legislatures nor by other

characteristics such as income and population density. However, disaggregating the

country according to the four regional divisions used by the Census Bureau (Midwest,

Northeast, South, West), we obtain that this weight is lower in the Northeast and

West (0.182 and 0.147) than in the Midwest and South (0.279 and 0.238). Gathering

these four regions into two zones, we obtain 0.153 for the Northeast & West zone and

0.251 for the Midwest & South zone, estimates that are statistically different. We can

therefore infer that citizens in the Northeast and West regions are more appreciative

of state-provided services than those provided by the federal government, whereas cit-

izens in the Midwest and South are more likely to be equally satisfied with both levels

of government.

Our paper builds a bridge between the literature on the formation of jurisdictions

and the literature on fiscal federalism by formalizing the vertical dimension of the

formation of jurisdictions. The literature on the formation of jurisdictions, which

analyzes the equilibrium partition of a population into several jurisdictions and their

political stability, has been quite extensive over the last twenty years. The breakup or

unification of nations has been modelled as the result of a trade-off either between the

efficiency gains of unification and the costs in terms of loss of control in political decision

making (Bolton & Roland, 1997) or, more commonly, between benefits from economies

of scale in the production of public goods and costs from preferences heterogeneity

(AS, Jehiel & Scotchmer, 2001). A cooperative game theory approach is usually used

to study the political stability of jurisdictions (Guesnerie & Oddou, 1981; Greenberg

& Weber, 1986; Demange, 1994; Casella, 2001; Bogomolnaia et al., 2006, 2008, among

others). Although the coexistence of several clubs of different sizes was studied by

Hochman et al. (1995), the vertical dimension of the formation of jurisdictions, i.e. the

5



partition of the country into overlapping tiers, is missing in this literature. By contrast,

some recent works in the fiscal federalism literature focus on the vertical dimension to

determine the optimal level of decentralization of a unique public good (Panizza, 1999)

or the partition of a continuum of identical public goods (Wilson & Janeba, 2005).

Their framework, however, is restricted to two tiers, i.e., a central government and an

exogenous number of same-tier sub-national jurisdictions.

The rest of the paper is organized as follows. Section 2 presents the multi-tier

framework. Section 3 characterizes the optimal AG. Section 4 investigates the impact

of decentralized decision-making. The empirical investigation is detailed in section 5.

The last section concludes. All proofs are in the appendix.

2 The model

Following the spatial approach of Hotelling (1929), consider a territory with a con-

tinuum of residents uniformly distributed over a segment. The size of the territory

and the population mass are both normalized to unity. Each resident is identified by

her/his geographical location, i.e. a point on the segment, supposed to be fixed. We

are interested in both the horizontal and vertical organization of governments, i.e. the

numbers of jurisdictional tiers and jurisdictions per tier, that are responsible for provid-

ing a set of public goods to these residents. Some of these goods are readily accessible

by all, such as the protection provided by the army of the country and the foreign

affairs and intelligence services, while others, such as the natural amenities found in

a park or the education dispensed in an elementary school, are enjoyable more or less

depending on their locations relative to the citizens. To capture this accessibility con-

cern in a tractable way, we consider that the public task is to provide a continuum of

goods [1, x], the cost borne by a resident to access to good x ∈ [1, x] produced by a

public facility located at distance ` from her home being given by αx` where α > 0

is the access cost parameter.2,3 To handle this production problem, a government is

2The extent of the rivalry and excludability characteristics of theses goods/services may vary and
some of them may even be private goods. We do not discuss in the following the overall scope of the
services [1, x̄] and we suppose that the exogenous upper bound x̄ is the cut-off between the public and
the private sectors.

3In the examples given above, military protection corresponds to an access cost close to 0 (arguably
strictly positive for citizens living on the borders of the territory) and thus we may expect 0 < α < 1.
Observe that at equal distance from home, the accessibility parameter of children’s education may be
larger than the one associated to natural amenities offered by a park due to inherent constraints, such
as the frequency of trips to and from the school and the ease with which parents can conform to the
school’s operating hours.
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composed of jurisdictional tiers, indexed by t ∈ {0, ..., T}, charged to produce a subset

of these services. Tier t = 0 is the top level, the central/federal jurisdiction, which

produces the most accessible public goods, while t = T is the bottom-most one, which

may correspond to villages or the districts of big cities, in charge of producing the

less accessible goods. Each citizen thus belongs to T + 1 overlapping jurisdictions, i.e.

T sub-national jurisdictions plus the central jurisdiction, each being responsible for

delivering a specific bundle of services. The tier t’s task is to produce public goods

belonging to the subset (xt−1, xt], with x−1 = 1 and xT = x. More precisely, at each

level t, the territory is divided in nt jurisdictions indexed by zt, zt ∈ {1, . . . , nt}, the

case n0 ≥ 2 corresponding to a territory divided in two countries or more, each having

its own AG. Jurisdiction zt rules over the area Szt ⊆ [0, 1], with Szt ∩ Sz′t = ∅ and

∪ntzt=1Szt = [0, 1], and is geographically defined by three points: its two borders and the

location ρzt of its public facility which is also where its residents have to go to enjoy

the public goods produced by its administration. Hence, to obtain the whole set of

public goods, citizen i incurs a total access cost α
∑T

t=0 `it
∫ xt
xt−1

xdx, where `it ≡ |i−ρzt |
represents the distance to reach the location ρzt of the public facility in tier t. Figure

1 gives an example of AG.

In addition to the citizens’ access cost, a jurisdiction incurs a production cost that

depends on the range of the public goods it provides and the performance ability of the

administration that serves citizens. We suppose that this performance depends on the

resources used for the production (staff, size of the public facility, amount of capital),

i.e. that it is commensurate with the administration’s size.4 We also assume that the

production cost of a good is larger the higher its accessibility parameter x regardless

of the capacity of the administration,5 but that it can achieve economies of scope by

producing a wide range of public goods. More precisely, denoting by c(g, x) the cost

of producing good x by an administration of size g, the production cost of the bundle

(xt−1, xt] of services by the same administration of size gzt is given by

Czt = C(gzt , (xt−1, xt]) =

∫ xt

xt−1

c(gzt , x)dx

/∫ xt

xt−1

dx.

Without economies of scope, the production cost would be given by
∫ xt
xt−1

c(gzt , x)dx.

Economies of scope arise from having the same administration to produce the full

4In addition to the construction or the rental cost of the public facility, large administrations
receiving the public necessitate more staff (administrative, security and maintenance staff) and equip-
ment than small ones.

5For instance, the per capita cost of country’s military or intelligence services is lower than the
per capita cost of primary school teachers.
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Jurisdictions
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1

x0

t = 1
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t = 0 } n0 = 1[1, x0]
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x2
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���

x
T−1

x̄
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x x x x n1 = 4(x0, x1]

u u u u u u u u u u u ut = 2 n2 = 12(x1, x2]

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qt = T nT(x
T−1

, x̄]

qqqq

Figure 1: Example of government architecture. The height of the box corresponds to
the total range of public goods: [1, x̄]. Its length is the size of the territory (normal-
ized to 1) that belongs to a single country (n0 = 1). Horizontal segments delineate
tiers, with vertical distances between them corresponding to the range of public goods
produced at each level. The dots represent the location and the capacity of public
facilities. The first tier, t = 0, is the central government that provides a range [1, x0]
of goods for the entire country. Its administration has a large capacity and is centrally
located. The second level, t = 1, is composed of 4 regions of same size, their public
facilities are centrally located and produce public goods (x0, x1] for their residents.
Their capacity is smaller than that of the central government. The third tier, t = 2,
entails 12 departments, 3 for each region. These subdivisions continue down to the last
tier level T (e.g. the city level) that produces the remaining range of public services,
(xT−1, x̄].
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range of services
∫ xt
xt−1

dx = xt − xt−1. We suppose that the c(g, x) increases with the

accessibility parameter and the capacity of the administration: c′x(g, x) > 0, c′g(g, x) >

0 and c′′xg(g, x) > 0. To ease computations, we consider the case c(g, x) = kgx, with

k > 0, which yields Czt = kgzt(xt + xt−1)/2. In this expression, the production cost is

proportional to the product of the administration’s size and the average accessibility

parameter of the bundle of goods produced. These production costs are covered by a

lump-sum tax τzt paid by each resident of the jurisdiction zt. As tier-t encompasses

nt jurisdictions, the aggregated cost induced by the production of all public goods

nationwide amounts to
∑T

t=0

∑nt
zt=1Czt .

Each citizen i derives a utility from both the public goods provided but also from the

administration’s capacity of each of the T + 1 jurisdictions to which he or she belongs.

Indeed, congestion effects are reduced by an increase in the administration’s capacity,

i.e. the larger the administration capacity, the easier it is for citizens to enjoy the

goods and services it produces.6,7 We neglect possible complementarity/substitutability

between public goods and assume that the utility of individuals increases with the range

of goods produced by a public facility. We denote by ut = u(gzt , (xt−1, xt]) the gross

amount of utility (expressed in monetary terms) that the citizen derives from the task

performed by his/her tier-t jurisdiction and we assume that it is given by

u(gzt , (xt−1, xt]) = gβzt

(∫ xt

xt−1

dx

)1−β

= gβzt (xt − xt−1)1−β

where β and 1−β reflect the importance that the citizen places on the administration’s

capacity and its scope of services respectively. The citizen total gross utility from the

public activity is thus given by
∑T

t=0 ut which must be larger than the production and

access costs. In our setup, it is shown in the appendix that this is the case at the

optimum if β < 1/2. Furthermore, we suppose that citizens have a preference for a

simple AG, i.e. one that involves a reduced number of levels. Indeed, the more complex

the government structure, the more difficult it is to know which administration to turn

to for a given service. We denote by νT the cognitive cost (expressed in monetary

terms) of an AG involving T levels in addition to the central government.8

Observe that without congestion effect (which corresponds to the case β = 0 since

6For example, with more staff in the public facility, it can be expected that queues will be reduced
and paperwork completed in a timely fashion. Or, with more spending on public transport, a city
may increase the frequency of its buses.

7Alternatively, gzt could be considered as a measure of the overall quality of the administration,
which depends on both the public infrastructure and the staff employed.

8Of course, ν must be sufficiently small to have more than one level of government.
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the administration’s capacity is irrelevant), the citizen’s gross utility would depend

only on the total range of public services, x̄ − 1, whatever the AG. The size of the

administration would be minimal and only the access cost would matter. Accounting

for the capability of the administration (β > 0) introduces a trade-off between the

scope of each jurisdiction and the size of its administration. The first-best is achieved

assuming that this arbitrage is resolved by a benevolent social planner who considers

the whole AG to determine the jurisdictions size, scope and administration capacity at

each tier level. In the context of decentralization, this arbitrage is resolved sequentially,

from the highest to the lowest level, with each jurisdiction being allowed to choose the

capacity of its administration and its scope among the tasks not yet chosen.

