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Third-order Volterra MVDR beamforming for
non-Gaussian and potentially non-circular

interference cancellation
Pascal Chevalier, Jean-Pierre Delmas, and Mustapha Sadok

Abstract—Linear beamformers are optimal, in a mean
square (MS) sense, when the signal of interest (SOI) and
observations are jointly Gaussian and circular. Otherwise,
linear beamformers become sub-optimal. When the SOI and
observations are zero-mean, jointly Gaussian and non-circular,
optimal beamformers become widely linear (WL). They be-
come non-linear with a structure depending on the unknown
joint probability distribution of the SOI and observations
when the latter are jointly non-Gaussian, assumption which
is very common in radiocommunications. In this context, the
paper aims at introducing, for small-scale systems, third-order
Volterra minimum variance distortionless response (MVDR)
beamformers, for the reception of a SOI, whose waveform
is unknown but whose steering vector is known, corrupted
by non-Gaussian and potentially non-circular interference,
omnipresent in practical situations. Properties, performance,
complexity and adaptive implementation of these beamformers
in the presence of non-Gaussian and potentially non-circular
interference are analyzed in this paper. These new beamform-
ers are shown to always improve, in the steady state, the
performance of Capon beamformer for non-gaussian/circular
interference, whereas some of them improve the performance
of the WL MVDR beamformer for non-Gaussian/non-circular
interference. These new beamformers open new perspectives
for spectrum monitoring of non-Gaussian signals and for
radiocommunication networks using such signals.

Index Terms—Non-linear, non-Gaussian, non-circular,
widely linear, third-order Volterra, interference, MVDR,
beamforming, spectrum monitoring, passive listening.

I. INTRODUCTION

BEAMFORMING plays an important role in many
applications such as radar, sonar, satellite communi-

cations, radiocommunications, acoustic or spectrum moni-
toring [1]. It allows to optimize, by a linear filtering of the
observations, the reception of a SOI potentially corrupted by
interference. It consists to steer a beam in the SOI direction
while forming spatial holes in the interference directions.
The most popular receive beamformer has been introduced
by Capon and al. [2] at the end of the sixties and corresponds
to the MVDR beamformer. It consists to minimize the output
power under a linear constraint of non-distortion of the SOI.
Its implementation only requires the a priori knowledge
or estimation of the steering vector of the SOI, hence its
great interest for spectrum monitoring or passive listening
in particular. It corresponds to a particular case of linearly

constrained minimum variance (LCMV) beamformer [3]
whose equivalent unconstrained form is the generalized
sidelobe canceller (GSC) introduced in [4]. As the Capon
beamformer is not robust to errors in the SOI steering vector
when it is adapted in the presence of the SOI, most of
the papers about beamforming written these last decades,
have concerned the development of numerous beamforming
concepts robust to errors in the SOI steering vector [5].
However, the available robust beamformers are still linear
beamformers but with additional constraints allowing to
preserve the SOI contribution in the presence of errors on
the SOI steering vector.

Nevertheless it is now well-known [6] that the optimal
beamformer, in a mean square (MS) sense, whose output
corresponds to the conditional expectation of the SOI with
respect to the observations, is linear only when the SOI and
the observations are jointly Gaussian and circular [7]. Linear
beamformers then become sub-optimal for non-Gaussian
and/or non-circular SOI and/or observations, omnipresent in
radiocommunications in particular. Indeed, most of digital
communications signals are non-Gaussian and many of them
are non-circular either at the second order (SO) and/or
at a higher order (HO). For example, an amplitude shift
keying (ASK) signal is non-Gaussian and at least non-
circular at all even orders. A phase shift keying signal with
M states (M -PSK) is non-Gaussian and non-circular at
an order 2q such that 2q ≥ M [8]. A square quadrature
amplitude modulated (QAM) signal with 4M2 state (4M2-
QAM) is non-Gaussian and at least fourth-order (FO) non-
circular. In this context, non linear beamformers become of
great interest for both radiocommunications and spectrum
monitoring of radiocommunications.

More precisely, when the SOI and observations are zero-
mean, jointly Gaussian but non-circular, the optimal beam-
former becomes WL [6], which corresponds to a particular
non-linear structure weighting linearly and independently
the observations and their complex conjugate. For this
reason, a WL MVDR beamformer (called WL MVDR1),
exploiting the potential SO non-circularity of the interfer-
ence only, has been introduced recently in [9] for spectrum
monitoring of radiocommunications and its implementation
has been discussed in [10]. To take into account the potential
SO non-circularity of both the SOI and the interference,
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a second WL MVDR beamformer (called WL MVDR2)
has been further introduced in [11], [12]. This beamformer
allows us to implement the WL minimum mean square error
(MMSE) beamformer [13], without requiring the a priori
knowledge of the SOI, but only from the a priori knowledge
or estimation of both the steering vector and the SO non-
circularity coefficient of the SOI. Note that for a strong SO
circular SOI, the WL MVDR2 beamformer coincides with
the WL MVDR1 beamformer [12]. A limitation of the WL
MVDR2 beamformer is that it is not robust to errors in
either the SOI steering vector or the SOI SO non-circularity
coefficient, when it is adapted in the presence of the SOI.
For this reason, since a decade, most of the papers about
WL beamforming have concerned the robustness increase
of the WL MVDR2 beamformer, through the development
of numerous robust WL beamforming concepts [14]–[18].
The numerous available robust WL beamformers are still
WL beamformers but with additional constraints allowing
to preserve the SOI contribution in the presence of errors on
the steering vector and/or the SO non-circularity coefficient
of the SOI. Note that alternative WL beamformers have also
been proposed recently to mitigate RF impairments [19], for
reduced-rank beamforming [20] in massive MIMO systems
and also for binaural noise reduction in acoustic [21], [22].

Moreover, when the SOI and observations are jointly non-
Gaussian (jointly circular or not), the optimal beamformer
becomes a non-linear function of the observations, which
depends on the joint probability distribution of the SOI
and the observed data. However in practice, this probability
distribution is generally not known a priori. A first philos-
ophy then consists in trying to estimate it in order to opti-
mize the non-linearity of the beamformer. This estimation
may be implemented through stochastic techniques, based,
for example, on particle filtering [23], [24] or through a
parametric model of the non-Gaussian observations, such
as the Gaussian mixture model [25], well-suited to model
non-Gaussian/non-circular noise [26]. However, in all cases,
this philosophy is generally costly and difficult to imple-
ment. A second philosophy, much easier to implement,
consists in imposing a particular non-linear structure to
the beamformer, including the linear one, and to compute
a beamformer (MVDR for example) having this imposed
structure. Although sub-optimal, the considered non-linear
beamformer is built to generate a performance improvement
with respect to the linear one in non-Gaussian contexts. Such
an approach, based on the constant modulus criterion, has
been investigated in [27] for non-Gaussian noise rejection in
the context of satellite communications by using the concept
of radial basis functions (RBF) beamforming. However, al-
though powerful for non-Gaussian noise rejection, the RBF
beamformer may have limited performance for Gaussian and
circular noise since it does not include the linear structure.

A particular non-linear structure, including both the lin-
ear and the WL structures, corresponds to the pth-order

(p ≥ 2) complex Volterra structure [28], [29]. Such a
structure is able to improve the performance of linear
beamformers in non-Gaussian and potentially non-circular
contexts, by exploiting both the non-Gaussiannity and the
complete potential non-circularity of the observations up
to the order 2p. Let us recall that Volterra filtering [30]
has been considered in signal processing for a long time
for many applications such as for example detection and
estimation [31], system identification [32], echo cancellation
[33] or non linear channel equalization [34] but mainly
for real-valued observations. The main use of Volterra
filtering for complex data concerns both the modeling and
the predistortion processing of the baseband input-output
relationship of power amplifiers operating close to saturation
for power efficiency in radiocommunications [35], [36].
The scarce other works about complex Volterra filtering
mainly concern blind identification of some linear-quadratic
systems [37], MS estimation and detection from linear-
quadratic [38] or pth-order systems [28], [29], beamform-
ing [39], [40] and single antenna interference cancellation
(SAIC) [41]. [39] introduces a particular third-order Volterra
MVDR beamformer for non-Gaussian interference rejection
improvement. However, this beamformer does not include
the WL structure, does not take into account the potential
non-circularity of the interference and may generate lower
performance than the WL beamfomers. In contrast, [40] and
[41] introduce more general third-order Volterra beamform-
ers, exploiting both the non-Gaussiannity and the potential
non-circularity of the interference. However [40] concerns
coded division multiple access (CDMA) cellular networks,
whereas [41] assumes only ASK signals and one reception
antenna. Both systems use a MMSE approach, optimized
for demodulation purpose and their implementation requires
a training sequence. They cannot be used for spectrum
monitoring of general radiocommunication signals.

