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Abstract

Using synchrotron-based small angle x-ray scat-
tering, we study rigid fd viruses assembled
into isolated monolayers from mixtures with a
non-absorbing polymer, which acts as osmotic
agent. As the polymer concentration increases
we observe a direct liquid to crystal transition,
without an intermediate hexatic phase, in con-
trast with many other similar systems, such as
concentrated DNA phases or packings of sur-
factant micelles. We tentatively attribute this
effect to the difference in stiffness. The liquid
phase can be well described by a hard-disk fluid,
while we model the crystalline one as a hexago-
nal harmonic lattice and we evaluate its elastic
constants.

How does the ordering transition occur
in two-dimensional systems of objects with
isotropic interaction? Over the last half-
century, this deceivingly simple question re-
ceived complex answers that reveal consider-
able hidden subtlety. In particular, according
to the celebrated Kosterlitz-Thouless-Halperin-
Nelson-Young (KTHNY) scenario,1 crystalliza-
tion is preceded by the formation of an interme-
diate hexatic phase, characterized by two order
parameters: a short-range positional one and a
(sixfold) quasi-long-range orientational one.

Experimental measurements of the interac-
tion between particles and of their degree of
order have been performed on a wide variety
of systems, such as adsorbed noble gases,2–4

monolayers of colloidal particles,5–8 protein lay-
ers9 or nano-objects inserted within lipid or sur-
factant bilayers (e.g. peptides10 or inorganic
nanoparticles.11,12) In many of these “flat” sys-
tems (with a transverse size comparable to the
typical in-plane distance), the hexatic phase is
indeed observed.2–8

A more complex case is that of packed elon-
gated particles, where the out-of-plane degrees
of freedom can also be important. The hexatic
phase is present, for instance, in stacks of col-
loidal platelets,13 in systems of self-assembled
micelles,14 but also in dense phases of double-
stranded (ds) DNA,15–17 which are similar to
the very compact state of DNA encoutered, for
instance, in bacteriophage capsids.18
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Here, we use fd viruses, quite similar to ds-
DNA: they are monodisperse, chiral, charged
and rigid rodlike objects that assemble under
the influence of depleting agents into a wide va-
riety of self-assembled structures, such as tac-
toids,19 colloidal membranes,20,21 twisted rib-
bons22 and membrane rafts.23 We concentrate
here on colloidal membranes, i.e. monolayers
where the rods are parallel to the layer normal.

Despite its rich morphology, this system has
only been studied at the macroscopic scale
and in the fluid regime, via optical microscopy
observation. Structural characterization, over
length scales comparable to the distance be-
tween rods, is rendered difficult by the small
size and reduced scattering power of the assem-
blies, although it has been carried out on bulk
phases of related systems.24,25

We perform small-angle X-ray scattering
studies (SAXS) at a high-brilliance synchrotron
beamline on suspensions of such objects. The
number concentration n2D of rods in the plane
of the membrane is controlled by the bulk
polymer concentration. As n2D increases, we
observe a first-order transition between an
isotropic phase and a crystal phase. There is no
hexatic phase, in contrast with many other two-
dimensional systems, such as dsDNA, and with
the bulk phase of the semi-flexible wild-type fd
viruses.25

As semiflexible rodlike particles we used
the monodisperse filamentous bacteriophage fd -
Y21M with a contour length of 880 nm, a di-
ameter of 6.6nm and a persistence length of
9.9 ± 1.6µm.26 fd -Y21M viruses were synthe-
sized using standard biological protocols27 and
dispersed at a concentration cV ranging from
0.5 to 10 mg/mL in 20 mM TRIS buffer at
pH 8.0 and 100 mM NaCl.

In aqueous suspension, these virus particles
exhibit purely repulsive interactions and be-
have as model system with respect to the On-
sager theory.26 We mixed the viruses with a non
absorbing polymer, Dextran (molecular weight
500 kDa, Sigma Aldrich) at a final virus concen-
tration cV = 5 mg/mL and polymer concentra-
tions in a range cD = 0− 58.5 mg/mL. Adding
polymers to a dilute isotropic suspension of fd -
Y21M induces attractive interactions between

the rods via the depletion mechanism.28

The membrane properties are mainly con-
troled by the depletant concentration,20,22 and
their diameter ranges from 1 to 50 microns.20

The line tension at the edge of the membranes is
always too high to self-assemble monodispersed
membranes with a well-defined diameter.22 The
thermal fluctuations of the membranes provide
an entropic repulsion that keeps them isolated
from each other along their normal. However,
at high depletant concentrations, the induced
attraction may be strong enough to overcome
the entropic repulsion and the membranes tend
to stack on top of each other20 and eventually
crystalize.