3 The socially optimal AG

Consider a benevolent social planner aiming at maximizing the social welfare, who

chooses the desirable division of the territory into countries and sub-national tiers, the

geographical boundaries of each jurisdiction, the location and the size of their adminis-

tration, and the range of public goods they produce. The corresponding optimization

problem is given by

max
T,{xt,nt,{Szt ,ρzt ,gzt}

nt
zt=1}Tt=0

T∑
t=0

nt∑
zt=1

[∫
Szt

(
gβ
zt

(xt − xt−1)1−β − α`it
∫ xt

xt−1

xdx

)
di− Czt

]
−νT

(1)

under x−1 = 1, xT = x and
∑nt

zt=1 Szt = 1 for all t. Because individuals are uniformly

located in the territory, it is easily shown that

Lemma 1 At each tier t, the territory is divided into nt jurisdictions of equal size.

Their administrations are located at the center of the jurisdiction and have the same

capacity.

Due to the symmetry of the jurisdictions at each tier level, they have the same

production cost and administration capacity, i.e. Czt = Ct and gzt = gt for all t, and

the average access cost of their residents is the same. The social planner’s program

can be restated as

max
T,{nt,xt,gt}Tt=0

{
T∑
t=0

W (xt−1, xt, gt, nt)− νT : x−1 = 1, xT = x

}
(2)
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where

W (xt−1, xt, gt, nt) ≡ gβt (xt − xt−1)1−β −
α
(
x2t − x2t−1

)
8nt

− ntkgt (xt + xt−1)

2
(3)

corresponds to the net average welfare at the tier-t level. More precisely, the second

term in (3) is the average per capita access cost in a tier-t jurisdiction and the last

term is the per capita production cost of its administration. Indeed, since there are

nt jurisdictions at tier t, the proportion of citizens resorting to one of each of these

jurisdictions is 1/nt. Hence, to satisfy its budget constraints, the government at tier t

must levy a per capita tax equal to τt = ntCt. Also, for the range of good produced

by the jurisdiction we have
∫ xt
xt−1

xdx = (x2t − x2t−1)/2 while the average distance to

the administration is 2
∫ 1/(2nt)

0
idi = 1/(4n2

t ), hence the expression of the average per

capita access cost.

Differentiating (3) with respect to nt, we obtain

nt

√
gt

xt − xt−1
=

√
α

4k
(4)

which highlights the arbitrage at each tier level between the number of jurisdictions,

their scope, and the size of their administration. If xt−xt−1 = gt = 1, we obtain that nt

is equal to the optimal number of jurisdictions in the one-tier analysis of AS,
√
α/4k.9

Because the average access cost decreases and the production cost increases in (3) when

nt increases, this value corresponds to the optimal arbitrage in that case. In our setup,

these costs also depend on the administration scope and capacity. Differentiating (3)

with respect to gt gives

gt = (xt − xt−1)
(

4β√
αk(xt + xt−1)

) 2
1−2β

. (5)

and thus

nt =

(
α1−βkβ

23−2ββ

) 1
1−2β

(xt + xt−1)
1

1−2β . (6)

Drawing a parallel with the analysis of AS by restricting the number of tiers to 1

9Of course, the number of jurisdictions (and the number of tiers T ) are discrete variables, and this
value corresponds to an approximation that allows us to perform comparative static exercises. More
generally, the social planner’s objective (2) corresponds to a mixed-integer programming problem
that is solved using algorithmic methods rather than differential calculus. In order to characterize the
optimal AG of this section and of the following, we consider the “relaxations” of the corresponding
mixed-integer programs, i.e. problems where all variables are treated as continuous variables.
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(t = T = 0), with x0 = x̄ = 2 to normalize the public task to 1, we obtain that

g0 =
(

4β/(3
√
αk)
) 2

1−2β
which diminishes with k and α and increases with β, and

n0 =
(
3α1−βkβ/(23−2ββ)

) 1
1−2β that increases with k and α (and from (4), we also deduce

that it diminishes with β). Hence, contrary to AS, n0 increases with k. This is due to

the fact that the average per capita access cost diminishes rapidly with nt (its derivative

is proportional to n−2t ) while the production cost increases linearly with both nt and

gt. Hence, when it is possible to adjust the capacity of the administrations, an increase

in the access cost or in the production cost parameter results in a downsizing of the

administration that is compensated by an increase in the number of jurisdictions. In

other words, to remain at an optimal welfare level when costs are increased exogenously,

the size of public facilities is reduced but the proximity of the government to the citizen

is improved by a larger number of jurisdictions.

By limiting government to one level of administration (T = 0), the whole set of

public goods is produced by the central government of a country, and n0 ≥ 2 means

that the territory must be separated into several independent states. By relaxing

this constraint, i.e. by allowing countries to have several levels of jurisdictions, it is

possible to increase the proximity of government to citizens by dividing the public task

between the jurisdictional levels of a nation, with the least accessible services being

produced by local administrations. Therefore, the term xt +xt−1 in (6), which is equal

to x0 + x−1 = x̄+ 1 when T = 0, is possibly reduced (if T > 0 and thus x0 < x̄ at the

optimum of the social planner’s program), which diminishes the desirable number of

countries. The optimal sharing of task between tiers satisfies ∂Wt/∂xt = ∂Wt+1/∂xt

for all t = 0, . . . , T − 1, i.e. the marginal welfare gain from an increase in services

provided by tier t should be equal to the marginal welfare loss resulting from the

induced decrease in services at level t+1. As apparent in (5) and (6), the administration

capacity and the number of jurisdictions at the optimum are functions of the optimal

sharing of tasks between tiers {1, x0, . . . , xt, . . . , x̄}. Problem (2) is thus solved by

determining the optimal apportionment of tasks. It turns out that it is convenient

to express xt recursively, i.e. xt = λtxt−1, and to look for the optimal sequence of

magnification parameters λc ≡ {λc0, . . . , λcT}, with λct > 1 for all t ∈ {0, . . . , T − 1}
and λcT = x̄/

∏T−1
t=0 λct. We obtain the following results

Proposition 1 When β = 1/4, the sequence λc is degenerate, i.e. λct = λc for all

t < T , and λc and T are solution of

max
λc,T

{
1

2
√
αk

(
T
λc − 1

λc + 1
+
x̄− λTc
x̄+ λTc

)
− νT : λT+1

c ≥ x̄ > λTc

}
(7)
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provided that ν
√
αk < gc(x̄)/2 where gc(λ) ≡ (λ2 − 1 − 2λ lnλ)/(λ + 1)2 is strictly

increasing over (1,+∞) and bounded above by 1. In that case λc is implicitly defined by

λc = g−1c (2ν
√
αk). λc increases with ν, α and k, and is larger than (1+

√
2ν
√
αk)/(1−√

2ν
√
αk). We must have kα3 < 1/4 for n0 ≤ 1, and n0 ≥ 2 if ν

√
αk ≥ (1 −

(kα3)1/4)2/2.

When β 6= 1/4, the sequence λc is defined recursively. If β is close enough to 1/4 so

that optimal T is unaffected, λc is increasing, i.e. λct > λct−1 for t = 1, . . . , T −1, with

first term λ0c < λc if β > 1/4 and αk < 1, and decreasing with first term λ0c > λc if

β < 1/4 and αk < 1.

Prop. 1 gives the condition on the cost parameters to have more than one level of

government in the case β = 1/4 (the middle value of the relevant range (0, 1/2)): it is

given by 2ν
√
αk < gc(x̄) which is bounded above by 1. Hence, we must have ν

√
αk <

1/2 and x̄ sufficiently large. Not surprisingly, the access cost and production parameters

must be small (kα3 < 1/4) for a single country to rule the entire territory. It is shown

in the Appendix that the sequence of magnification parameters λc is defined recursively

from its first term, λc0. In the case β = 1/4, the recursion is degenerate, i.e. λct = λc for

all t < T , with λc obtained from solving (7). This reduced program reveals that the net

utility is the same for each tier but the last one, given by (2
√
αk)−1(λc−1)/(λc+1). The

optimal λc increases when one of the cost parameters, α, k or ν, is exogenously raised.

For β 6= 1/4, magnification parameters are no longer constant. The corresponding

program is given in the appendix and it is shown that when β is close to 1/4, they are

approximately given by λct ≈ λc + (4β − 1)(∆ + tγ) where γ > 0 and ∆ < 0 when

αk < 1, and ∆ > 0 when αk > 1. Hence, assuming that the cost parameters are

not too large, this corresponds to a spreading of the sequence terms when β is larger

than 1/4, with a small initial value (λc0 < λc), hence a reduced scope for the central

government compared to β = 1/4, and scopes increasingly wider for sub-national levels

since the magnification parameters λct are increasing for all t < T . Indeed, comparing

scopes between to successive levels, we get

xt+1 − xt
xt − xt−1

=

(
1 +

λct+1 − λct
λct − 1

)
λct ≈

(
1 +

(4β − 1)γ

λc − 1

)
λct

neglecting second-order terms. It goes the other way around for low values of β, i.e. a

central state with a large scope, and ratios of scopes that are decreasing going down

the AG (as depicted Fig. 1). The next proposition spells out some other important

properties of the optimal AG:
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Proposition 2 The degree of territorial dispersion, relative per capita administration

capacity and relative level of utility satisfy

nt+1

nt
=

(
1 +

λct+1 − λct
λct + 1

)1/κ

λ
1/κ
ct ,

ntgt
nt+1gt+1

= λ
2β/κ
t

(
1− λt+1 − λt

λt+1 − 1

)(
1 +

λt+1 − λt
λt + 1

)1/κ

and
ut+1

ut
=

(
1 +

λct+1 − λct
λct − 1

)(
1− λct+1 − λct

λct+1 + 1

)2β/κ

λ
(1−4β)/κ
t ,

for t = 1, . . . , T − 2, where κ = 1− 2β > 0.

When β is close to 1/4, proceeding down the AG to the penultimate level

i/ the number of jurisdictions increases, at an increasing (decreasing) rate when β >

1/4 (β < 1/4)

ii/ the degree of jurisdictional dispersion is stable if β = 1/4, increases if β > 1/4 and

decreases if β < 1/4.

iii/ the per capita administration’s capacity decreases, at an increasing (decreasing)

rate when β > 1/4 (β < 1/4)

iv/ the satisfaction that citizens derive from public activity is constant if β = 1/4,

increases if β < 1/4 and decreases if β > 1/4.

The above formulas simplify nicely when β = 1/4: the degree of jurisdictional

dispersion in tier t, defined as nt+1/nt, i.e. the number of jurisdictions in tier t + 1

which geographically belong to the same jurisdiction in tier t, is given by λ2c for all

t < T , and the capacity of the administration is the largest at the central level (tier

0) and decreases at rate λ3c as one proceeds down the AG. Hence, the administration

at the bottom-most tier, the one the closest to its citizenry (usually, a town), has the

smallest administration’s size although it produces public goods in the upper range of

the cost parameter, i.e. the more costly in terms of production and accessibility for the

citizen (like garbage collection or elementary education). At the other extreme, the

central government has the largest administration. Both the fraction of the population

belonging to a jurisdiction (given by 1/nt) and the administration’s size decrease with

moving down the AG. Comparing the administration’s capacity per capita at different

levels, we get gtnt = gt−1nt−1/λc, hence capacities that also decrease down the AG.