In this context, the first purpose of this paper is to
introduce several third-order Volterra MVDR beamformers
for the reception of a SOI, whose waveform is unknown
but whose steering vector is known, corrupted by potentially
non-Gaussian and non-circular interference. All these beam-
formers are third-order extensions of the Capon beamformer
[2], whereas some of them are third-order extensions of
the WL MVDR1 beamformer [9] or are alternatives to the
third-order Volterra beamformer introduced in [39]. All the
proposed beamformers exploit the potential non-Gaussian
character of the interference, whereas some of them exploit,
in addition, their non-circularity up to order 4 or 6. It is
important to note that the proposed beamformers have no
interest for large-scale systems, such as massive MIMO
systems for 5G mobile cellular networks, for which the
linear beamformers are quasi-optimal since the sources can
be assumed to be approximately orthogonal to each other
for the array. On the contrary, the proposed beamformers
are mainly developed for small-scale systems, with a small
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number of antennas and low spatial aperture in number of
wavelength, which are low spatial resolution systems for
which the Capon beamformer has limited performance in
the presence of interference. For such systems the idea is
to replace the missing hardware (or antennas) by clever
software with a moderate complexity, as shown in the
paper, to improve the interference cancellation. Note that
most of the array processing systems working in the HF
(3 - 30 MHz), VHF (30 - 300 MHz) or UHF band (300
MHz - 3 Ghz), for which the large size of the wavelength
(0.10m ≤ λ ≤ 100m), jointly with the limited size of the
carrier system (vehicle, plane, manpack, infrastructure..),
limit the number of antennas, are small-scale systems. This
is currently the case and this will remain the case in the
future, since the allocated wavelength of these systems
should not change. This concerns numerous applications
such as 2G/3G/4G cellular mobile communications and
metrology, airborne communications and spectrum moni-
toring, military tactical communications, electronic warfare,
naval communications... The analysis of the properties,
performance, complexity and adaptive implementation of the
proposed third-order beamformers are the second purpose of
this paper. For interference having a high spatial correlation
with the SOI, usual for small-scale systems, it is shown in
the paper that the best proposed third-order beamformers
may strongly improve the performance of the Capon and
WL MVDR1 beamformer for non-Gaussian/circular and
non-Gaussian/non-circular interference respectively, and the
Capon and third-order Volterra beamformer [39] perfor-
mance for non-circular interference.

The proposed beamformers open new perspectives for
spectrum monitoring of non-Gaussian and non-circular sig-
nals and for radiocommunication networks using such sig-
nals in particular. Note that the FO non-circularity of
observations has been used by a WL MMSE beamformer
in [42] to compensate I/Q imbalance effects at reception
but not to improve the steady-state performance of WL
beamformers. In addition, the non-Gaussiannity and both
the sub-Gaussiannity and non-circularity of observations has
already been used in [43] and [44], respectively, through the
development of the linear minimum dispersion beamformer
(MDB) and the WL MDB respectively, to boost the con-
vergence speed of linear and WL beamformers respectively,
but not to improve their steady-state performance. Finally
note that some preliminary results of the paper have been
presented in [45], but without any complexity and analytical
performance analysis and with no comparison with non-
linear beamformers of the literature.

After the introduction of some hypotheses, data statistics
and problem formulation are given in Section II. Section
III introduces the new third-order Volterra MVDR beam-
formers, jointly with their equivalent GSC structure and the
related generic output signal to interference plus noise ratio
(SINR) performance. An analytical performance analysis of

some of the proposed MVDR beamformers, in the presence
of a single interference, is presented in Section IV. The
adaptive implementation of the proposed beamformers is
briefly investigated in Section V, whereas some complexity
elements of the latter are briefly described in Section VI.
Finally Section VII concludes this paper.

The following notations are used throughout the paper.
Matrices and vectors are represented by bold upper case
and bold lower case characters, respectively. Vectors are by
default in column orientation, while T , H and ∗ stand for
transpose, conjugate transpose and conjugate, respectively.
E(.) is the expectation operator. Ip, 0p and Op,q are the
identity matrix of order p, the null vector of size p and the
null matrix of order p × q, respectively. Diag(A1, ..,Aq)
represents a block diagonal matrix of diagonal elements
A1, ..,Aq . ⊗ denotes the Kronecker product and A⊗q

means A⊗A...⊗A with q − 1 Kronecker products.

II. HYPOTHESES, DATA STATISTICS AND PROBLEM
FORMULATION

A. Hypotheses

We consider an array of N narrowband sensors and we
denote by x(t) the vector of the complex amplitudes of
the signals at the output of these sensors. Each sensor is
assumed to receive the contribution of an SOI corrupted by
interference and a background noise. Under these assump-
tions, the observation vector x(t) can be written as follows

x(t) = s(t)s + n(t) ∈ CN . (1)

Here, s(t) and s correspond to the complex envelope, as-
sumed zero-mean, and the steering vector, assumed perfectly
known, of the SOI respectively. The vector n(t) is the
total noise vector, containing the background noise and the
interference, and assumed to be zero-mean, potentially non-
Gaussian and non-circular, and independent of s(t).
B. Data statistics

1) Presentation: Since vector x(t) is generally non-
stationary in radiocommunications or spectrum monitoring
contexts, the statistics of x(t) which are considered in this
paper correspond to the temporal mean, in the variable t,
of the moments of x(t) up to the 6th-order. To illustrate
these moments, which will be used in Subsection IV-B, we
compute in this section the nth-order moments (1 ≤ n ≤ 6)
of a scalar signal u(t), which may correspond to the SOI
s(t), an interference or a background noise. Furthermore,
as in practice the probability distributions of u(t) are often
symmetric, for which the odd-order moments are zero,
we limit the computation to n = 2p, 1 ≤ p ≤ 3.
As E[u2p−q(t)u∗q(t)] =

(
E[uq(t)u∗(2p−q)(t))]

)∗
, the 2pth-

order moments of u(t) are completely defined from the
p + 1 moments E[uq(t)u∗(2p−q)(t)], p ≤ q ≤ 2p. We
will see in Section III that the proposed beamformers
exploit the information contained in the temporal mean <
E[uq(t)u∗(2p−q)(t)] > of the statistics E[uq(t)u∗(2p−q)(t)]
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for 0 ≤ q ≤ 2p and 1 ≤ p ≤ 3, where < . > is the
temporal mean operation, in t, over the observation duration.
In particular, πu

def
=< E|u2(t)| > is the input power of the

signal u(t) seen by the beamformer.
The real-valued FO and sixth-order (SIO) circular co-

efficient of u(t) are simply denoted by κu,c and χu,c
respectively, defined by

κu,c
def
=

<E|u4(t)| >
(<E|u2(t)|>)2

and χu,c
def
=

<E|u6(t)|>
(<E|u2(t)|>)3

. (2)

The generally complex-valued SO, FO and SIO non-circular
coefficients of u(t) are simply denoted by γu, κu,nc,i and
χu,nc,i, respectively, defined by

γu
def
=

< E[u2(t)] >

< E|u2(t)| >
, (3)

κu,nc,i
def
=

<E[u5−i(t)u∗(i−1)(t)]>

(<E|u2(t)|>)2
, i = 1, 2 (4)

χu,nc,i
def
=

<E[u7−i(t)u∗(i−1)(t)]>

(<E|u2(t)|>)3
, i = 1, 2, 3. (5)

It is easy to verify that |γu| ≤ 1. The signal u(t) is seen as
SO circular by the proposed beamformers if γu = 0. It is
seen as SO non-circular otherwise. When u(t) is real-valued
to within a phase term, it is called rectilinear and |γu| = 1.
In a similar way, it is easy to verify that |κu,nc,i| ≤ κu,c, i =
1, 2 and |χu,nc,i| ≤ χu,c, i = 1, 2, 3. The signal u(t) is seen
as FO and SIO circular if κu,nc,i = 0, i = 1, 2 and χu,nc,i =
0, i = 1, 2, 3, respectively. It is seen as FO and SIO non-
circular otherwise respectively. For a rectilinear signal u(t),
|κu,nc,i| = κu,c, i = 1, 2 and |χu,nc,i| = χu,c, i = 1, 2, 3.
Note finally that for any signal u(t), it is easy to verify that
1 ≤ κ2u,c ≤ χu,c and |κ2u,nc,i| ≤ χu,c, i = 1, 2.