We prepared bulk samples of concentrated
membranes in round glass capillaries, with a
nominal outer diameter of 1 mm and 10 micron-
thick walls, purchased from WJM-Glas (Berlin,
Germany). The capillaries were filled with the
sample solution and sealed at the top to prevent
evaporation. Some of them were mildly cen-
trifuged for 5 minutes at 2000 g to concentrate
the membranes at the bottom of the capillary
and thus increase the strength of the scattered
signal. The sediment occupies at least 1/5 of
the capillary length, so the local concentration
does not exceed cV = 25 mg/mL. We checked
that there is no significant difference between
the signal of the initial solutions and that of
the centrifuged ones (see the Supplemental Ma-
terial29 for more details.)

SAXS measurements were performed on the
SWING beamline of the SOLEIL synchrotron
(Saint-Aubin, France.) The sample-to-detector
distance was 2 m and the wavelength λ = 1 Å,
covering a scattering vector range 0.005 < q <

0.5 Å
−1

. The measurements were performed
at 22 ◦C. The capillaries were placed vertically.
For the centrifuged ones, we made several mea-
surements at different heights in the sedimented
phase, at its upper interface and in the super-
natant.

The intensity measured in the supernatant
was used as a reference signal for that measured
in the sediment.

The corrected intensity was then divided by
the (orientationally averaged) form factor of the
virus measured in isotropic solutions29 to yield
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the in-plane averaged structure factor S(q).
The structure factors are shown in Figure 1
for Dextran concentrations cD between 29.5 and
58.5 mg/mL. At lower cD we do not detect the
formation of membranes (the solutions remain
clear) and the scattering signal is weak and rel-
atively flat.
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Figure 1: Structure factors S(q) obtained by
SAXS (open dots) for several Dextran concen-
trations, indicated alongside the curves, as well
as the phase assignment. The fits with the ap-
propriate models are shown as solid lines (see
the text for details.) The curves are vertically
shifted for clarity.

A two-dimensional system of isotropic parti-
cles can exhibit three phases: fluid, crystalline
and hexatic. For the fluid phase we used the
structure factor of hard disks,31 which has a
simple analytical expression and yields two pa-
rameters: the hard disk radius RHD and the
in-plane number concentration n2D (see Fig-
ure 2). From the low-q limit S(q → 0) of
the fitted structure factor we extract the (two-
dimensional) osmotic pressure Π2D.

We describe the structure factor of the
crystalline phase by the harmonic model of

Dutta and Sinha33 (denoted in the following
as D & S), averaged over the azimuthal an-
gle (in the plane of the membrane), since the
recorded intensity is integrated over all orienta-
tions. There is no need to account for the exper-
imental resolution, since this parameter would
be correlated to the domain size (see the origi-
nal paper for details.)

In the hexatic phase, many authors described
the peaks by a Lorentzian function for simplic-
ity: this choice yields an analytical functional
form for the azimuthally averaged structure fac-
tor given by Heiney et al.34 (H), which is close
to a square-root Lorentzian function.4 With re-
spect to the original model, we convolute the
peak function with a Gaussian to account for
the experimental resolution. For completeness,
we also included in the analysis the Pearson VII
function (P) used by Grelet to model the signal
of the hexatic phase in bulk systems.25
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Figure 2: In-plane number density of rods
within the membrane n2D as a function of the
Dextran concentration cD. The osmotic pres-
sure PD imposed by the polymer35 is shown as
top axis. In the isotropic phase (©), n2D is
a free parameter of the hard-disk model, while
in the hexagonal one (�) it is computed from
the peak position. At coexistence (cD = 43.7
and 45.4 mg/mL), the lower concentration is
linearly extrapolated from the isotropic values,
while the higher is a free fit parameter.29
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For cD = 43.7 mg/mL and above, we fitted
the curves in the range 0.043-0.077 Å−1 (around
the first peak q10) using the three models de-
scribed above: D & S, H, and P respectively
(see Figure 3). In all cases, we add to the mod-
els a linear slope and a constant contribution:
α(q − q10) + β, to account for imperfect back-
ground subtraction and for other sources of sig-
nal within the sample. Each model has six fit
parameters, including α and β.
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Figure 3: The top four curves in Fig. 1 (sym-
bols) and fits with the three models (solid lines,
different colors.)