The citizens’ satisfaction ut is the same for all tiers (but the last one), as are per capita
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production and average access costs, which represent 2β = 50% of the utility. As stated

in Prop. 2, these general features about the number of jurisdictions and the capacity

of their administrations do not change much when β is different from 1/4; only the

rate of decrease or increase are affected, depending on the case at hand. However,

as noted above, relative jurisdictions scopes are affected by β, as well as the relative

citizen satisfaction: when β is large (β > 1/4), citizens are more satisfied with the

central government than they are with sub-national levels, and the reverse otherwise.

Since costs are proportional to utility, the production and average access costs at the

top tier are also lower than those of sub-national levels.

As noted above for β = 1/4, a rise in the cost parameters α, k or ν, increases λc

and thus the number of jurisdictions per tier and their range of services. The increase

in nt is reminiscent of the discussion regarding (4) which increases with α and k. The

increase in scopes indicates that when these costs are very large, the territory is divided

into a large number of countries with only one level of government. Conversely, when

these parameters are small, the number of nations is small (possibly only one country

rule the entire territory if kα3 < 1/4), but their governments have several levels of

jurisdictions.

4 Decentralization

So far, we have considered jurisdictions that are managed by social planner appointees

with no leeway to pursue their own political agendas. We now consider that at each

level, (elected) governments decide on their own jurisdiction’s range of services and

administration capacity. Every jurisdiction thus has the possibility of doing what

it considers best for its citizens, which may not be perfectly aligned with the social

planner’s view. This could be because the jurisdictional authorities do not have a say

on the decisions of the other tiers’ jurisdictions to which their constituents also belong,

or simply because the decisions of these levels concern either a wider group of citizens

(higher jurisdictions in the AG), or subsets of their constituents (lower jurisdictions in

the AG).

More precisely, we assume that decision-makers decide on the range of services

and the size of their administrations in order to maximize the welfare of their own

constituencies, given by (3) for a jurisdiction of tier t. As observed above, without

congestion effects (β = 0), as the citizen’s utility is additively separable with respect

to the public goods, re-assignment of public tasks between tiers do not affect the welfare
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as long as the tiers’ scopes do not overlap. This is not the case when the operating

capacity of the administration matters since the size of each administration should be

adjusted to its scope. As shown in the following, the entire AG is affected depending

on the way the public task is apportioned between tiers. We consider a bottom-up

apportionment procedure, dubbed “decentralization”, that is illustrative of the recent

evolution in which states are involved.

More precisely, decentralization is introduced into the AG problem as a multi-stage

delegation game where the social planner first determines the number of countries and

jurisdictions in each tier level (nt for each potential t), and then delegates to their

decision-makers the choice of the range of services and the size of their administration

in an decreasing order of precedence along the AG.10 Delegation to decision-makers is

operated successively from tier 0 to the last tier: the planner first asks decision-makers

of tier 0 to choose g0 and x0. This policy maximizes (3) where t = 0, x−1 = 1. Then,

the planner asks the decision-makers of tier t = 1 to do the same for their respective

constituents under the constraint that the lower bound of their scope of services, x0,

corresponds to the choice made by tier t = 0 to avoid that their services overlap. Given

their constituents, they all maximize (3) where t = 1, xt−1 = x0 with respect to x1 and

g1. The planner then asks the decision-makers of tier t = 2 to do the same for their

respective citizenry under the constraint that the lower bound of their jurisdiction’s

range of services corresponds to the choice of the tier t = 1 decision-maker that rules

the jurisdiction above them. The process continues until the last tier, t = T , which

range is given by [xT−1, x̄] and thus has only to determine its administration capacity

gT .

Before deriving the resulting AG, it is interesting to determine how a jurisdiction

with objective (3) would modify the allocation of services or the capacity of its admin-

istration compared to the first-best levels if it is given the choice.

Proposition 3 If assigned their first-best scope, jurisdictions of tier-t would choose

the same administration size as the social planner. However, if assigned their first-best

administration capacity, these jurisdictions have an incentive to carry out the services

assigned to upper tiers in the AG, and to lower tiers too if β ≤ (1/λct + 1)/4.

Not surprisingly, if decision-makers are constrained in their range of services, they

would not change the capacity of their administration compared to the first-best ones,

since their objective in this case coincides with that of the social planner. The changes

10We assume that jurisdictions do not coordinate either between themselves (horizontally) or with
other tiers (vertically).
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to the range of services mentioned in Prop. 3 come from the fact that the social plan-

ner compares the benefits of allocating the production of goods to jurisdictions at two

consecutive levels to determine the best allocation, whereas local decision-makers only

consider the effects on their own jurisdiction. Given the first-best AG, it is always ben-

eficial for a local decision-maker to broaden the range of services of his administration

by taking over the production of low-cost public goods. Indeed, by increasing its scope,

a jurisdiction increases the citizen satisfaction by (1 − β)/(xt − xt−1) percent. It also

reduces the production cost of its administration by ntkgt/2, but increases the average

access cost by αxt−1/(4nt). Hence, the total marginal benefit is

ntkgt
2
− αxt−1

4nt
+

(1− β)ut
xt − xt−1

. (8)

At the social optimum, the production and access costs of the jurisdictions are

equalized, and correspond to β percent of the gross utility provided by the jurisdiction:

we have ntkgt(xt + xt−1)/2 = α
(
x2t − x2t−1

)
/(8nt) = βut. Using theses equalities to re-

express the marginal costs, we arrive at an overall marginal effect of a decrease in xt−1

equal to ut[xt−(4β−1)xt−1]/(x
2
t −x2t−1), which is positive since β < 1/2 and xt > xt−1.

If a jurisdiction broadens the scope of its administration by taking over the production

of goods assigned to lower jurisdictions in the AG (an increase in xt), it suffers a raise in

both the production and the access cost. Therefore, citizen’s preferences for the range

of services should be sufficiently large (i.e. β relatively low), for local decision-makers

to find it beneficial: the marginal benefit is

− ntkgt
2
− αxt

4nt
+

(1− β)ut
xt − xt−1

, (9)

which, re-expressed in utils, leads to the condition (1− 4β)xt + xt−1 > 0.

A similar trade-off characterizes decentralized governments, where jurisdictions

adapt their administration capacity to the scope they wish to adopt. Their capac-

ity choice follows the same rule as that applied by the social planner, i.e. optimal

capacity must equalize the marginal production cost with the marginal increase in the

citizen welfare. It leads to a production cost that is equal to β percent of gross utility.

However, the choice of scope is not in line with that of the social planner. Indeed, the

socially optimal scope is such that the marginal benefit (9) of an increase in xt at level

t is equal to the marginal loss at level t+1 (the equivalent of (8) but with t replaced by

t+ 1). When the local authority chooses its scope under decentralization, (9) is equal

to 0. Hence, local decision-makers consider that the capacity of their administration
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is large enough to provide more services than those assigned by the social planner.

They thus tend to oversupply given their administration capacity. To limit the adverse

effects of these choices on the overall welfare, the social planner modifies the AG by

adapting the number of tiers and jurisdictions per tier.

More precisely, the delegation game under decentralization results in a AG that

solves

max
T,{nt}Tt=0

{
T∑
t=0

max
xt,gt
{W (xt−1, xt, gt, nt)|xt−1, nt} − νT : x−1 = 1, xT = x̄

}
. (10)

As for the first-best case, it is convenient to express xt recursively to solve prob-

lem (10) and to look for the optimal sequence of magnification parameters λd ≡
{λd0, . . . , λdT}, with λdt > 1 for all t ∈ {0, . . . , T −1} and λdT = x̄/

∏T−1
t=0 λdt. Likewise,

this sequence is generally defined by a recursive equation which simplifies in the case

β = 1/4. More precisely,

Proposition 4 When β = 1/4, the sequence λd is degenerate, i.e. λdt = λd for all

t < T , λdT = x̄/λTd , and λd and T are solution of

max
λd,T

{
1

2
√
αk

(
TΦd(λd)

λd − 1

λd + 1
+
x̄− λTd
x̄+ λTd

)
− νT : λT+1

d ≥ x̄ > λTd

}
(11)

where Φd(λ) ≡ (λ− 1) (λ + 2)1/2/λ3/2, provided that ν
√
αk < gd(x̄)/2 where gd(λ) =

(λ − 1)[(λ2 − 1)(λ + 2) − (λ + 3)(2λ + 1) lnλ]/[λ3/2(λ + 1)2(λ + 2)1/2]. In that case

λd = g−1d (2ν
√
αk) > 2 and increases with ν, α and k. We must have kα3 < 4.10−4 to

have n0 ≤ 1, and a sufficient condition for n0 ≥ 2 is kα3 ≥ 2/81 ≈ 15.10−4.

Due to the weight Φd(λ) < 1 that affects the utility of each level t < T in (11)

compared to (7), the magnification parameter λd is large, larger than 2 in any case,

and the condition to have only one state managing the entire territory is far more

stringent than under the first-best AG.11 It is shown in the appendix that the ratios

of scopes, number of jurisdictions, administration capacities and citizen utilities have

the same expression as in the first-best case when β = 1/4 (albeit, these expressions

are more intricate in general) and that λd > λc. Hence, comparing the AG under the

2 regimes when β ≈ 1/4, we obtain

11This is thus reminiscent of AS’s result that democracy leads to too many nations.
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Proposition 5 Compared to the first-best AG, the optimal AG under decentralization

entails a larger territorial dispersion, less tiers, with jurisdictions that have increased

ranges of services.

To illustrate these theoretical results, a numerical example is given Table 1 using

α = .25, k = 5 (hence kα3 = .016), ν = .01, and x̄ = 100. This table presents the

solutions to the maximization of programs (7) and (11). The resulting magnification

parameters are λc = 1.94 and λd = 4.07, that correspond to jurisdictional dispersions

of approximately 4 and 16 respectively (we have nt+1/nt = λ2 when β = 1/4). Columns

n̂ct and n̂dt correspond to the rounded values of the programs’ results nct and ndt, and

columns Ŵct and Ŵdt to the net welfare levels computed with these rounded values.

Overall, the total estimated welfare with these rounded values,
∑

t Ŵct = .93 and∑
t Ŵdt = .76, are close to the welfare levels of the corresponding program,

∑
tWct = 1

and
∑

tWdt = .8.12 Comparing the AGs, there is only one country ruling the entire

territory under the first-best AG (i.e. nc0 = 1) with 6 sub-national tiers, and 2 states

under decentralization with only 3 sub-national levels.