2) Particular cases: To quantify and illustrate, in Sub-
section IV-B, the performance of the proposed beamformers,
we consider hereafter three particular cases of signal u(t).

In the first case, u(t) is assumed to be zero-mean station-
ary and Gaussian. It is then straightforward to prove, from
SO, FO and SIO cumulants expressions [46], that the FO
coefficients are given by

κu,c = 2 + |γu|2, κu,nc,1 = 3γ2u and κu,nc,2 = 3γu, (6)

whereas the SIO coefficients are given by

χu,c = 3(2 + 3|γu|2), (7)

χu,nc,1=15γ
3
u, χu,nc,2=15γ

2
u, χu,nc,3=3γu(4+|γu|2). (8)

Expressions (6), (7) and (8) show that for a zero-mean
stationary Gaussian signal, the FO and SIO circular co-
efficients of u(t) are increasing functions of |γu| such
that 2 ≤ κu,c ≤ 3 and 6 ≤ χu,c ≤ 15. In particular,
(κu,c, χu,c) = (2, 6) for a circular (γu = 0) Gaussian signal,
whereas (κu,c, χu,c) = (3, 15) for a rectilinear (|γu| = 1)
Gaussian signal. We deduce from this result that a zero-

mean stationary signal such that 0 ≤ κu,c < 2 or 3 < κu,c
or 0 ≤ χu,c < 6 or 15 < χu,c is necessarily non-Gaussian,
which means that κu,c and χu,c are measures of non-
Gaussianity. Moreover, expressions (6), (7) and (8) show
that for zero-mean stationary Gaussian signals, SO, FO and
SIO circularity are equivalent and, as the modulus of SO,
FO and SIO non-circular coefficients are all maximal for
rectilinear signals, full SO, FO and SIO non-circularity are
also equivalent. Finally we verify that 1 ≤ κ2u,c ≤ χu,c
whatever γu.

In the second case, u(t) corresponds to the complex
envelope of a digital linearly modulated signal, defined by:

u(t) = µeiφ
∑
n

anv(t− nT − t0). (9)

Here, the an’s are i.i.d. zero-mean random variables cor-
responding to the transmitted symbols, T is the symbol
duration, t0 is the initial sampling time, v(t) is a real-valued
pulse shaping filter, µ is a constant controlling the amplitude
of u(t) and φ is a phase term. It is easy to verify that the
SO non-circular coefficient of u(t) is given by

γu = ei2φγa, (10)
where γa is the SO non-circular coefficient of the symbol
an. Moreover, in the particular case of a filter v(t) which is
rectangular over the symbol duration T and assuming an in-
finite observation duration, it is straightforward to prove that
κu,c = κa,c, κu,nc,1 = e4iφκa,nc,1, κu,nc,2 = e2iφκa,nc,2,
χu,c = χa,c, χu,nc,1 = e6iφχa,nc,1, χu,nc,2 = e4iφχa,nc,2
and χu,nc,3 = e2iφχa,nc,3 where κa,c, κa,nc,1, κa,nc,2, χa,c,
χa,nc,1, χa,nc,2 and χa,nc,3 are the FO and SIO coefficients
of the symbol an. This results mean that, for a non-filtered
linearly modulated signal, the coefficients of u(t) and eiφan
coincide both at FO and SIO. To evaluate the non-Gaussian
and potentially non-circular nature of some constellations
used in practice, Table 1 summarizes the value of the
SO, FO and SIO coefficients of the symbol an, when the
constellation is BPSK, QPSK, 8-PSK, 4-ASK, 16-QAM,
circular Gaussian (C-Gaus) and rectilinear Gaussian (R-
Gaus) respectively.

BPSK QPSK 8-PSK 4-ASK 16-QAM C-Gaus R-Gaus
γa 1 0 0 1 0 0 1
κa,c 1 1 1 41/25 33/25 2 3

κa,nc,1 1 1 0 41/25 -17/25 0 3
κa,nc,2 1 0 0 41/25 0 0 3
χa,c 1 1 1 73/25 49/25 6 15

χa,nc,1 1 0 0 73/25 0 0 15
χa,nc,2 1 1 0 73/25 -33/25 0 15
χa,nc,3 1 0 0 73/25 0 0 15

Table 1 SO, FO and SIO coefficients of several constellations
Finally, in the third case, u(t) = r(t)eiθ(t) corresponds

to a zero-mean stationary white signal whose amplitude
is impulsive, where r(t) and θ(t) are statistically inde-
pendent stationary real-valued processes, r(t) is Bernoulli
distributed, taking amplitude µ with probability p and 0 with
probability 1 − p, and θ(t) is uniformly distributed either
on [0, 2π], or on the set of two values {θ0, θ0 + π} where
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θ0 is constant. In the first case, u(t) is nth-order circular
whatever n, whereas in the second case u(t) is rectilinear.
In both cases, we obtain :

κu,c = 1/p and χu,c = 1/p2, (11)
whereas in the second case, we obtain

κu,nc,1 = (1/p)ei4θ0 , κu,nc,2 = (1/p)ei2θ0 , (12)

χu,nc,1 = (1/p2)ei6θ0 , χu,nc,2 = (1/p2)ei4θ0 ,

χu,nc,3 = (1/p2)ei2θ0 . (13)

C. Problem formulation

1) Optimal or MMSE beamformer: It is well-known [6]
that the optimal estimate, ŝMMSE(t), of s(t), in a MS
sense, from the observation vector x(t), is the conditional
expectation of s(t) with respect to x(t), defined by

ŝMMSE(t) = E[s(t)|x(t)]. (14)

Let us consider an N × 1 spatial filter wf such that
wH
f s = 1. Applying the linearity property of the conditional

expectation (14) to s(t) = wH
f x(t)−wH

f n(t), deduced from
the model (1), we obtain:

ŝMMSE(t) = wH
f x(t)−wH

f E[n(t)|x(t)]
= s(t) + wH

f (n(t)− E[n(t)|x(t)]) . (15)

Expressions (14) and (15) show that ŝMMSE(t), and then the
optimal beamformer, depends on the probability distribution
of (s(t),x(t)) or (n(t),x(t)), and optimally exploits the
potential non-Gaussian and non-circular characters of both
the SOI s(t) and the total noise n(t). However, these
probability distributions are generally unknown in practice
and sub-optimal approaches must be considered.

2) MVDR beamformer exploiting the total noise statistics
only: The knowledge of s allows for the projection of
x(t) on s and its orthogonal space span(s)⊥, giving rise
to xs(t)

def
= (sHs)−1ssHx(t)

def
= Πsx(t) and xs⊥(t)

def
=

[I− (sHs)−1ssH ]x(t)
def
= Πs⊥x(t), respectively such that:

x(t) = xs(t) + xs⊥(t) = s(t)s + ns(t) + ns⊥(t), (16)

where ns(t)
def
= Πsn(t) and ns⊥(t)

def
= Πs⊥n(t) = xs⊥(t).