In Table 1 we present the goodness-of-fit func-
tion χ2 (divided by the number of data points
Npts in the fitting range) for each curve and
with each model. This parameter quantifies the
agreement between data and model: we expect
χ2/Npts ∼ 1 for a good fit, χ2/Npts > 1 signals
an imperfect fit (the model is inaccurate or the
data exhibits systematic uncertainties), while
χ2/Npts � 1 generally results from overestimat-

ing the uncertainty of the data. To ascertain
the importance of the linear term added to the
models we also perform the fits where we set
α = 0 (columns labeled “no slope”.) The huge
improvement in χ2/Npts justifies our use of this
term. Clearly, the harmonic crystal model of
Dutta and Sinha provides the best description
of the four curves. However, while this agree-
ment is excellent for the two higher concentra-
tions, as shown by χ2/Npts < 1, it is clearly
worse for cD = 43.7 and 45.4 mg/mL, where
χ2/Npts = 1.75 and 4.59, respectively, because
the model underestimates the data in the range
0.047-0.055 Å−1. This also holds true for mod-
els H and P.

Since none of the single-phase models fit
the structure factor for cD = 43.7 and
45.4 [mg/mL], we tried to describe it as co-
existence between the hexagonal phase found
at higher concentrations and the hard-disk liq-
uid phase found at lower concentrations. We
therefore use the sum of the Dutta & Sinha
model and the liquid model. The latter con-
tribution has three parameters: the hard-disk
radius RHD and the in-plane number density
n2D are obtained by extrapolation from the fits
at lower concentrations, while the overall am-
plitude is free to vary. We therefore have a
single additional coefficient with respect to the
six in the D & S model. The best fit is shown
as red line in Fig. 4 (and also in Fig. 1). For
comparison, we plot as black line the best D &
S fit.

The agreement is markedly better for the co-
existence system: at cD = 43.7 mg/mL, adding
one fit parameter decreases the χ2/Npts from
1.75 to 1.08, and over a much wider range. For
comparison, trying to fit over the same range
with only the D & S model yields χ2/Npts =
27.0, while the hard-disk liquid model yields
χ2/Npts = 33.3 with fixed RHD and n2D and
χ2/Npts = 15.6 if these two parameters are al-
lowed to vary (in which case they do not move
more than 4% away from the initially fixed val-
ues.) Similar improvement in χ2/Npts (from
4.59 to 2.44) is obtained for cD = 45.4 mg/mL.
We conclude that the best description of these
two data points is given by the coexistence
model.
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Table 1: Goodness-of-fit function χ2 (divided by the number of data points Npts in the fitting
range) for the three models described in the text: Dutta and Sinha (DS), Heiney et al. (H) and
Pearson (P), with or without a linear slope term.

cD [mg/mL]
χ2/Npts

D & S H P D & S (no slope) H (no slope) P (no slope)
58.5 0.70 2.82 3.15 133.8 168.9 105.8
50.2 0.93 3.62 2.04 72.3 68.8 57.7
45.4 4.59 22.63 8.14 132.3 78.1 98.1
43.7 1.75 4.92 2.30 18.1 13.0 12.8
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Figure 4: Structure factor at cD = 43.7 mg/mL (open dots) and fits with the Dutta & Sinha model
(black solid line) and the coexistence model (red solid line). a - full range. b - detail of the peak
region.

The best values for the relevant fit parame-
ters and their associated uncertainties (at the
68.3% confidence level) are shown in Table 2.
LDS is the domain size in the Dutta and Sinha
model (see the Supporting Information for the
definitions.) The n2D is common to the two
models, being obtained from the peak position
q10 in the hexagonal phase as n2D =

√
3

8π2 q
2
10. At

coexistence, n2D of the isotropic contribution is
fixed as discussed in the text and only the value
corresponding to the hexagonal phase is listed.
The hard-disk radius RHD at coexistence is also
fixed.

A question we cannot answer at this time is
whether the coexistence is a genuine feature of
the phase diagram (in which case it would imply
that the transition is first-order) or an artifact
due to sample heating by the x-ray beam and

the system is in fact fully crystalline. We can-
not rule out the latter possibility, although we
limited the beam effect by reducing the expo-
sure time for these two samples to the minimum
achievable time (5 ms.)