5 Eliciting citizen preferences

In this section, we illustrate how the equilibrium conditions derived above can be used

to estimate the preference parameter β from a data set with standard econometric

procedures. Using xt = xt−1λjt and gt ≈ gt−1λ
−(1+2β)/(1−2β)
jt−1 when β is close to 1/4,

j ∈ {c, d}, we obtain

Ct+1

Ct
=
kgt+1(xt+1 + xt)/2

kgt(xt + xt−1)/2
=
gt+1

gt
λt

(
1 +

λt+1 − λt
λt + 1

)
≈ λ

−4β/(1−2β)
j

when β ≈ 1/4. Similarly, we have nt ≈ nt−1λ
1/(1−2β)
j when β ≈ 1/4. Taking the

logarithm of both expressions and eliminating the term involving lnλj on both sides,

we get

ln (Ct/Ct+1) ≈ 4β ln(nt+1/nt) (12)

which holds for any AG, hence whatever the organization of the country. Using data

on jurisdiction spending, it is possible to compute Yzt+1,d ≡ ln(Czt,d/Czt+1,d) for each

jurisdiction zt+1 ∈ {1, . . . , nt+1} belonging to tier-t+ 1 located below jurisdiction zt in

12Note that the estimated welfare levels
∑

t Ŵjt are obtained by rounding off the numbers of
jurisdictions per tier, which do not lead to perfectly nested tiers (nt+1/nt should also be integer
values). Adjusting for this constraint would reduced the welfare levels.
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the AG at each date d. As 1/nt corresponds to the share of the population of a tier-t

jurisdiction, nzt+1,d/nzt,d corresponds to the inverse of the share of the zt citizenry that

belongs to jurisdiction zt+1 at date d. These individual characteristics, together with

other observable characteristics (e.g., disposable income, population density), can be

used to estimate the coefficient β using standard panel data procedures.

We apply this methodology on annual federal and state expenditures in the United

States over the period 1977-2015 collected by the Tax Policy Center13 to estimate the

following relationships:

Yz1,d = β.Pz1,d + a.Xz1,d + ϕz1 + δd + εz1,d (13)

Yz1,d =
4∑

τ=1

βτ1{z1∈τ}Pz1,d + a.Xz1,d + ϕz1 + δd + εz1,d (14)

Yz1,d =
∑

Z∈{A,B}

βZ1{z1∈Z}Pz1,d + a.Xz1,d + ϕz1 + δd + εz1,d (15)

where z1 indexes the states (z1 ∈ {1, . . . , 50}) and d = 1977, . . . , 2015. Here, Yz1,d cor-

responds to the log of the date-d ratio of the federal expenditures (net of grants to state

and local jurisdictions) over state z1 government spending, Pz1,d = 4 ln(pop0,d/popz1,d)

accounts for the corresponding population share, Xz1,d is a vector of time-varying con-

trol variables composed of the income per capita, state population density and the

partisan composition of the state legislatures. The income per capita captures the

demand for public goods and services, which is expected to increase state expenditures

(see for instance Borcherding & Deacon, 1972, and Ladd, 1992, for estimations on U.S.

data), and therefore to reduce Yz1,d in our setting. We also consider the partisan com-

position of state legislatures, as the control of both chambers by democrats is usually

shown to lead to significantly higher state expenditures per capita.14 The variable

ϕz1 corresponds to state-specific effects that capture time-invariant unobserved hetero-

geneity, δd are year fixed effects accounting for the influence of variables affecting all

states identically in year d, and εz1,d is the error term. Table 2 presents the summary

statistics of all variables used in our regressions.

Equations (13)–(15) differ by the way β is estimated. In (13), we suppose that citi-

zens preferences are the same whatever the state, while (14) allows for a heterogeneity

13Details on the Tax Policy Center are available on its website https://www.urban.org/

policy-centers/urban-brookings-tax-policy-center. Queries on its dataset can be performed
at http://slfdqs.taxpolicycenter.org/index.cfm.

14See Besley & Case (2003) for a survey of the numerous empirical investigations of the role of
political institutions in the United States.
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among the four regional divisions used by the Census Bureau (Midwest, Northeast,

South, West), that we denote by τ = 1, ..., 4. Accordingly, 1{z1∈τ} is a dummy variable

equal to 1 if the state z1 belongs to region τ , and 0 otherwise. Therefore, β̂1 is the

measure of β for the Midwest, β̂2 the one corresponding to the Northeast, β̂3 for the

South and β̂4 for the West. The last specification, (15), allows us to test for a coarser

partition of the states into two groups, denoted by A (Northeast & West) and B (Mid-

west & South) with 1{z1∈A} and 1{z1∈B} being the corresponding dummy variables.

Therefore, β̂A is the measure of β for the West and Northeast regions taken together,

and β̂B for the South and Midwest regions.

For the three specifications (13)–(15), we control for the correlation of the error

term over time at the state level using cluster-robust standard errors in our panel fixed

effects estimations. Table 3 gives the estimation results.

The value of β estimated for the whole country is 0.18 (columns (1) and (2); the

differences between them being because the state legislature variables are omitted in

the first one)15, which belongs to the interval (0,1/2) required by our theoretical model

to ensure a positive welfare. Observe that none of the estimates corresponding to the

partisan composition of state legislatures and the other characteristics (income and

density) are statistically significant in the regressions. These results are corroborated

by a Pew Research Center’s survey, reported in Table 4 (Pew Research Center, 2013).

It shows that whatever their partisanship, individuals express a more favorable view of

their local government than their state government, and that the federal government

in Washington earns the lowest percentage points of favorable opinions.

Disaggregating β over the four U.S. regions (column (3) of Table 3) reveals a par-

tition of the U.S. territory. Indeed, we obtain that this coefficient is lower in the

Northeast and West (0.182 and 0.147) than in the Midwest and South (0.279 and

0.238). Tests for equality of the estimated regions’ βs, presented in Table 5, confirm

that the pairwise equalities β̂1 = β̂2 (Midwest and Northeast), β̂1 = β̂4 (Midwest and

West) and β̂3 = β̂4 (South and West) are rejected at the 10% significance level (even

at the 5% level for the latter equality).

Column (4) of Table 3 gives the estimates of this coefficient when the regions are

grouped into two zones, Northeast & West (zone A), and Midwest & South (zone

B). They confirm a value much larger for Midwest & South than for Northeast &

West (0.251 versus 0.153). The last column of Table 5 shows that the equality of

these estimates is rejected at the 5% confidence level. Hence, from Prop. 2, we may

15As a consequence, Nebraska is included only in regression (1).
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expect that on average, citizens in the Northeast and West are more appreciative of

state-provided services than those produced by the federal government, while citizens

in the Midwest and South are more likely to be equally satisfied with both levels of

government.

6 Conclusion

The problem of organizing a country’s government entails both horizontal and vertical

dimensions and raises the question of the allocation of public services over the tiers.

We propose a simple model that allows us to characterize the desirable features of

such an undertaking under a top-down organization of government that we compare

to the first-best. Our approach offers a first theoretical foundation of an endogenous

multi-tier setting. It highlights the differences between the social optimum and the

result of having autonomous jurisdictions. Indeed, decision-makers, whether at the

central tier or at sub-national tiers, have an incentive to modify the range of their

services with respect to the first-best levels. The results we obtain also allow us to

perform structural empirical investigations, as illustrated by the elicitation methods of

the citizen preference parameter that we detail and apply using U.S. data. This work

could be extended on both fronts. From an empirical perspective, organizational choices

made by a country that has decided to give more leeway to decision-makers should

reveal citizens preferences: if they put more weight on the overall range of services

produced by the administrations than on their ability to better perform their tasks,

scopes of tiers should increase and the number of bureaucratic layers should decrease

compared to the centralized structured. From a theoretical perspective, an avenue of

research is to allow for a heterogeneous distribution of the population in order to relax

the perfect symmetry of our framework. Also we suppose that the central planner

has perfect information about the citizens preferences. Information asymmetry, with

sub-national decision-makers being better informed about their constituency than their

higher level counterparts, could impact the organization of the government.
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Appendix

A Proof of lemma 1

The program (1) boils down to

max
T,

{xt,nt,{Szt ,`zt ,gzt}}Tt=0

T∑
t=0

nt∑
zt=1

[(
gβ
zt

(xt − xt−1)1−β −
α
(
x2t − x2t−1

)
2

`zt

)
Szt − kgzt

xt + xt−1
2

]
−νT

under the conditions x−1 = 1, xT = x and
∑nt

zt=1 Szt = 1 for all t, where `zt is

the average distance between the residents and the administration of jurisdiction zt.

Because individuals are located uniformly over the territory, `zt is minimized when

the administration is located in the middle of the jurisdiction whatever the tier and

the number of jurisdictions in a tier. As a consequence, the average distance to their

administration is `zt = 1
Szt/2

∫ Szt/2
0

`d` = Szt/4. We can thus rewrite the program as

max
T,

{xt,nt,{Szt ,`zt ,gzt}}Tt=0

T∑
t=0

nt∑
zt=1

[
Sztg

β
zt

(xt − xt−1)1−β −
α
(
x2t − x2t−1

)
8

S2
zt − kgzt

xt + xt−1
2

]
−νT

(16)

under the conditions x−1 = 1, xT = x and
∑nt

zt=1 Szt = 1 for all t, where
∑nt

zt=1 S
2
zt

is minimized when tier t jurisdictions are of equal length: Szt = 1/nt for all t. As

jurisdictions are of equal length and their range of services are identical, we also have

the same administration’s capacity at each tier level: gzt = gt for all t. Replacing in

(16) and developing gives (2).

B Proof of Proposition 1

The first-order conditions (FOCs) w.r.t. nt and gt lead to

α
(
x2t − x2t−1

)
4n2

t

− kgt (xt + xt−1) = 0, t ∈ {0, . . . , T} (17)

and

βut − ntkgt (xt + xt−1) /2 = 0, t ∈ {0, . . . , T}, (18)
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respectively. Replacing the expression of gt coming from (18) in the utility gives

ut =

(
2β

knt (xt + xt−1)

)β/(1−β)
(xt − xt−1) , (19)

which plugged back in (18) gives

gt =

(
2β

knt (xt + xt−1)

)1/(1−β)

(xt − xt−1) , t ∈ {0, . . . , T}. (20)

From (17) and (18) we get

α
(
x2t − x2t−1

)
8nt

=
ntkgt (xt + xt−1)

2
= βut, (21)

and thus Wt = ut(1− 2β) which is positive iff β < 1/2. From (17), we get

gt =
α(xt − xt−1)

4kn2
t

. (22)

Identifying with (20), it comes

nt = (xt + xt−1)
1/κK (23)

where κ = 1 − 2β, and K =
(
kβα1−β2−(3−2β)/β

)1/κ
. The FOC w.r.t. xt for t ∈

{0, . . . , T − 1} is given by

(1− β)

(
ut

xt − xt−1
− ut+1

xt+1 − xt

)
− αxt

4

(
1

nt
− 1

nt+1

)
− k

2
(ntgt + nt+1gt+1) = 0. (24)

Using (18) to substitute for ntgt and nt+1gt+1 in the last term gives

(1−β)

(
ut

xt − xt−1
− ut+1

xt+1 − xt

)
− αxt

4

(
1

nt
− 1

nt+1

)
−β

(
ut

xt + xt−1
+

ut+1

xt+1 + xt

)
= 0

for t ∈ {0, . . . , T − 1}. Multiplying by nt+1nt to get

(1−β)

(
nt+1ntut
xt − xt−1

− nt+1ntut+1

xt+1 − xt

)
−αxt

4
(nt+1 − nt)−β

(
nt+1ntut
xt + xt−1

+
nt+1ntut+1

xt+1 + xt

)
= 0,

and using (21) which gives ntut = α
(
x2t − x2t−1

)
/8β to substitute for ntut and nt+1ut+1
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yields