Let us now consider an estimate, ŝ(t), of s(t) from an
arbitrary function of x(t), f(x(t)). If we impose to f(x(t))
to be linear with respect to s(t) and to generate no SOI
distorsion, ŝ(t) = f(x(t)) becomes linear with respect to
xs(t) and takes the form:

ŝ(t) = wH
f xs(t)− g(xs⊥(t))

= s(t) + (sHs)−1sHn(t)− g(ns⊥(t)). (17)

The MVDR beamformer having the structure (17) is the
one which minimizes the MS error E[|(sHs)−1sHn(t) −
g(ns⊥(t))|2]. The solution to this problem is the conditional
expectation: gMVDR(ns⊥(t)) = E[(sHs)−1sHn(t)/ns⊥(t)]

and the MVDR beamformer (17) takes the form:

ŝMVDR(t) = wH
f xs(t)− (sHs)−1sHE[n(t)/ns⊥(t)]

= s(t)+(sHs)−1sH (n(t)−E[n(t)/ns⊥(t)]) . (18)

Expression (18) describes the output of the MVDR beam-
former which takes only into account the distribution of
the total noise n(t), and thus its potential non-Gaussianity
and non-circularity in particular. Choosing wf = (sHs)−1s
and comparing (18) and (15), we deduce that ŝMMSE(t)
and ŝMVDR(t) have similar forms but where E[n(t)/x(t)]
in (15), which contains information about the SOI distribu-
tion, has been replaced by E[n(t)/ns⊥(t)] in (18), which
contains no information about the SOI distribution. If n(t)
is Gaussian and circular, E[n(t)/ns⊥(t)] is a linear function
of ns⊥(t) and the MVDR beamformer (18) is a linear
function of x(t) corresponding to the Capon beamformer
[2]. If n(t) is Gaussian and non-circular, E[n(t)/ns⊥(t)]
is a WL function of ns⊥(t) and the MVDR beamformer
(18) is a WL function of x(t) corresponding to the WL
MVDR1 beamformer introduced in [9]. If n(t) is non-
Gaussian, E[n(t)/ns⊥(t)] is a non-linear function of ns⊥(t)
and the MVDR beamformer (18) is a non-linear function of
x(t) depending on the probability distribution of the total
noise, unknown in practice. For this reason, we propose to
approximate each component of E[n(t)/ns⊥(t)] by poly-
nomial functions of the components of ns⊥(t) through the
implementation of MVDR complex Volterra beamformers.

3) Complex Volterra beamformers: The general in-
put/output relation of a full M th-order complex Volterra
beamformer is defined by [28] [29]:

y(t) = w0 +

M∑
m=1

m∑
q=0

wH
m,q[x(t)

⊗(m−q) ⊗ x∗(t)⊗q], (19)

where wm,q with 0 ≤ q ≤ m and 1 ≤ m ≤M , is an Nm×1
complex filter and w0 is a scalar which generally ensures
that y(t) is zero-mean whatever the entries. (19) defines, for
w0 = 0, a WL beamformer for M = 1 and, whatever w0, a
full complex linear-quadratic beamformer [38] for M = 2.

Let us recall that E[n(t)/ns⊥(t)] is the orthogonal pro-
jection of n(t) on the space of random vectors which
are functions of ns⊥(t). Hence, the best M th-order poly-
nomial approximation of E[n(t)/ns⊥(t)] corresponds to
the orthogonal projection of n(t) on the space generated
by the components of (19) with ns⊥(t) instead of x(t).
But the term wH

m,q[ns⊥(t)
⊗(m−q) ⊗ n∗s⊥(t)

⊗q] brings in-
formation only if wH

m,q[n(t)
⊗(m−q) ⊗ n∗(t)⊗q] is corre-

lated with n(t), which requires that the (m + 1)th-order
moments E[ni1(t)...nim−q (t)n

∗
im−q+1

(t)...n∗im+1
(t)] are not

zero, where ni(t) is the component i of n(t). When the
probability distribution of n(t) is symmetric, which is often
the case in practice, the odd order moments of n(t) are zero.
Hence, only M th-order complex Volterra beamformers such
that M is odd and containing only polynomial terms of odd
order are in general interesting for MVDR beamforming.
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For this reason, we limit the analysis in the following to
third-order Volterra beamformers containing no SO terms
and we compute and analyze the properties and performance
of third-order Volterra MVDR beamformers exploiting only
the statistics of the total noise.

III. THIRD-ORDER VOLTERRA MVDR BEAMFORMERS

A. Third-order Volterra beamformers

We consider a third-order Volterra beamformer whose
output is defined by:

y(t) = wH
1,0x(t) + wH

1,1x
∗(t)

+wH
3,0[x(t)⊗x(t)⊗ x(t)]+wH

3,1[x(t)⊗x(t)⊗ x∗(t)]

+wH
3,2[x(t)⊗x∗(t)⊗ x∗(t)]+wH

3,3[x
∗(t)⊗x∗(t)⊗ x∗(t)]

def
= w̃H x̃(t). (20)

Here w1,0 and w1,1 are N × 1 spatial filters, w3,0,
w3,1, w3,2 and w3,3 are N3 × 1 spatial filters, and
x̃(t) and w̃ are (2N + 4N3) × 1 vectors corresponding
to the extended observation vector [xT (t),xH(t), [x(t) ⊗
x(t) ⊗ x(t)]T , [x(t) ⊗ x(t) ⊗ x∗(t)]T , [x(t) ⊗ x∗(t) ⊗
x∗(t)]T , [x∗(t) ⊗ x∗(t) ⊗ x∗(t)]T ]T and the extended spa-
tial filter, [wT

1,0,w
T
1,1,w

T
3,0,w

T
3,1,w

T
3,2,w

T
3,3]

T , respectively.
The first-order terms describe the output of a linear beam-
former when w1,1 = 0 and of a WL beamformer otherwise.
The third-order terms are called cubic (C) terms in the
following and the number r of N3 × 1 cubic observation
vectors, x3,q(t)

def
= [x(t)⊗(3−q) ⊗ x∗(t)⊗q], appearing in

(20) may be such that 0 ≤ r ≤ 4, depending on the
number of non-zero spatial filters w3,q , (0 ≤ q ≤ 3)
giving rise to several particular third-order beamformers.
The integer q is called the index of x3,q(t) and w3,q . In
the presence of r cubic terms (1 ≤ r ≤ 4)) having the
index qj (1 ≤ j ≤ r), (0 ≤ qj ≤ 3), the beamformer
(20) is called L-C(q1, q2, .., qr) if the first order part is
linear or WL-C(q1, q2, .., qr) if the first order part is WL.
In particular, when all the terms of (20) are considered,
the associated beamformer is called WL-C(0,1,2,3), whereas
only L-C(1) beamformers have been considered in [39].
In fact we will show in the following sections that all
the L-C(q1, q2, .., qr) and WL-C(q1, q2, .., qr) beamformers,
(0 ≤ qj ≤ 3), (1 ≤ j ≤ r ≤ 4), except the L-C(1)
beamformer, exploit some informations about the potential
HO non-circularity of the data and may be called third-order
widely non linear beamformers, as suggested in [45].

B. Third-order Volterra MVDR beamformers

Using (1) into (20), we deduce from Section II-C2 that
to build third-order Volterra MVDR beamformers exploiting
the statistics of the total noise n(t) only, it is necessary to
impose a constraint of non distortion of the SOI at the output
(20) by keeping the term proportional to s(t) and by nulling
the non-linear terms of s(t). The spatial filters of the first
order terms must then verify the following constraints:

wH
1,0s = 1 and wH

1,1s
∗ = 0, (21)

which correspond to the constraints imposed in [9] for WL
MVDR1 beamforming. However, for the spatial filters of the
cubic terms, the constraints of nulling the non-linear terms
of s(t) are not so obvious to obtain since n(t) is random.
For this reason, as s is assumed to be known, it is possible
to build an orthonormal basis (u1, ...uN−1) of the space
span(s)⊥, which means that (s,u1, ...uN−1) becomes an
orthogonal basis of CN . The vector n(t) is then a linear
combination of these vectors such that:

n(t) = ν0(t)s +

N−1∑
i=1

νi(t)ui, (22)

where νi(t) (0 ≤ i ≤ N − 1) are zero-mean a priori
correlated (but uncorrelated with s(t)) random variables.
For 0 ≤ q ≤ 3, let us now insert (1) and (22) into the
cubic term wH

3,qx3,q(t) of (20). To cancel in this term, the
non-linear terms of s(t), it is equivalent to cancel all the
terms of wH