An important parameter of the crystalline
phase is the exponent η(q, T ), which describes
the power law divergence of the diffuse scatter-
ing around the Bragg peaks. It is given by the
elastic moduli of the phase:36

η(q, T ) =
kBTq

2

4πµ

3µ+ λ

2µ+ λ
=
kBTq

2

8πµ
(3− σ) (1)

where µ (the shear modulus) and λ are the
Lamé coefficients and σ is Poisson’s ratio in two
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Table 2: Best values and associated uncertainties for the relevant fit parameters: Dutta and Sinha
with linear slope term in the hexagonal phase, hard-disk liquid in the isotropic phase and their sum
in the coexistence range.

cD [mg/mL]
Value ± Uncertainty

n2D [10−6 Å
−1

] η LDS [103 Å] RHD [Å]
58.5 80.12± 0.05 0.282± 0.005 2.9± 0.1
50.2 76.04± 0.06 0.39± 0.01 3.4± 0.2
45.4 71.40± 0.07 0.11± 0.01 2.9± 0.1 54.15
43.7 72.40± 0.07 0.16± 0.01 2.8± 0.1 54.97
40.5 63.37± 0.03 55.08± 0.01
35.1 53.66± 0.06 54.15± 0.01
29.5 46.80± 0.07 54.64± 0.01

dimensions.1 In the following, we will denote by

η = η(q10, T ) =
4π

3

kBT

µd2
3µ+ λ

2µ+ λ
(2)

the value of this parameter at room tempera-
ture and at the position of the first Bragg peak
of the hexagonal lattice, q10 = 4π√

3d
, where d '

12 nm is the distance between first neighbors in
the lattice. Close to q10, S(q) ∼ 1/ |q − q10|2−η.

 !"

 !#

 !$

 !%

 ! 

&
'(
)
*
++
,
'-
'.
/0
1
,
'2
3
4
5
67

8 999 "9" #9# 

:)';2<=2>?

/@3+A3B/: :35C/@+50:5 ''''''15C,<30,6

Figure 5: Fluctuation parameter η in the D &
S model as a function of the Dextran concen-
tration cD.

The values of η extracted from the D & S
model are shown in Figure 5. In the hexago-
nal phase, they are 0.28 and 0.39, so we can

estimate an average value ηavg = 1/3, which
happens to be the maximum value that η can
reach in the KTHNY scenario. Plugging it into
(2) and setting the final factor to 1 (under the
assumption that λ � µ, to be justified below)
yields a shear modulus:

µ ' 4π
kBT

d2
= 0.09

kBT

nm2
= 3.6 10−4 Pa m. (3)

From the osmotic pressure dependence.29 we
estimate the bulk modulus at

µ+ λ = 6.5 10−3 Pa m, (4)

about 18 times higher than the shear modu-
lus. For context, this ratio is 3 in hexagonal
lyotropic liquid crystals,37 10 in magnetic col-
loids at the air-water interface38 and about 12
in decanol monolayers.39

The values of η estimated in the coexistence
regime are unreliable, since the wide tails as-
sociated to high η are difficult to distinguish
from the “bump” of the isotropic phase. The
coexistence model thus yields η ∼ 0.1−0.15, as
shown in Figure 5. The pure D & S model, on
the other hand, gives η ∼ 0.5 − 0.6 (data not
plotted.)

In the isotropic phase, the structure factor is
well described by a hard core interaction, in
agreement with recent macroscopic results.40

The osmotic pressure is much lower than ex-
pected from the concentration of Dextran, so
the latter is probably not completely excluded
from the membranes, as it happens in bulk sys-
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tems.41

Self-assembled membranes of stiff fd
viruses represent an experimental quasi-two-
dimensional system of isotropic objects that
does not follow the KTHNY scenario. In par-
ticular, they exhibit a direct transition be-
tween the crystalline and the fluid phases. We
see no evidence for a hexatic phase, in con-
trast with literature results for bulk phases of
a semi-flexible fd viruses25 and for dense DNA
phases.15–17

This result is puzzling, in view of the simi-
larity between our fd viruses and the hexatic
systems cited above. A notable difference is
that the former is stiffer than dsDNA and also
than the wild-type fd virus strains used in bulk
studies. Our findings highlight the importance
of flexibility in stabilizing the hexatic phase of
elongated objects. This is a new result, since to
our knowledge the role of flexibility has never
been invoked in the literature in this context.
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