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Data uncertainty and �tting

The uncertainties σi(qi) (where index i labels the experimental values of the scattering vector

q) are obtained as the standard error of the mean (SEM) over the integrated raw signal given

by N = 10 consecutive frames (denoted by the upper index k):

〈Ii(qi)〉 =
1

N

N∑
k=1

Iki (qi)

σi(qi) =
1√
N

√√√√ 1

N

N∑
k=1

(
Iki (qi)− 〈Ii(qi)〉

)2

where the 1/
√
N prefactor in the last equation converts the standard deviation to the stan-

dard error of the mean (we make the usual assumption that the errors are independent and
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identically distributed.)

This uncertainty is then propagated according to standard statistical formulas through

the background subtraction and normalization steps.

The goodness-of-�t function is calculated as:

χ2 =
∑
i

(
〈Ii〉 − f(qi)

σi

)2

and minimized using the Levenberg-Marquardt algorithm implemented in Igor Pro 7.0 (called

by invoking the FuncFit command.)

Measuring the form factor

We measured the scattering signal of dilute virus solutions (without Dextran), shown in

Figure S1 as lines of various colors. We model it as the (azimuthally averaged) form factor

of a hollow cylinder (open dots).

The intensity measured in the membrane solutions was divided by this theoretical form

factor to yield the structure factors analyzed in the main text.
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Figure S1: The scattered intensity I(q) for several dilute virus solutions (lines; the concen-
tration is indicated alongside the curves) and �t with a core-shell cylinder model (open dots).
The experimental data was rescaled to a concentration of 1 mg/mL.
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Osmotic pressure

In the isotropic phase, we obtain the pressure in the membrane as Pexp = Π2D/L. This

parameter is shown in Figure S2, alongside the bulk osmotic pressure imposed by the same

concentration of Dextran, estimated from the data of Parsegian et al. ( S1, Fig. 3.) and

Livney et al. ( S2, Fig. 3.) The latter dataset was extrapolated to our working concentrations

using a power law dependence.

 !
 

 !
"

 !
#

 !
$

 !
%

&
'
(
)
*+
,
-.
/0
'
'
1
/0
-2
3
4
5

" # $ % 6 7 8 9

 !!
" #

:0;*/4<-,)<,0<*/4*+)<-2(=>(?5

3/0''1/0-+<-*@0-(0(A/4<0
-30;.-B-C":>D

-
&'()*+,-./0''1/0-)E
:0;*/4<-%!!F

- -D+G<0H-0*-4?I
- ------34/'0=+4<-0*-4?I

Figure S2: Pressure within the membrane Pexp (solid red dots) and osmotic pressure imposed
by Dextran solutions of the corresponding concentration, according to Parsegian et al. ( S1,
Fig. 3, open blue dots and line) and Livney et al. ( S2, Fig. 3, solid black squares, with
power law extrapolation shown as solid black line.)

The measured pressure Pexp is much lower than the one imposed by the polymer solution.

One possible explanation for this discrepancy is that Dextran is not completely excluded from

the membranes, unlike the situation in bulk phases.S3

Assuming that Pexp/PD does not change with cD, we can extrapolate Pexp to the crys-

talline phase (red dashed line in Fig S2.) Using the de�nition of the compressibility:

κ = − 1

V

∂V

∂Pexp
=

1

n2D

∂n2D
∂Pexp

(1)

and combining the data in Figure 2 of the main text and Figure S2 above yields the bulk
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modulus:

B = µ+ λ = κ−1L = 6.5 10−3 Pam (2)

E�ect of the line tension

The edge structure of the membranes engenders an e�ective line tension γe�.
S4 In this sub-

section, we compare its e�ect to the pressure within the membrane, Pexp.

We estimate γe� ∼ 10 − 100 kBT/µm
S5 and would like to �nd the equivalent �pressure

due to tension� PT via the energy cost of a variation in membrane radius from R to R+dR.

The associated in�nitesimal changes in contour length and area are dC = 2πdR and dA =

2πR dR, respectively. The work of the line tension γe� and of the pressure Pt are respectively:

WT = γe� dC

WP = PTL 2πR dR

and equating them yields: WT = WP =⇒ PT =
γe�
LR

≤ 1Pa, with R ∼ 10µm. Thus, even

in the liquid phase PT � Pexp: although the line tension does in�uence the size and shape

of the membrane (at the micron scale) it is negligible with respect to the pressure in the

membrane, which results from the interaction between objects at the nanometer scale.

Comparison of the structure factor for dilute and concen-

trated membrane systems

High-quality data is crucial for a quantitative analysis; to this end, we increased the con-

centration of our solutions by mild centrifugation. We checked that the structure factors

were very similar for the dilute and the concentrated samples, as shown in Figure S3 for

three Dextran concentrations, two in the crystal and one in the liquid phase. No systematic

di�erence can be detected between the two types of curves.
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Figure S3: Structure factors measured in dilute (open dots) and concentrated (solid lines)
membrane systems at Dextran concentrations of 58.5, 50.2 and 35.1 mg/mL.

Detail of the Dutta & Sinha model

We perform an azimuthal average:

S(q) =
3C

π

∫ π/6

−π/6
S(q)dφ+ α(q − q1) + β (3)

over the analytical expression of the structure factor of a harmonic model given by Dutta

and Sinha:S7

S(q) = 1F1

(
1− η

2
, 1;−δq

2L2
DS

4π

)
(4)

with q1 = (q1, 0) the �rst peak of the crystalline phase, φ = (̂q,q1) the angle between this

vector and the current vector q and δq = |q− q1|. 1F1(a, b; z) is a con�uent hypergeometric

function (also known as the Kummer function M).

The �t parameters are the exponent η (related to the elasticity of the lattice), the �domain

size� LDS, the peak position q1, the amplitude C, the background value β (at the peak

position) and the slope of the background α.

It is di�cult to extract relevant information from parameter LDS, which is in�uenced by

details of the experimental setup, such as beam divergence and coherence length. At any

S-5



rate, its value is much lower than the typical membrane size (microns to tens of microns) so

we conclude that this latter parameter does not a�ect the peak pro�le.

Implementation of the Kummer function

For moderate values of |z| we compute 1F1(a, b; z) using the implementation of the function

available in Igor Pro, but for z < −20 we use the (much faster) asymptotic formS9 restricted

to real z. Since z < 0, we make use of 1F1(a, b; z) = ez 1F1(b− a, b;−z) to get:

1F1(a, b; z) =
Γ(b)

Γ(b− a)
(−z)−a

∞∑
j=0

(a)j(1 + a− b)j
j!

(−z)j (5)

where (·)j denotes the Pochhammer symbol.
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