(1−β) [nt+1(xt + xt−1)− nt(xt+1 + xt)]−2βxt (nt+1 − nt)−β [nt+1(xt − xt−1) + nt(xt+1 − xt)] = 0

for all t ∈ {0, . . . , T − 1}. Collecting terms, we get

xt(1− 4β) + xt+1

xt(1− 4β) + xt−1
=
nt+1

nt
=

(
xt+1 + xt
xt + xt−1

)1/κ

using (23). Using the boundary condition x−1 = 1, xt can be expressed as xt = λtxt−1 =∏t
τ=0 λτ where λt > 1 for all t ∈ {0, . . . , T} w.l.g., and the outer equality can be

expressed as (
λt
λt+1 + 1

λt + 1

)1/κ

= λt
1− 4β + λt+1

λt(1− 4β) + 1

which gives

1− 4β + λt+1

(λt+1 + 1)1/κ
=
λ
2β/κ
t [λt(1− 4β) + 1]

(λt + 1)1/κ
, t ∈ {0, . . . , T − 1}. (25)

We thus have f1(λt+1) = f2(λt) where f1(λ) ≡ (1− 4β+λ) (λ+ 1)−1/κ and f2(λ) ≡
λ2β/κ[λ(1− 4β) + 1] (λ+ 1)−1/κ. As

f ′1(λ) =
−2β(λ− 1)

κ(1 + λ)2(1−β)/κ
(26)

is negative for all λ > 1, (25) can be expressed as λt+1 = F (λt) ≡ f−11 (f2(λt)) which

defines a first-order recurrence equation specifying the sub-sequence {λt}t=1...,T−1 given

λ0: λt = F t(λ0) ≡ F (F t−1(λ0)) (with F 0 = Id). The last term of the sequence is

deduced from the boundary condition xT = x̄ which gives λT = x̄/
∏T−1

t=0 F
t(λ0). We

have λt+1 > 1 if F (λt) > 1 for λt > 1. As f1(1) = f2(1), we have F (1) = 1, and thus

λt+1 > 1 if F ′(λt) ≥ 0 for all λt > 1. Using

f ′2(λ) =
−2β(λ− 1)

κλ(1−4β)/κ(1 + λ)2(1−β)/κ
, (27)

f ′′2 (λ) = −2β

κ2
1− 4β + λ[3− 2λ+ 4(λ− 1)β]

λ2−2β/κ(1 + λ)2+1/κ

and

f ′′1 (λ) =
2β

κ2
−3 + λ+ 4β

(1 + λ)2+1/κ
,
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we obtain

dλt+1

dλt
=

f ′2(λt)

f ′1(λt+1)
= λ

(4β−1)/κ
t

λt − 1

λt+1 − 1

(
λt+1 + 1

λt + 1

)2(1−β))/κ

for λt > 1, and using L’hospital rule, limλt↘1 dλt+1/dλt = f ′′2 (1)/f ′′1 (1) = 1. We thus

have F ′(λt) > 0 for all λt ≥ 1, and thus λt > 1 for all t ∈ {1, . . . , T − 1} if λ0 > 1. In

the case β = 1/4, as f1(λ) = f2(λ) = f̂(λ) ≡ λ/(1 + λ)2, we have λt+1 = λt = λc for

all t ∈ {0, . . . , T − 1}.
T and λ0 are derived as follows. Using xt =

∏t
τ=0 λτ , (23) can be expressed as

nt = K [(λt + 1)xt−1]
1/κ = K

(
(λt + 1)

t−1∏
τ=0

λτ

)1/κ

,

and substituting in (19), it comes

ut =

(
16β2

kα (xt + xt−1)
2

)β/κ
(xt − xt−1) =

(
16β2

kα

)β/κ
(λt − 1)

∏t−1
τ=0 λ

(1−4β)/κ
τ

(λt + 1)2β/κ
(28)

for t ∈ {0, . . . , T − 1}, and

uT =

(
16β2

kα (xT + xT−1)
2

)β/κ
(xT − xT−1) =

(
16β2

kα

)β/κ
x̄−

∏T−1
τ=0 λτ(

x̄+
∏T−1

τ=0 λτ

)2β/κ (29)

for the last tier. The boundary condition xT = x̄ implies that

T∏
τ=0

F τ (λ0) ≥ x̄ >
T−1∏
τ=0

F τ (λ0), (30)

and λ0 and T are derived from solving maxλ0,T
∑T

t=0Wt−νT = maxλ0,T κ
∑T

t=0 ut−νT
using (25) and (28)–(30). In the case β = 1/4, we have xt = λt+1

c , Wt = ut/2 where

ut =
1√
αk

λc − 1

λc + 1
≡ uc(λc), t ∈ {0, . . . , T − 1},

with λT+1
c ≥ x̄ > λTc . We thus have to solve

max
λc,T

{
T
λc − 1

λc + 1
+
x̄− λTc
x̄+ λTc

− ν̂T : λT+1
c ≥ x̄ > λTc

}
(31)
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where ν̂ ≡ 2ν
√
αk. Neglecting the constraints (and treating the discrete variable T as

a continuous variable), the FOCs with respect to T and λc gives

λc − 1

λc + 1
− ν̂ − 2x̄λTc lnλc

(x̄+ λTc )2
= 0

and
2

(λc + 1)2
− 2x̄λT−1c

(x̄+ λTc )2
= 0,

respectively. Multiplying the last equation by λc lnλc and identifying with the first one

yields
2λc lnλc
(λc + 1)2

=
2x̄λTc lnλc
(x̄+ λTc )2

=
λc − 1

λc + 1
− ν̂,

hence gc(λc) = ν̂ where gc(λ) ≡ (λ2−1−2λ lnλ)/(λ+1)2. As g′c(λ) = 2(λ−1) lnλ/(1+

λ)3 > 0 for λ > 1, gc(λ) is strictly increasing over (1,+∞). Hence, there is only one

solution to gc(λc) = ν̂. Using lnλ = − ln(1− (λ− 1)/λ) ≥ (λ− 1)/λ, we have

gc(λ) ≤ [λ2 − 1− 2(λ− 1)]/(λ+ 1)2 = [(λ− 1) /(λ+ 1)]2 < 1,

implying that we must have ν̂ < 1, i.e. ν
√
αk < 1/2 for (31) to have a solution,

and more generally we must have ν̂ < gc(x̄). Assuming this is the case, as
√
ν̂ < 1,

we get using gc(λc) = ν̂ ≤ [(λc − 1) /(λc + 1)]2 that λc ≥ (1 +
√
ν̂)/(1 −

√
ν̂). As

n0 =
√
kα3 (λc + 1)2 /2, a sufficient condition for n0 ≥ 2 is

√
kα3

(
2/(1−

√
ν̂)
)2
/2 ≥ 2,

hence ν ≥ (1− (kα3)1/4)2/(2
√
αk). Also, as λc > 1, to allow for n0 ≤ 1, it should be

the case that 2
√
kα3 < 1, hence kα3 < 1/4.

For β 6= 1/4, the equality f1(λt+1) = f2(λt) can be approximated when β is close

to 1/4, i.e. β = 1/4± ε, ε > 0 small, using the first-order approximation

fi(λ) ≈ f̂(λc) + (λ− λc)f ′i(λc)|β=1/4 + (β − 1/4)(dfi(λc)/dβ)|β=1/4,

for i = 1, 2. Using (26), (27),

df1(λ)

dβ
= f1(λ)

(
−4

1− 4β + λ
− 2 ln (λ+ 1)

κ2

)
and

df2(λ)

dβ
= f2(λ)

(
2 lnλ

κ2
− 4λ

(1− 4β)λ+ 1
− 2 ln (λ+ 1)

κ2

)
,
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yields

f1(λ) ≈ f̂(λc)

[
1 +

(λ− λc)(1− λc)
(1 + λc)λc

− (4β − 1)

(
1

λc
+ 2 ln (λc + 1)

)]
and

f2(λ) ≈ f̂(λc)

[
1 +

(λ− λc)(1− λc)
(1 + λc)λc

− (4β − 1)(−2 lnλc + λc + 2 ln (λc + 1))

]
.

Hence, (25) can be approximated by

0 = f1(λt+1)− f2(λt) ≈
f̂(λc)

λc

(
(λt+1 − λt)(1− λc)

1 + λc
+ (4β − 1)h(λc)

)
where h(λ) = λ2 − 1− 2λ lnλ, implying

λt+1 − λt ≈
λc + 1

λc − 1
(4β − 1)h(λc). (32)

As h′(λ) = 2(λ − lnλ − 1) and h′′(λ) = 2(1 − 1/λ) > 0 when λ > 1, we have

h(1) = 0, h′(1) = 0 and h′(λ) > 0 for λ > 1, implying that h(λ) > 0 for λ > 1.

Consequently, λt+1 > λt iff β > 1/4, i.e. (25) defines an increasing sequence if β > 1/4,

and a decreasing one if β < 1/4. Using lnλ = − ln(1 − (λ − 1)/λ) ≥ (λ − 1)/λ, we

get h(λ) ≤ λ2 − 1 − 2(λ − 1) = (λ − 1)2 and thus λt+1 − λt ≤ (λ2c − 1)(4β − 1). The

solution of (32) is given by λt = λc + δ(β) + (4β − 1)tγ, t ∈ {0, . . . , T − 1}, where

γ = h(λc)(λc + 1)/(λc − 1) and δ(β) a function verifying δ(1/4) = 0. When β is close

to 1/4, we also have λt ≈ λc + (4β − 1)(∆ + tγ) ≡ λ̂t, where ∆ = δ′(1/4)/4 can be

derived as follow. Substituting the approximation λ̂t of λt in (28) using

t−1∏
τ=0

λ̂(1−4β)/κτ = exp

(
1− 4β

1− 2β

t−1∑
τ=0

ln(λc + (4β − 1)(δ(β) + tγ))

)

≈ 1 +

(
β − 1

4

)
d

dβ

[
1− 4β

1− 2β

]
β=1/4

t−1∑
τ=0

lnλc

= 1− 2 (4β − 1) t lnλc,
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and(
λ̂t + 1

)2β/κ
= exp

(
2β

1− 2β
ln(λc + (4β − 1)(∆ + tγ) + 1)

)
≈ (λc + 1)

[
1 +

(
β − 1

4

)(
d

dβ

[
2β

1− 2β

]
β=1/4

ln(λc + 1) +
4(∆ + tγ)

λc + 1

)]
= λ̂t + 1 + 2 (4β − 1) (λc + 1) ln(λc + 1),

we get

ut ≈
(

16β2

kα

)β/κ
λc − 1− (4β − 1) [2(λc − 1)t lnλc − (∆ + tγ)]

λc + 1 + (4β − 1) [∆ + tγ + 2(λc + 1) ln(λc + 1)]

neglecting second-order terms. A linear approximation of the last term gives

ut ≈
(

16β2

kα

)β/κ(
λc − 1

λc + 1
[1− 2 (4β − 1) (t lnλc + ln(λc + 1))] + 2 (4β − 1)

∆ + tγ

(λc + 1)2

)
for t ∈ {0, . . . , T − 1}. Summing over t, it comes

T−1∑
t=0

ut ≈
(

16β2

kα

)β/κ T−1∑
t=0

(
λc − 1

λc + 1
[1− 2 (4β − 1) (t lnλc + ln(λc + 1))] + 2 (4β − 1)

∆ + tγ

(λc + 1)2

)

=

(
16β2

kα

)β/κ
T

(
λc − 1

λc + 1
(1− (4β − 1) [(T − 1) lnλc + 2 ln(λc + 1)]) + 2 (4β − 1)

∆ + (T − 1)γ

(λc + 1)2

)
.