3,qx3,q(t) excluding the terms containing the
ui’s only. For example, for q = 1, we must impose the
1 + 3(N − 1) + 3(N − 1)2 = N3 − (N − 1)3 following
constraints:

wH
3,1(s⊗ s⊗ s∗) = 0

wH
3,1(ui ⊗ s⊗ s∗) = 0, wH

3,1(s⊗ ui ⊗ s∗) = 0,

wH
3,1(s⊗ s⊗ u∗i ) = 0, 1 ≤ i ≤ N − 1

wH
3,1(ui ⊗ uj ⊗ s∗) = 0, wH

3,1(ui ⊗ s⊗ u∗j ) = 0,

wH
3,1(s⊗ ui ⊗ u∗j ) = 0, 1 ≤ i, j ≤ N − 1. (23)

If we arrange the N3−(N−1)3 constraint vectors s⊗s⊗s∗,
ui ⊗ s ⊗ s∗,...., s ⊗ ui ⊗ u∗j , 1 ≤ i, j ≤ N − 1 appearing
in (23) in a N3 × (N3 − (N − 1)3) matrix, denoted by
C1, the set of constraints (23) can be written in a compact
form given by CH

1 w3,1 = 0N3−(N−1)3 . For other values
of q (q = 0, 2, 3), the constraints are still given by (23) but
where w3,1 is replaced by w3,q and where the N3−(N−1)3
constraint vectors contain now q conjugate terms instead of
1. Again, for each value of q, if we arrange the associated
N3−(N−1)3 constraint vectors in a N3×(N3−(N−1)3)
matrix, denoted by Cq , the associated set of constraints can
be written in a compact form given by:

CH
q w3,q = 0N3−(N−1)3 , q = 0, .., 3. (24)

Let us now arrange the 2 + 4[N3 − (N − 1)3] constraint
vectors appearing in (21) and (24) in a (2N +4N3)× (2+
4[N3 − (N − 1)3]) matrix C defined by

C = Diag(s, s∗,C0,C1,C2,C3). (25)
The global set of constraints takes the form

CHw̃ = f , (26)

where f is the (2 + 4[N3 − (N − 1)3]) × 1 vector defined
by f

def
= (1,0T1+4[N3−(N−1)3])

T . Under the vector constraint
(26) and using (1), the output (20) of the third-order Volterra
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beamformers takes the form

y(t) = s(t) + wH
1,0n(t) + wH

1,1n
∗(t)

+wH
3,0[n(t)⊗n(t)⊗n(t)] + wH

3,1[n(t)⊗n(t)⊗n∗(t)]

+wH
3,2[n(t)⊗n∗(t)⊗n∗(t)]+wH

3,3[n
∗(t)⊗n∗(t)⊗n∗(t)]

def
= s(t) + w̃H ñ(t), (27)

where ñ(t) is defined as x̃(t) but with n(t) instead of x(t).
The best SO estimate (20) or (27) of the SOI s(t) exploiting
the noise statistics only, thus corresponds to the output of the
third-order Volterra beamformer w̃MVDR which minimizes
the time-averaged output power

w̃HRx̃w̃ = πs + w̃HRñw̃, (28)
under the vector constraint (26), where πs

def
=<

E|s(t)|2 >, and Rx̃
def
=< E[x̃(t)x̃H(t)] > and Rñ

def
=<

E[ñ(t)ñH(t)] > are the time-averaged correlation matrix of
x̃(t) and ñ(t), respectively:

w̃MVDR
def
= arg{ min

CHw̃=f
w̃HRx̃w̃}. (29)

Note that the minimization (29) can be efficiently numer-
ically solvable by modern solvers, but, for performance
analysis and implementation perspectives, we are interested
to closed-form expressions of solutions. However, as x̃(t)
has redundant components for N > 1, Rx̃ is singular for
N > 1 and the closed-form expressions of the solutions to
(29) are difficult to derive (see e.g., [47, sec.19.3c]). To solve
this problem, the redundancies of x̃(t) must be removed
and the constraints must be readjusted accordingly. But this
task is not easy because the positions of the redundancies
in x̃(t) and in the constraint vectors introduced in (23)
are different. But hopefully, this constrained optimization
problem can be transformed to an unconstrained one, by
using the equivalent Volterra GSC structure introduced in
the following Subsection III-C for which the redundancies
of the observations can be easily withdrawn.

When all the first and third order terms appearing in
(20) are considered, (27) shows that the third-order Volterra
MVDR beamformer exploits all the SO, FO and SIO circular
and non-circular statistics of the total noise appearing in
Rñ. However, if some terms in (20) are removed, some
statistics are no longer exploited by the associated MVDR
beamformers. For example the beamformer L-C(1) of [39]
exploits only the SO, FO and SIO circular statistics of the
total noise n(t) and thus does not exploit the potential non-
circularity of the total noise. The exploitation of the SO
non-circularity of n(t) is ensured if the first-order part of
(20) is WL. Moreover, every WL-Cubic [resp., L-Cubic]
beamformers with at least one [resp., two] third-order term
in (20), exploit at least some FO non-circular statistics of
n(t). Finally, the exploitation of the SIO non-circular statis-
tics of n(t) by a third-order MVDR beamformer requires
the presence of at least two third-order terms in (20), and
thus cannot be done without exploiting also some FO non-
circular statistics of n(t).

C. Equivalent third-order Volterra GSC structure
We show in this section that the third-order Volterra

MVDR beamformers have equivalent third-order Volterra
GSC structures. The GSC structure essentially transforms
the constrained optimization problem (29) to an uncon-
strained one. This allows us to easily remove the redun-
dancies of x̃(t) and permits both the analytical computation
of the third-order Volterra MVDR beamformers and much
simpler adaptive implementations.

Any filter w̃ may be decomposed into two components:
w̃ = w̃f − ṽ, (30)

where w̃f
def
= [wT

f ,0
T
N+4N3 ]T , such that wf is an N × 1

filter satisfying wH
f s = 1 (e.g., wf = ‖s‖−2s). Since w̃f

satisfies the constraint (26), the latter is equivalent to the
constraint:

CH ṽ = 02+4[N3−(N−1)3], (31)

which means that ṽ ∈ span(C)⊥, the space orthogonal to
the columns of C. Now consider a [2N + 4N3] × [2(N −
1)+4(N−1)3)] full column rank blocking matrix B, whose
columns span span(C)⊥. We obtain

BHC = O[2(N−1)+4(N−1)3]×[2+4(N3−(N−1)3)], (32)

and we deduce from (31) that ṽ is a linear combination of
the columns of B, which means that there exists a [2(N −
1) + 4(N − 1)3]× 1 filter w̃a, such that

ṽ = Bw̃a. (33)
Let us consider a N×(N−1) full rank matrix B1,0 verifying
BH

1,0s = 0N−1. The matrix B1,0 = [u1, ...,uN−1] is such
a solution. Using properties of the Kronecker product, it is
straightforward to verify that the following matrix:

B = Diag(B1,0,B
∗
1,0,B3,0,B3,1,B3,2,B3,3), (34)

is a full rank blocking matrix verifying (32), where B3,q =

[B
⊗(3−q)
1,0 ⊗B∗1,0

⊗q], q = 0, .., 3. In this context, the MVDR
filter (29) which satisfies the constraint (26) also corresponds
to the filter w̃ = w̃f − Bw̃a,opt, where B is defined by
(34), w̃f is such that w̃H

f x̃(t) = wH
f x(t) with wH

f s = 1
and w̃a,opt minimizes the temporal mean of the power of
y(t) = (w̃f −Bw̃a)

H x̃(t):

w̃a,opt = arg{min
w̃a

< E|(w̃f −Bw̃a)
H x̃(t)|2 >}. (35)

Denoting by z(t) the (N − 1) × 1 vector z(t)
def
=

BH
1,0x(t) = BH

1,0n(t) and using the property that

BH
3,qx3,q(t)

def
= [B

⊗(3−q)
1,0 ⊗ B∗1,0

⊗q]H [x(t)⊗(3−q) ⊗
x∗(t)⊗q] = [(BH

1,0x(t))
⊗(3−q) ⊗ (BT

1,0x
∗(t))⊗q] =

[z(t)⊗(3−q) ⊗ z∗(t)⊗q], we obtain:

BH x̃(t) = BH ñ(t) = z̃(t), (36)
where z̃(t)

def
= [zT (t), zH(t), [z(t) ⊗ z(t) ⊗ z(t)]T , [z(t) ⊗

z(t)⊗z∗(t)]T , [z(t)⊗z∗(t)⊗z∗(t)]T , [z∗(t)⊗z∗(t)⊗z∗(t)]T

and the minimization problem (35) becomes

w̃a,opt = arg{min
w̃a

< E|wH
f x(t)− w̃H

a z̃(t)|2 >}, (37)
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Nevertheless, for N > 2, the components of the
(N − 1)3 × 1 vector z3,q(t)

def
= [z(t)⊗(3−q) ⊗ z∗(t)⊗q],

q = 0, .., 3 appearing in z̃(t), which are the quantities
zi1(t), .., zi3−q (t), z

∗
i4−q

(t), .., z∗i3(t) (1 ≤ ij ≤ N−1), (1 ≤
j ≤ 3), have some redundancies. This generates a singular
time-averaged correlation matrix, Rz̃

def
=< E[z̃(t)z̃H(t)] >

of z̃(t) and this makes difficult to solve (37). The removing
of the redundancies of vectors z3,q(t) is then required to
solve easily (37). The non-redundant components of z3,q(t)
are then the quantities zi1(t), .., zi3−q (t), z

∗
i4−q

(t), .., z∗i3(t),
(1 ≤ ij ≤ N − 1), (1 ≤ j ≤ 3) such that i1 ≤ .. ≤ i3−q
and i4−q ≤ .. ≤ i3. If we call Nq , the number of non-
redundant components of z3,q(t), it is easy to prove that
N0 = N3 = (N2−1)N

6 and N1 = N2 = (N−1)2N
2 . For

each value of q, 0 ≤ q ≤ 3, if z′3,q(t) denotes the Nq × 1
non-redundant vector associated with z3,q(t), there exists a
Nq × (N − 1)3 selection matrix Kq , that selects the non-
redundant components of z3,q(t), such that

z′3,q(t) = Kqz3,q(t), q = 0, .., 3. (38)

Defining z̃′(t)
def
=[zT(t), zH(t), z

′T
3,0(t), z

′T
3,1(t), z

′T
3,2(t), z

′T
3,3(t)]

T,
the Nz × 1 non-redundant extended observation vector
associated with z̃(t), where Nz = 2(N−1)(2N2−N+3)/3,
we can write:

z̃′(t) = Kz̃(t) = KBH x̃(t) = KBH ñ(t), (39)

where K is the Nz×[2(N−1)+4(N−1)3] selection matrix
selecting the non-redundant components of z̃(t), defined by

K = Diag(IN−1, IN−1,K0,K1,K2,K3). (40)

Removing the redundancies, the optimization problem (37)
consists in finding the Nz × 1 vector w̃

′

a,opt such that

w̃
′

a,opt = arg{min
w̃′a

< E|wH
f x(t)− w̃

′H
a z̃

′
(t)|2 >}. (41)

The solution to this problem is given by
w̃
′

a,opt
def
= R−1

z̃′
Rz̃′,xwf =[KBHRx̃BKH ]−1KBHRx̃w̃f

= [KBHRñBKH ]−1KBHRñw̃f , (42)

where Rz̃′
def
=< E[z̃

′
(t)z̃

′H(t)] > and Rz̃′,x
def
=<

E[z̃
′
(t)xH(t)] >. The output y(t) of the GSC structure is

then given by:
y(t) = wH

f x(t)− w̃
′H
a,optz̃

′
(t)

= s(t) + wH
f n(t)− w̃

′H
a,optKBH x̃(t)

= s(t) + (w̃f −BKHw̃
′

a,opt)
H ñ(t). (43)

wH
f −+

x(t) yf (t)
def
= wH

f x(t) = s(t) + wH
f n(t) y(t) = ŝ(t)

BH
1,0

z(t) = BH
1,0x(t)

K w̃
′H
a,opt

z̃(t) z̃′(t)
ŷf (t)

z(t)

zq,3(t)

Fig.1 Equivalent third-order Volterra GSC structure.
The equivalent third-order Volterra GSC structure is

depicted at Fig.1. This structure is not really surprising since
it is a third-order Volterra approximation of the optimal GSC

structure described by (18). Finally, note that equivalent
third-order Volterra GSC structures can be similarly deduced
for arbitrary L-C(q1, q2, .., qr) and WL-C(q1, q2, .., qr),
r = 1, .., 4 MVDR beamformers, by defining the blocking
and selection matrices B and K defined in (34) and
(40), respectively, by Diag(B1,0,B3,q1 ,B3,q2 , ..,B3,qr )
and Diag(IN−1,Kq1 ,Kq2 , ..,Kqr ) in the first case
and by Diag(B1,0,B

∗
1,0,B3,q1 ,B3,q2 , ..,B3,qr ) and

Diag(IN−1, IN−1,Kq1 ,Kq2 , ..,Kqr ) in the second case.
Furthermore, the GSC structure associated with the Capon
and the WL-MVDR1 [9] beamformers can be deduced
from the structure of Fig.1 by keeping only the z(t) term
and the (z(t), z∗(t)) terms respectively, in z̃(t) and z̃

′
(t).

D. Output SINR

Using (42) into the orthogonal decomposition (43), it is
straightforward to compute the ratio of the time-averaged
powers of the SOI and the total noise at the output y(t) of
the third-order Volterra MVDR beamformers, referred to as
the output SINR. This output SINR is given by

SINRMVDR =
πs

wH
f [Rn−RH

ñ,nBKH(KBHRñBKH)−1KBHRñ,n]wf
,(44)

where Rñ,n
def
=< E[ñ(t)nH(t)] >. In the particular case

N = 2, z(t) is scalar-valued, z̃(t) has no redundancy, K = I
and (44) reduces to

SINRMVDR=
πs

wH
f [Rn−RH

ñ,nB(BHRñB)−1BHRñ,n]wf
.

(45)
Note that although the couple (wf ,B1,0) satisfying wH

f s =

1 and span(B1,0) = span(s)⊥, is not unique, the SINR
given by (44) and (45) does not depend on this choice.
Moreover, denoting by SINRB, the SINR at the output
of the MVDR beamformer B, the following inequalities
can be deduced from the inclusion principle applied to the
constrained minimization (29):

SINRL ≤ SINRL−C(q1,..,qr) ≤ SINRL−C(q1,..,qr,qr+1)

SINRWL ≤ SINRWL−C(q1,..,qr) ≤ SINRWL−C(q1,..,qr,qr+1)

SINRL−C(q1,..,qr) ≤ SINRWL−C(q1,..,qr) (46)

for 0 ≤ qj ≤ 3, 1 ≤ j ≤ 4, 1 ≤ r ≤ 3, where SINRL

and SINRWL, such that SINRL ≤ SINRWL correspond to
the SINR at the output of the Capon and WL MVDR1 [9]
beamformer, respectively such that

SINRL = πss
HR−1n s. (47)

IV. PERFORMANCE IN THE PRESENCE OF ONE
INTERFERENCE

In this section, we analyze the performance of several
third-order Volterra MVDR beamformers in the presence of
one non-Gaussian and potentially non-circular interference.
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A. Total noise model

We consider the observation model (1) where n(t) is
assumed to contain the contribution of one interference and
a background noise, both statistically independent of s(t).
Under these assumptions, n(t) can be written as

n(t) = j(t)j + nG(t), (48)

where j(t) and j correspond to the complex envelope, as-
sumed to be zero mean and potentially non-Gaussian and/or
non-circular, and the steering vector of the interference,
respectively, whereas nG(t) is the background noise vector,
assumed to be zero-mean, Gaussian, stationary, circular and
spatially white, such that each component has a power η2.

B. Performance of L-C(q) MVDR beamformers

In this sub-section, we analyze from (45) and the results
of Appendix explaining the way to compute (45) for the
model (48), the performance of L-C(q) MVDR beamform-
ers, q = 0, .., 3 for one arbitrary interference.