Also, using

xt ≈
t∏

τ=0

λ̂τ = exp

(
t∑

τ=0

ln(λc + δ(β) + (4β − 1)tγ))

)

≈ λt+1
c

(
1 +

(
β − 1

4

) t∑
τ=0

4(∆ + τγ)

λc

)
= λt+1

c (1 + (4β − 1) (t+ 1)(∆ + γt/2)λc)
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for all t ∈ {0, . . . , T − 1}, and

(
x̄+

T−1∏
τ=0

λ̂τ

) 2β
κ

= exp

(
2β

1− 2β
ln

(
x̄+ exp

T−1∑
τ=0

ln(λc + (4β − 1) (δ(β) + τγ))

))

≈ (x̄+ λTc )

[
1 +

(
β − 1

4

)(
d

dβ

[
2β

1− 2β

]
β= 1

4

ln
(
x̄+ λTc

)
+

4λT−1c

∑T−1
τ=0 (∆ + τγ)

x̄+ λTc

)]
= (x̄+ λTc )

[
1 + 2 (4β − 1) ln

(
x̄+ λTc

)]
+ (4β − 1)TλT−1c (∆ + (T − 1)γ/2),

we get using (29)

uT ≈
(

16β2

kα

)β/κ
x̄− λTc (1 + (4β − 1)T (∆ + γ(T − 1)/2)λc)

(x̄+ λTc ) [1 + 2 (4β − 1) ln (x̄+ λTc )] + (4β − 1)TλT−1c (∆ + (T − 1)γ/2)
,

and a linear approximation of the last term gives

uT ≈
(

16β2

kα

)β/κ [
x̄− λTc
x̄+ λTc

[
1− 2(4β − 1) ln

(
x̄+ λTc

)]
− x̄λT−1c T (4β − 1)

2∆ + γ(T − 1)

(x̄+ λTc )2

]
.

Denote by Gβ(λ0, T ) the social planner objective and Ĝβ(∆, T ) its approximation

when β = 1/4± ε, ε > 0 small,

Ĝβ(∆, T ) = (1− 2β)

(
16β2

kα

)β/κ
×
(
T

(
λc − 1

λc + 1
(1− (4β − 1) [(T − 1) lnλc + 2 ln(λc + 1)]) + 2 (4β − 1)

∆ + (T − 1)γ

(λc + 1)2

)
+
x̄− λTc
x̄+ λTc

[
1− 2(4β − 1) ln

(
x̄+ λTc

)]
− x̄λT−1c T (4β − 1)

2∆ + γ(T − 1)

(x̄+ λTc )2

)
− νT.

A Taylor expansion gives

∂Gβ(λ0, T )

∂λ0
≈
∂G1/4(λc, T )

∂λ0
+ (λ0 − λc)

∂2G1/4(λc, T )

∂λ20
+ (β − 1/4)

∂2G1/4(λc, T )

∂λ0∂β

where the first term is null by definition of λc and λ0 ≈ λc + ∆(4β − 1). If ε is suffi-

ciently small, the number of tiers T at the optimum is not affected, and the optimality

condition ∂Gβ(λ0, T )/∂λ0 = 0 leads to

∆ ≈ −1

4

∂2G1/4(λc, T )

∂λ0∂β

/
∂2G1/4(λc, T )

∂λ20
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where the denominator is negative by concavity of G (at least locally at the optimum).

The numerator can be approximated by

∂2G1/4(λc, T )

∂λ0∂β
≈ d

dβ

[
∂Ĝβ(0, T )

∂∆

d∆

dλ0

]
β=1/4

=
d

dβ

[
∂Ĝβ(0, T )

∂∆

1

4β − 1

]
β=1/4

where

∂Ĝβ(∆, T )

∂∆

1

4β − 1
≈ (1− 2β)

(
16β2

kα

)β/κ
2T

(
1

(λc + 1)2
− x̄λT−1c

(x̄+ λTc )2

)
.

Using x̄ > λTc we get

1

(λc + 1)2
− x̄λT−1c

(x̄+ λTc )2
<

1

(λc + 1)2
− λTc λ

T−1
c

(2λTc )2
=

1

(λc + 1)2
− 1

4λc

= − (λc − 1)2

4λc(λc + 1)2
< 0,

and we have

d

dβ

[
(1− 2β)

(
16β2

kα

)β/κ]
= −2

(
16β2

kα

)β/κ
+ (1− 2β)

(
16β2

kα

)β/κ
×
(
d

dβ

[
β

1− 2β

]
(4 ln 2 + 2 ln β − lnαk) +

β

1− 2β

2

β

)
=

(
16β2

kα

)β/κ
4 ln 2 + 2 ln β − lnαk

1− 2β
,

hence
d

dβ

[
(1− 2β)

(
16β2

kα

)β/κ]
β=1/4

=
−2 lnαk√

kα

which is positive if αk < 1. Under this condition and assuming β close to 1/4, we have

∆ < 0 and consequently λ0 > λc iff β < 1/4.

C Proof of Proposition 2

Using x−1 = 1 and xt =
∏t

τ=0 λct for t ∈ {0, . . . , T}, we get

xt+1 − xt
xt − xt−1

= λct
λct+1 − 1

λct − 1
=

(
1 +

λct+1 − λct
λct − 1

)
λct

33



for all t ∈ {0, . . . , T − 1}. We thus have xt+1 − xt = λc(xt − xt−1) when β = 1/4. For

β ≈ 1/4, we get using λct = λc + (4β − 1)(∆ + tγ) and a first-order Taylor expansion

that
λct+1 − λct
λct − 1

≈ (4β − 1)γ

λc + (4β − 1)(∆ + tγ)− 1
≈ (4β − 1)γ

λc − 1
,

hence
xt+1 − xt
xt − xt−1

≈
(

1 +
(4β − 1)γ

λc − 1

)
λct

which increases when β > 1/4 since λc increases, and the reverse otherwise. From (23),

we get

nt+1

nt
=

(
λt
λt+1 + 1

λt + 1

)1/κ

= λ
1/κ
t

(
1 +

λt+1 − λt
λt + 1

)1/κ

,

for all t ∈ {0, . . . , T − 2}, hence nt+1/nt = λ2c when β = 1/4, and nt+1/nt > λ2t with

nt+1/nt
nt/nt−1

=

(
λt
λt−1

λt+1 + 1

λt−1 + 1

)1/κ

> 1

when β > 1/4 since the sequence {λt}T−1t=0 is increasing, and the reverse otherwise.

From (22), it comes

gt
gt+1

=
xt − xt−1
xt+1 − xt

(
nt+1

nt

)2

=
1

λt

λt − 1

λt+1 − 1

(
λt
λt+1 + 1

λt + 1

)2/κ

= λ
(1+2β)/κ
t

(
1 +

λt+1 − λt
λt + 1

)2/κ(
1− λt+1 − λt

λt+1 − 1

)

which gives gt/gt+1 = λ3c when β = 1/4. When β ≈ 1/4, we have gt/gt+1 ≈ λ
(1+2β)/κ
t

and using

λt − 1

λt+1 − 1

λt+1 + 1

λt + 1
≈
(

1 +
(4β − 1)γ

λc + (4β − 1)(∆ + tγ) + 1

)(
1− (4β − 1)γ

λc + (4β − 1)(∆ + (t+ 1)γ)− 1

)
≈ 1− 2(4β − 1)γ

λ2c − 1

neglecting second-order terms, it comes

gt
gt+1

≈
(

1− 2(4β − 1)γ

λ2c − 1

)(
λt
λt+1 + 1

λt + 1

)(1+2β)/κ

.
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We thus have
gt−1/gt
gt/gt+1

≈
(

λt
λt−1

λt+1 + 1

λt−1 + 1

)(1+2β)/κ

,

implying that gt decreases at an increasing rate when β > 1/4, and at a decreasing

rate otherwise. For the per capita capacity, we have

ntgt
nt+1gt+1

=
xt − xt−1
xt+1 − xt

nt+1

nt
=

1

λt

λt − 1

λt+1 − 1

(
λt
λt+1 + 1

λt + 1

)1/κ

= λ
2β/κ
t

(
1− λt+1 − λt

λt+1 − 1

)(
1 +

λt+1 − λt
λt + 1

)1/κ

,

hence ntgt/nt+1gt+1 = λc when β = 1/4. When β ≈ 1/4, ntgt/nt+1gt+1 ≈ λ
2β/κ
t and

using

ntgt
nt+1gt+1

= λ
2β/κ
t

(
1− λt+1 − λt

λt+1 − 1

)(
1 +

λt+1 − λt
λt + 1

)1/κ

≈
(

1− 2(4β − 1)γ

λ2c − 1

)
λ
2β/κ
t

(
1 +

λt+1 − λt
λt + 1

)2β/κ

neglecting second-order terms, ntgt decreases at an increasing rate when β > 1/4 and

at a decreasing rate when β < 1/4. Finally, it comes from (28)

ut+1

ut
=

(
1 +

λt+1 − λt
λt − 1

)(
1− λt+1 − λt

λt+1 + 1

)2β/κ

λ
(1−4β)/κ
t

which gives ut+1 = ut when β = 1/4. When β ≈ 1/4, ut+1/ut+1 ≈ λ
(1−4β)/κ
t , and as

λt > 1, ut+1 > ut when β < 1/4 and the reverse otherwise.

D Proof of Proposition 3

Denoting Wt ≡ W (xt−1, xt, gt, nt) and differentiating (3) w.r.t. gt gives

∂Wt

∂gt
= β

ut
gt
− ntk (xt + xt−1)

2
(33)

which is null at the social planner’s optimum. Hence, if assigned scope (xt−1, xt],

the jurisdiction would chose the same administration’s capacity as that of the social
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planner. Differentiating (3) w.r.t. xt−1 and xt gives

∂Wt

∂xt−1
= −(1− β)ut

xt − xt−1
+
αxt−1
4nt

− ntkgt
2

, t ∈ {1, . . . , T} (34)

and
∂Wt

∂xt
=

(1− β)ut
xt − xt−1

− αxt
4nt
− ntkgt

2
, t ∈ {0, . . . , T − 1}. (35)

Using (21) to substitute for the first term of (34) evaluated at the social planner’s

optimum, we get

∂Wt

∂xt−1
=
αxt−1
4nt

− ntkgt
2

(
1− β
β

xt + xt−1
xt − xt−1

+ 1

)
≤ αxt−1

4nt
− ntkgt

2

(
xt + xt−1
xt − xt−1

+ 1

)
=
αxt−1
4nt

− ntkgtxt
xt − xt−1

=
ntxt

xt − xt−1

(
xt−1
xt

α(xt − xt−1)
4n2

t

− kgt
)

<
ntxt

xt − xt−1

(
α(xt − xt−1)

4n2
t

− kgt
)

= 0

where the first inequality comes from β ≤ 1/2, the second one from xt−1 < xt and the

last equality from (17).

Using (21) to substitute for the first term of (35) evaluated at the social planner

optimum give

∂Wt

∂xt
=
ntkgt

2

(
1− β
β

xt + xt−1
xt − xt−1

− 1

)
− αxt

4nt

=
ntkgt

2

(
1− β
β

xt + xt−1
xt − xt−1

− 1

)
− ntkgtxt
xt − xt−1

=
ntkgt

2

(
1− β
β

xt + xt−1
xt − xt−1

− 3xt − xt−1
xt − xt−1

)
=
ntkgt

2β

xt(1− 4β) + xt−1
xt − xt−1

=
ntkgt

2β

xt−1
xt − xt−1

[λt(1− 4β) + 1]

which is positive for all β ≤ 1/4 and more generally if λt(1 − 4β) + 1 > 0. As the

sequence {λct}Tt=0 is increasing when β > 1/4, it suffices that this inequality is satisfied

for λc0, hence β < (1/λc0 + 1)/4.

36



E Proof of Proposition 4

Using (18) to substitute for ut in (35) and equalizing to zero gives

0 =
∂Wt

∂xt
=

1− β
β

ntkgt (xt + xt−1)

2(xt − xt−1)
− αxt

4nt
− ntkgt

2
,

hence

gt =
αβxt(xt − xt−1)
2kn2

t (κxt + xt−1)
, t ∈ {0, . . . , T − 1}, (36)

Identifying (36) with (20), it comes

nt =

[
α1−βkβ

22−βββ

(
xt

κxt + xt−1

)1−β

(xt + xt−1)

]1/κ
, (37)

=

(
2βxt

κxt + xt−1

)(1−β)/κ

K (xt + xt−1)
1/κ ,

for t ∈ {0, . . . , T − 1}. As (20) and (19) are derived from (18), they both hold in that

case. We have to solve

max
T,{nt,xt,gt}Tt=0

{
T∑
t=0

Wt − νT : x−1 = 1, xT = x̄, (18), (36)

}
.

Neglecting the boundary conditions on x−1 and xT , and denoting by χt and θt the

multipliers corresponding to the constraints (18) and (36) respectively, the Lagrangian

of this program is

L =
T∑
t=0

[
Wt + χt

(
βut −

ntkgt (xt + xt−1)

2

)
+ θt

(
gt −

αβxt(xt − xt−1)
2kn2

t (κxt + xt−1)

)]
− νT.

Using ∂Wt/∂gt = 0 and (18), the FOCs w.r.t. gt and nt give

θt = χt

(
ntk (xt + xt−1)

2
− β2ut

gt

)
= χt(1− β)

ntk (xt + xt−1)

2
, (38)

and
∂Wt

∂nt
+ θt

2gt
nt
− χt

gtk (xt + xt−1)

2
= 0, (39)
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for t ∈ {0, . . . , T − 1}, respectively. Using (38), the latter simplifies to

∂Wt

∂nt
= −χtκ

gtk (xt + xt−1)

2
, (40)

where
∂Wt

∂nt
=
α
(
x2t − x2t−1

)
8n2

t

− kgt (xt + xt−1)

2
. (41)

We thus have
α
(
x2t − x2t−1

)
8n2

t

= (1− χtκ)
gtk (xt + xt−1)

2

and using (36), we arrive at

χt =
(2β − κ)xt − xt−1

2βκ1xt
(42)

for t ∈ {0, . . . , T − 1}. Hence, compared to (21), we get using (18),

α
(
x2t − x2t−1

)
8nt

=
κxt + xt−1

2βxt

ntgtk (xt + xt−1)

2
=
κxt + xt−1

xt

ut
2

(43)

for all t ∈ {0, . . . , T−1} under decentralization. The average access cost is thus greater

than the provision cost iff β < (xt−1/xt + 1)/4.

Using ∂Wt/∂xt = 0, the FOC w.r.t. xt simplifies to

0 =
∂Wt+1

∂xt
− θt

dgt
dxt

+ χt

(
(1− β)βut
xt − xt−1

− ntkgt
2

)
(44)

− θt+1
dgt+1

dxt
+ χt+1

(
−(1− β)βut+1

xt+1 − xt
− nt+1kgt+1

2

)
,

for t ∈ {0, . . . , T − 1}, where

dgt
dxt

=
d

dxt

[
αβxt(xt − xt−1)
2kn2

t (κxt + xt−1)

]
=
gt[xt(κxt + 2xt−1)− x2t−1]
xt(xt − xt−1)(κxt + xt−1)

,

dgt+1

dxt
=

d

dxt

[
αβxt+1(xt+1 − xt)
2kn2

t+1(κxt+1 + xt)

]
=

−2(1− β)xt+1gt+1

(κxt+1 + xt)(xt+1 − xt)
,

and, using (18),

(1− β)βut
xt − xt−1

− ntkgt
2

=
ntkgt

2

(2− β)xt−1 − βxt
xt − xt−1

,
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and
(1− β)βut+1

xt+1 − xt
+
nt+1kgt+1

2
=
nt+1kgt+1

2

(2− β)xt+1 − βxt
xt+1 − xt

.

Finally, using ∂Wt/∂xt = 0, we get from (34) and (35) that

∂Wt

∂xt−1
= − α

4nt
(xt − xt−1)− kntgt. (45)

Using (36) and (42), we obtain

∂Wt+1

∂xt
= −knt+1gt+1χt+1

κ(xt+1 + xt)

(2β − κ)xt+1 − xt
.

We can thus rewrite (44) as

0 = −χtntgt
(

(1− β)
(xt + xt−1)

2

xt(κxt + 2xt−1)− x2t−1
xt(xt − xt−1)(κxt + xt−1)

− (2− β)xt−1 − βxt
2(xt − xt−1)

)
− nt+1gt+1χt+1

(
−(1− β)2 (xt + xt+1)xt+1

(κxt+1 + xt)(xt+1 − xt)
+

(2− β)xt+1 − βxt
2(xt+1 − xt)

+
κ(xt+1 + xt)

(2β − κ)xt+1 − xt

)
for t ∈ {0, . . . , T − 1}. Using xt = λtxt−1 =

∏t
τ=0 λτ yields

χt =
(2β − κ)xt − xt−1

2βκ1xt
=

(4β − 1)λt − 1

2βκ1λt
,

and from (36),

ntgt =
αβ(λt − 1)

∏t
τ=0 λτ

2k[κλt + 1]nt
,

which gives

nt+1gt+1

ntgt
=

λt+1−1
κλt+1+1

λt−1
κλt+1

λt+1
nt
nt+1

.

Replacing and collecting terms, (44) becomes

0 = −χt
(

(1− β)
(λt + 1)

2

λt(κλt + 2)− 1

λt(λt − 1)(κλt + 1)
− (2− β)− βλt

2(λt − 1)

)
−

λt+1−1
κλt+1+1

λt−1
κλt+1

λt+1
nt
nt+1

χt+1

(
−(1− β)2 (1 + λt+1)λt+1

(κλt+1 + 1)(λt+1 − 1)
+

(2− β)λt+1 − β
2(λt+1 − 1)

+
κ(λt+1 + 1)

(2β − κ)λt+1 − 1

)
,
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which yields, using (42),

nt+1

nt
= −

λt+1−1
κλt+1+1

λt−1
κλt+1

1 + λt+1 + β[(4β−1)λt+1−1](1−λt+1)
2κ1(κλt+1+1)

[(4β−1)λt−1][λt(κλt+1)+(1−β)(λt+1)]

2κ1λ2t (κλt+1)

.

Using (37) gives[
(λt+1 + 1)

(
λt+1

κλt+1+1

)1−β]1/κ
[
(λt + 1)

(
λt

κλt+1

)1−β]1/κ λ
1/κ
t = −

λt+1−1
κλt+1+1

λt−1
κλt+1

1 + λt+1 + β[(4β−1)λt+1−1](1−λt+1)
2κ1(κλt+1+1)

[(4β−1)λt−1][λt(κλt+1)+(1−β)(λt+1)]

2κ1λ2t (κλt+1)

(46)

for t ∈ {0, . . . , T − 2}, that defines implicitly a first-order recurrence equation λt+1 =

Fd(λt) = F t
d(λ0), hence the sub-sequence {λt}T−1t=1 given λ0: λt = F t

d(λ0) ≡ Fd(F
t−1
d (λ0))

(with F 0
d = Id). The last term of the sequence is deduced from the boundary condition

xT = x̄ which gives λT = x̄/
∏T−1

t=0 F
t
d(λ0). Using (37) gives

nt+1

nt
=

(
1− κ(λt+1 − λt)

κλt+1 + 1

)(1−β)/κ(
1 +

λt+1 − λt
λt + 1

)1/κ (
λ1−βt+1 λ

β
t

)1/κ
.

Plugging (37) into (19) and (20) yields

ut =

(
8β

αk

κxt + xt−1

xt (xt + xt−1)
2

)β/κ
(xt − xt−1)

=

(
8β

αk

κλt + 1

λt (λt + 1)2

)β/κ
(λt − 1)

t−1∏
τ=0

λ
(1−4β)/κ
t , (47)

and

gt =

(
8β

αk

κxt + xt−1

xt (xt + xt−1)
2

)1/κ

(xt − xt−1),

which give

ut+1

ut
=

(
κλt+1 + 1

κλt + 1

)β/κ(
λt
λt+1

)β/κ
λt+1 − 1

λt − 1

(
λt + 1

λt+1 + 1

)2β/κ

λ
(1−4β)/κ
t

=

(
1 +

κ(λt+1 − λt)
κλt + 1

)β/κ(
λt
λt+1

)β/κ(
1 +

λt+1 − λt
λt − 1

)(
1− λt+1 − λt

λt+1 + 1

)2β/κ

λ
(1−4β)/κ
t
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and

gt
gt+1

=
(
λt+1λ

2β
t

)1/κ(
1− κ(λt+1 − λt)

κλt+1 + 1

)1/κ(
1− λt+1 − λt

λt+1 − 1

)(
1 +

λt+1 − λt
λt + 1

)2/κ

.

It comes from (43) that

Wt =

(
1− β − κxt + xt−1

2xt

)
ut (48)

for t ∈ {0, . . . , T − 1}. For tier T , as ∂WT/∂nT = 0, it comes from (23) and (21) that

nT = (x̄+ xT−1)
1/κK and WT = κuT , where uT is given by (29). T satisfies

T∏
t=0

F t
d(λ0) ≥ x̄ >

T−1∏
t=0

F t
d(λ0), (49)

and λ0 and T are derived from solving

max
λ0,T

{
T−1∑
t=0

(
1− β − κF t

d(λ0) + 1

2F t
d(λ0)

)
ut + κuT − νT : (29), (47), (49)

}

where Fd(·) is implicitly defined by (46). With β = 1/4, (46) simplifies to fd(λt+1) =

fd(λt) where

fd(λ) ≡ (λ+ 1)2 (λ+ 2)1/2 λ3/2

2(λ2 − 1)(λ+ 2) + (λ− 1)2
.