1) SINR at the output of Capon, WL MVDR1 and L-C(q)
beamformers: For one interference, the SINR (47) at the
output of the Capon’s beamformer is simply given by [9]

SINRL = εs

(
1− εj

1 + εj
α2

)
. (49)

Here, εs and εj are defined by εs
def
= ‖s‖2πs/η2 and εj

def
=

‖j‖2πj/η2 where πj
def
=<E|j2(t)|> is the input power of the

interference received by an omnidirectional antenna and α,
such that 0 ≤ α ≤ 1, is the modulus of the spatial correlation
coefficient between the interference and the SOI, defined by

α
def
= |sHj|/‖s‖‖j‖. (50)

Using these notations, it has been shown in [9] that the SINR
at the output of the WL MVDR1 beamformer is given by

SINRWL = εs
[1 + εj(1 + β2) + ε2j (1− |γj |2)β2]2 − ε2jα4|γj |2

[(1+εj)2−ε2j |γj |2][1+εj(1+β2)+ε2j (1−|γj |2)β2]
,(51)

where γj is defined by (3) with j(t) instead of u(t) and
β2 def

= 1− α2.
To compute analytically the SINR at the output of the

L-C(q) MVDR beamformers, q = 0, .., 3, for an arbitrary
interference, we assume that N = 2 for which z(t) is scalar-
valued. Based on a particular choice of (wf ,B1,0), we
deduce from (45) and the results of Appendix, after tedious
computations and for q = 0, .., 3, the following results:

SINRLC(q) = εs
(1 + εjβ

2)Aq
(1 + εj)Aq − α2β6ε4jDq

(52)

where the quantities Aq and Dq , q = 0, ..., 3 are defined by

A0 = A2
def
=

β8ε4j (χj,c−|κ2j,nc,2|)+β6ε3j (χj,c+9κj,c−6Re(γjκ∗j,nc,2))

+ 9β4ε2j (κj,c+2−|γ2j |)+24β2εj+6, (53)

A1
def
= β8ε4j (χj,c − κ2j,c) + β6ε3j (χj,c + κj,c)

+ β4ε2j (5κj,c + 2) + 8β2εj + 2, (54)

A3
def
= β8ε4j (χj,c − |κ2j,nc,1|) + β6ε3j (χj,c + 9κj,c)

+ 9β4ε2j (κj,c + 2) + 24β2εj + 6, (55)

D0
def
= |κj,nc,2−3γj |2; D1

def
= (κj,c − 2)2; (56)

D2
def
= |(κj,nc,2−γj)+2γj/(β

2εj)|2; D3
def
= |κ2j,nc,1|.(57)

Here the FO and SIO coefficients κj,c, κj,nc,1, κj,nc,2
and χj,c are defined by (2) and (4) with j(t) instead of
u(t). Defining the SINR gain with respect to the Capon
beamformer, GB

def
= SINRB/SINRL, obtained in using the

beamformer B instead of Capon beamformer, we derive
from (49), (51) and (52) and for q = 0, .., 3:

GWL =

1 +
α2β2ε2j |γj |2

(1+εjβ2)[1+εj(1+β2) + ε2j (1−|γj |2)β2]
,(58)

GLC(q) = 1 +
α2β6ε4jDq

(1+εj)Aq−α2β6ε4jDq
, (59)

Expressions (58) and (59) show that the WL and the L-
C(q), q = 0, .., 3 MVDR beamformers bring no information
with respect to the Capon beamformer (i.e., G = 1), in the
absence of interference (εj = 0) or when the steering vectors
of the SOI and interference are either orthogonal (α = 0) or
collinear (β = 0). In the first case, the Capon beamformer
completely rejects the interference whereas in the second
case, a spatial rejection is impossible. Otherwise, the SINR
and the gain in SINR G, of the considered non-linear MVDR
beamformers depend on both εj , and on the interference
to noise ratio (INR) per omnidirectional antenna (INR =
πj/η2) in particular, and the statistical properties of the
interference, and more precisely on the coefficients γj , κj,c,
κj,nc,1, κj,nc,2 and χj,c. In particular, for weak values of εj
(εj � 1), (58) and (59) show that the WL and the L-C(q),
q = 0, .., 3 MVDR beamformers improve only very weakly
the Capon beamformer since the latter is very powerful in
this case (SINRL ≈ εs), as shown by (49). Nevertheless, as
the interference becomes not too weak, the practical interest
of the L-C(q) (q = 0, .., 3) MVDR beamformers may appear,
depending on the interference scenario, as it is discussed in
the following sub-sections.

2) L-C(1) beamformer: The L-C(1) MVDR beamformer
exploits the potential non-Gaussianity of the interference
through the coefficients κj,c and χj,c. Expressions (56) and
(59) for q = 1 show that it brings no information with
respect to the Capon beamformer if κj,c = 2, which is
satisfied by a circular Gaussian interference, for which the
Capon beamformer is optimal. However, the L-C(1) MVDR
beamformer improves the Capon beamformer provided that
κj,c 6= 2, which generally occurs for a non Gaussian
interference, circular or not, but also for a non-circular
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Gaussian interference for which κj,c = 2+ |γj |2 (6). Thus,
the L-C(1) MVDR beamformer also exploits the potential
SO non-circularity of a Gaussian interference.

To simplify the analysis of the L-C(1) MVDR beam-
former performance, we assume a strong interference (εj �
1) in the following. Note that for an array with identical
antennas, εj � 1 means that INR � 1/N , which does not
necessarily require very large values of INR, depending on
the value of N . For N = 2, the strong assumption means
INR � 0.5 whereas for N = 5, it means INR � 0.2. The
meaning of ≈ depends on the beamformer and on the α
parameter in particular.

For κj,c 6= 2, assuming a strong interference (εj � 1),
(54), (56) and (59) show that if χj,c 6= κ2j,c, the L-C(1)
MVDR beamformer improves only very marginally the
Capon beamformer since GLC(1) − 1 becomes inversely
proportional to εj and thus very weak. Such a situation
occurs (see (6) and (7)) for example for a non-circular Gaus-
sian interference for which the L-C(1) MVDR beamformer
remains less powerful than the WL MVDR beamformer.
However, for a strong interference such that χj,c = κ2j,c and
β 6= 0, (52) and (59) for q = 1 become:

SINRLC(1) ≈ εs

(
1− α2(5κj,c − 4)

κj,c(κj,c+1)−α2(κj,c−2)2

)
(60)

GLC(1) ≈ 1 +
α2(κj,c − 2)2

κj,c(κj,c + 1)− α2(κj,c − 2)2
,

χj,c = κ2j,c, α 6= 1, εj � 1. (61)

Note that the condition χj,c = κ2j,c means that |j(t)| takes
at most two values corresponding to zero and a non-zero
constant value. In particular, for an interference such that
|j(t)| is constant (CPM, FSK or non-filtered PSK interfer-
ence), χj,c = κ2j,c = 1, SINRLC(1) ≈ 2εs[1 − 1/(2 − α2)]
and GLC(1) ≈ 2/(2 − α2), which shows that SINRLC(1)

decreases with α, whereas GLC(1) increases with α and is
upper-bounded by 2 as α approaches unity. Moreover, as
κj,c ≥ 1, it is straightforward to prove that SINRLC(1) and
GLC(1) given by (60) and (61), respectively, first decrease
from SINRLC(1) ≈ εs[1 − α2/(2 − α2)] and GLC(1) ≈
1+α2/(2−α2) for κj,c = 1 to SINRLC(1) ≈ εs(1−α2) and
GLC(1) ≈ 1 for κj,c = 2 and then increase to SINRLC(1) ≈
εs and GLC(1) ≈ 1 + α2/(1 − α2), for very high values
of κj,c. In this latter case, SINRLC(1) is maximum and
corresponds to the one without interference, the interference
is completely cancelled by the L-C(1) MVDR beamformer
whatever α (α 6= 1), and the gain GL-C(1) infinitely
increases with α (α 6= 1). This shows that very efficient
interference rejection and very high performance gain may
be obtained in using the L-C(1) MVDR beamformer instead
of the Capon beamformer, hence the great interest of the L-
C(1) beamformer even for N = 2. Such a situation occurs
in particular for an impulsive interference such that |j(t)|
is Bernoulli distributed. In this case, it has been shown in
(11) that χj,c = κ2j,c = 1/p2 and both the SINR (60) and

the performance gain (61) increase toward their maximum
values SINRLC(1) ≈ εs and GLC(1) ≈ 1 + α2/(1− α2), as
p decreases to zero, i.e., for very impulsive interference.