One solution is thus given by λt = λd for all t = 0, . . . , T − 1 (as fd is convex, with

a minimum at λ ≈ 2.12, cyclical solutions are also possible). Using (47) and (48), we

get

ut =

(
λd + 2

λd

)1/2
1√
αk

λd − 1

λd + 1
=

(
λd + 2

λd

)1/2

uc(λd),

and

Wt =

(
3

4
− λd + 2

4λd

)(
λd + 2

λd

)1/2

uc(λd)

=

(
λd − 1

λd

)(
λd + 2

λd

)1/2
uc(λd)

2
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for all t ∈ {0, . . . , T − 1}. λd and T are derived by solving

max
λd,T

{
TΦd(λd)

λd − 1

λd + 1
+
x̄− λTd
x̄+ λTd

− ν̂T : λT+1
d ≥ x̄ > λTd

}
where Φd(λ) ≡ (λ− 1) (λ + 2)1/2/λ3/2. Neglecting the constraints, the FOCs with

respect to T and λd give

Φd(λd)
λd − 1

λd + 1
− ν̂ − 2x̄λTd lnλd

(x̄+ λTd )2
= 0

and

Φ′d(λd)
λd − 1

λd + 1
+

2Φd(λd)

(λd + 1)2
− 2x̄λT−1d

(x̄+ λTd )2
= 0,

respectively. Multiplying the last equation by λd lnλd and identifying with the first one

yields

λd lnλd

(
Φ′d(λd)

λd − 1

λd + 1
+

2Φd(λd)

(λd + 1)2

)
=

2x̄λTd lnλd
(x̄+ λTd )2

= Φd(λd)
λd − 1

λd + 1
− ν̂,

hence gd(λd) = ν̂ where

gd(λ) = [(λ2 − 1)[Φd(λ)− Φ′d(λ)λ lnλ]− 2Φd(λ)λ lnλ]/(λ+ 1)2

= (λ− 1)[(λ2 − 1)(λ+ 2)− (λ+ 3)(2λ+ 1) lnλ]/[λ3/2(λ+ 1)2(λ+ 2)1/2].

As gd(1) = 0 and using lnλ = − ln(1− (λ− 1)/λ) ≥ (λ− 1)/λ,

gd(λ) ≤ (λ− 1)2 [λ (λ+ 1) (λ+ 2)− (λ+ 3)(2λ+ 1)]/[λ5/2(λ+ 1)2(λ+ 2)1/2]

= (λ− 1)2 [λ (λ+ 1) (λ+ 2)− (λ+ 2)(2λ+ 1)− (2λ+ 1)]/[λ5/2(λ+ 1)2(λ+ 2)1/2]

< (λ− 1)2 (λ+ 2)1/2[λ(λ+ 1)− (2λ+ 1)− 1]/[λ5/2(λ+ 1)2]

= (λ− 1)2 (λ+ 2)1/2 (λ− 2) (λ+ 1)/[λ5/2(λ+ 1)2],

where the second inequality comes from 2λ + 1 > λ + 2 when λ > 1. We thus have

gd(λ) < 0 for all λ ∈ (1, 2]. Also, as g′d(λ) = h(λ) lnλ/[λ5/2(λ + 1)(λ + 2)1/2] where
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h(λ) = 2λ5 + 10λ4 − 3λ3 − 41λ2 − 31λ− 9, h(2) < 0 and

h′(λ) = 10λ4 + 40λ3 − 9λ2 − 82λ− 31

> 40λ3 − 9λ2 − 82λ− 31

= (λ− 2)(40λ2 + 71λ+ 60) + 89

which is positive for all λ ≥ 2, gd(λ) is increasing for all λ ∈ {λ > 2 : gd(λ) ≥ 0}.
Hence, provided that gd(x̄) > ν̂, λd = g−1d (ν̂) exits and is unique, greater than 2, and

increases with ν̂. From (37) and λd > 2, we get

n0 =

(
λd

λd + 2

)3/2
√
kα3

2
(λd + 1)2 >

(
1

2

)3/2
√
kα3

2
(3)2 = 9

√
25kα3.

Hence, we must have kα3 < 1/(81 × 25) = 1/2592 ≈ 4.10−4 to have n0 ≤ 1, and a

sufficient condition for n0 ≥ 2 is kα3 ≥ 1/648 ≈ 15.10−4.

F Proof of proposition 5

The generic AG problem is given by

max
λ,T

{
TΦj(λ)

λ− 1

λ+ 1
+
x̄− λT

x̄+ λT
− ν̂T : λT+1 ≥ x̄ > λT

}
,

j ∈ {c, d}, with Φc(λ) = 1 and Φd(λ) = (λ + 2)1/2 (λ− 1) /λ3/2. As shown in Propo-

sitions 1 and 4, the solution is given by λj = g−1j (ν̂) where gj(λ) = [(λ2 − 1)[Φj(λ) −
Φ′j(λ)λ lnλ]− 2Φj(λ)λ lnλ]/(λ + 1)2 is increasing for all λ ∈ {λ > 1 : gj(λ) ≥ 0}. We

thus have λj > λm iff gm(λj) > gm(λm) = ν̂ = gj(λj), hence gm(λj)− gj(λj) > 0. This

is true for all ν̂ ∈ (0, 1) if gm(λ)− gj(λ) > 0 for all λ > 1, i.e.

h(λ)(Φm(λ)− Φj(λ))− (Φ′m(λ)− Φ′j(λ))(λ2 − 1)λ lnλ > 0

for all λ > 1, where h(λ) = λ2 − 1 − 2λ lnλ. As h′(λ) = 2(λ − lnλ − 1) and h′′(λ) =

2(1 − 1/λ) > 0 when λ > 1, we have h(1) = 0, h′(1) = 0 and h′(λ) > 0 for λ > 1,

implying that h(λ) > 0 for λ > 1. Comparing decentralization to first-best (m = c and

j = d), as (λ+2) (λ− 1)2 = λ3−3λ+2 < λ3 when λ > 2/3, we have Φd(λ) < 1 = Φc(λ)

for all λ > 1. As Φ′c(λ) = 0 < Φ′d(λ) = 3/[λ5/2(λ+ 2)1/2], we thus have λd > λc.
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Table 1: Simulations of AGs

First-Best Decentralization

λc = 1.94,
∑

tWct = 1,
∑

t Ŵct = .93 λd = 4.07,
∑

tWdt = .8,
∑

t Ŵdt = .76

t xct nct n̂ct gct Ŵct xdt ndt n̂dt gdt Ŵdt

0 1.94 1.21 1 1.18 · 10−2 0.14 4.07 1.97 2 6.61 · 10−3 0.25
1 3.77 4.56 5 9.15 · 10−4 0.14 16.57 32.7 33 9.80 · 10−5 0.25
2 7.33 17.21 17 1.54 · 10−4 0.14 67.46 541.87 542 1.45 · 10−6 0.25
3 14.23 64.92 65 2.04 · 10−5 0.14 100 1,088.45 1,088 1.46 · 10−7 4.33 · 10−2

4 27.63 244.87 245 2.79 · 10−6 0.14 — — — — —
5 53.66 923.61 924 3.81 · 10−7 0.14 — — — — —
6 100 3,299.94 3,300 5.32 · 10−8 0.13 — — — — —

Parameter values: α = .25, k = 5, ν = .01, x̄ = 100.

Table 2: Summary statistics

Variables # of Obs. Mean SD Min Max
ln of expenditure ratio (Y )1 1950 4.93 0.95 2.23 6.79
4 × ln of population ratio (P )2 1950 17.58 4.03 8.43 25.43
Income per capita2 1950 25.41 12.58 5.35 68.33
Pop. density2,3 1950 148.33 190.21 0.6 1024.4
Dem. majority chambers4 1862* 0.49 0.5 0 1
Rep. majority chambers4 1862* 0.3 0.46 0 1

*As Nebraska is a non-partisan, unicameral legislature, it is excluded from the regressions
that include partisan composition.
Sources: 1the Tax Policy Center & the U.S. Government Publishing Office, 2the Bureau of

Economic Analysis, 3the Census Bureau, 4the National Conference of State Legislatures.
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Table 3: Estimation results

Model specification (1) (2) (3) (4)

All states (β̂) 0.184∗∗∗ 0.182∗∗∗

(0.0238) (0.0254)

Midwest (β̂1) 0.279∗∗∗

(0.0624)

Northeast (β̂2) 0.182∗∗

(0.0579)

South (β̂3) 0.238∗∗∗

(0.0309)

West (β̂4) 0.147∗∗∗

(0.0255)

Northeast & West (β̂A) 0.153∗∗∗

(0.0235)

Midwest & South (β̂B) 0.251∗∗∗

(0.0342)

Income per capita -0.0025 -0.0029 -0.0026 -0.0021
(0.0027) (0.0029) (0.0031) (0.0029)

Pop. density -0.0006 -0.0006 -0.00006 -0.00004
(0.0005) (0.0005) (0.0006) (0.0006)

Dem. chambers 0.0224 0.0185 0.0197
(0.0136) (0.0138) (0.0132)

Rep. chambers 0.0136 0.0178 0.0194
(0.0166) (0.0168) (0.0161)

Observations 1950 1862 1862 1862
Hausman’s test 23.82∗∗∗ 36.36∗∗∗ 50.33∗∗∗ 65.22∗∗∗

F-Stat 473.2∗∗∗ 479.8∗∗∗ 845.2∗∗∗ 1021.7∗∗∗

Notes:*** indicates statistical significance at 1%, ** at 5%, and * at 10% level.
Standard errors clustered at the state level are in parentheses. All estimations in-
clude year fixed effects. Estimates of the constant term and of the time-dummies
are omitted.

45



Table 4: Partisan views of government

Partisanship Federal State Local
Rep. 13% 57% 63%
Ind. 27% 59% 60%
Dem. 41% 56% 67%
Overall 28% 57% 63%

Source: Pew Research Center (2013).
Answers to the question “Would you say your overall
opinion of (government level) is very favorable, mostly
favorable, mostly unfavorable, or very unfavorable?”
Reported are the proportions corresponding to the sum
of “very favorable” and “mostly favorable” by parti-
sanship. Survey conducted March 13-17, 2013 among
1,501 adults living in all 50 U.S. states and the District
of Columbia.

Table 5: Equality tests

H0 β̂1 = β̂2 β̂1 = β̂3 β̂1 = β̂4 β̂2 = β̂3 β̂2 = β̂4 β̂3 = β̂4 β̂A = β̂B

F-test 3.07 0.52 3.28 0.88 0.27 4.76 5.89
p-value 0.0862 0.4726 0.0764 0.3517 0.6041 0.0341 0.0190
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