3) L-C(q), q = 0, 2 beamformers: The L-C(q), q = 0, 2
MVDR beamformers not only exploit the potential non-
Gaussiannity of the interference through the coefficients
(κj,c, χj,c) but also the potential SO and FO non-circularity
of the latter through the coefficients γj and κj,nc,2. Expres-
sions (56), (57) and (59) for q = 0, 2 show that the L-C(0)
and L-C(2) MVDR beamformers bring no information with
respect to the Capon beamformer when κj,nc,2 = 3γj and
κj,nc,2 = γj(1− 2/(β2εj)) respectively. This occurs in par-
ticular for a SO circular interference such that κj,nc,2 = 0.
Such an interference may correspond to a circular, a 2k-PSK
(k > 1) or a square 4M2-QAM interference. Moreover, for a
non-circular Gaussian interference, for which κj,nc,2 = 3γj
(6), the L-C(0) MVDR beamformer improves no more the
Capon beamformer contrary to the L-C(2) MVDR beam-
former which may improve the latter. Nevertheless the L-
C(0) and L-C(2) MVDR beamformers generally improve
the Capon beamformer when κj,nc,2 6= 3γj and κj,nc,2 6=
γj(1 − 2/(β2εj)) respectively. This requires a SO non-
circular interference which is not Gaussian in the first case
but which may be Gaussian in the second case. In these
cases, assuming a strong interference, (53), (56), (57) and
(59) show that if χj,c 6= |κj,nc,2|2, the L-C(0) and L-
C(2) MVDR beamformers improve only very marginally the
Capon beamformer. Such a situation occurs for example for
a strong non-circular Gaussian interference. However, for a
strong interference such that χj,c = |κj,nc,2|2 and β 6= 0,
(52) and (59) for q = 0, 2 become:

SINRLC(0)≈ εs(
1−

9α2(κj,c − |γ2j |)
|κj,nc,2|2+9κj,c−6Re(γjκ∗j,nc,2)−α2|κj,nc,2−3γj |2

)
(62)

SINRLC(2)≈ εs(
1−

α2(9κj,c − |γ2j | − 4Re(γjκ
∗
j,nc,2))

|κj,nc,2|2+9κj,c−6Re(γjκ∗j,nc,2)−α2|κj,nc,2−γj |2

)
(63)

GLC(0) ≈

1+
α2|κj,nc,2 − 3γj |2

|κj,nc,2|2+9κj,c−6Re(γjκ∗j,nc,2)−α2|κj,nc,2−3γj |2
(64)

GLC(2) ≈

1 +
α2|κj,nc,2 − γj |2

|κj,nc,2|2+9κj,c−6Re(γjκ∗j,nc,2)−α2|κj,nc,2−γj |2
,

χj,c= |κj,nc,2|2, α 6=1, εj�1. (65)

The condition χj,c = |κj,nc,2|2 means that j2(t) takes at
most two values corresponding to zero and a non-zero con-
stant value, and consequently j(t) is necessarily rectilinear.
In particular, for an interference such that j2(t) is constant
(ex: non-filtered BPSK interference), χj,c = |κj,nc,2|2 = 1,
and we obtain:
SINRLC(0)≈εs, SINRLC(2)≈εs(1−α2), GLC(2)≈1, (66)
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GLC(0)≈1+
α2

1−α2
; χj,c= |κj,nc,2|2=1, α 6=1, εj�1. (67)

whereas (51) and (58) become

SINRWL≈ ε
(
1− α2

2−α2

)
(68)

GWL≈ 1+
α2

2−α2
, |γj |=1, α 6=1, εj�1. (69)

In this case, (66) shows that the L-C(2) MVDR beamformer
does not improve the Capon beamformer whereas (66)-(69)
show that the L-C(0) MVDR beamformer outperforms both
the Capon and the WL MVDR beamformer by completely
canceling the interference whatever α (α 6= 1) and the
gain GLC(0) infinitely increases with α (α 6= 1). Such
very high performance are also obtained at the output
of both the L-C(0) and the L-C(2) MVDR beamformers
when the rectilinear interference is very impulsive, such
that |j(t)| is Bernoulli distributed with a very small value
of p. In this case, SINRLC(0) ≈ SINRLC(2) ≈ εs and
GLC(0) ≈ GLC(2) ≈ 1 + α2/(1 − α2), proving the great
interest of these linear-Cubic beamformers.

4) L-C(3) beamformer: The L-C(3) MVDR beamformer
exploits the potential non-Gaussiannity of the interference
through the coefficients (κj,c, χj,c) and the potential FO
non-circularity of the latter through the coefficients κj,nc,1.
We deduce from (55), (57) and (59) for q = 3, that the L-
C(3) MVDR beamformer brings no information with respect
to the Capon beamformer when κj,nc,1 = 0. This occurs
in particular for a FO circular interference such as, for
example, a 2k-PSK (k > 2) interference. Nevertheless the
L-C(3) MVDR beamformer generally improves the Capon
beamformer when κj,nc,1 6= 0. This is in particular the case
for a non-circular Gaussian interference, for a rectilinear
interference (BPSK, M -ASK, impulsive) but also for par-
ticular SO circular non-Gaussian interference such as QPSK
or 16-QAM interference. In this case, assuming a strong
interference, (55), (57) and (59) for q = 3 show that if
χj,c 6= |κj,nc,1|2, the L-C(3) beamformer improves only
very marginally the Capon beamformer. Such a situation
occurs for example for a strong non-circular Gaussian inter-
ference or for M -ASK or 16-QAM interference. However,
for a strong interference such that χj,c = |κj,nc,1|2 and
α 6= 1, (52) and (59) for q = 3 become:

SINRLC(3) ≈ εs

(
1− 9α2κj,c

9κj,c+(1−α2)|κj,nc,1|2

)
(70)

GLC(3) ≈ 1 +
α2|κj,nc,1|2

9κj,c + (1− α2)|κj,nc,1|2
,

χj,c = |κj,nc,1|2, α 6= 1, εj � 1.(71)

The condition χj,c = |κj,nc,1|2 means that j4(t) takes at
most two values corresponding to zero and a non-zero con-
stant value. In particular, for an interference such that j4(t)
is constant (ex: non-filtered BPSK or QPSK interference),
χj,c = |κj,nc,1|2 = 1, and we obtain:

SINRLC(3) ≈ εs
(
1− 9α2

10− α2

)
(72)

GLC(3)≈1+
α2

10−α2
;χj,c=|κj,nc,1|2=1, α 6=1, εj�1, (73)

which proves that the L-C(3) MVDR beamformer improves
slightly the Capon beamformer and remains less powerful
than the WL beamformer for a rectilinear interference.
Finally, for a very impulsive rectilinear interference such
that |j(t)| is Bernoulli distributed with a very small value of
p, SINRLC(3) ≈ εs and GLC(3) ≈ 1+α2/(1−α2), proving
the great interest of the L-C(3) MVDR beamformer in this
case.

C. Performance of WL-C(q) and L-C(q1, q2) MVDR beam-
formers
We consider in this Subsection, WL-C(q1) and L-C(q1, q2)
MVDR beamformers, q1, q2 = 0, .., 3 and we analyze their
performance in the presence of a single interference, i.e.,
from the total noise model (48). Using symbolic math
toolboxes, it is possible to prove that GWL−C(q1)/GWL and
GL−C(q1,q2) follow the rational fraction form:

G(εj) = 1 +
α2β6ε4j (aP−4ε

P−4
j + ...+ a1εj + a0)

bP εPj + ...+ b1εj + b0
. (74)

Here, P = 9 and P = 11 for GWL−C(q1)/GWL and
GL−C(q1,q2), respectively, whereas the coefficients ai and
bi are very intricate expressions, functions of α, β and the
total noise statistics appearing in Rñ. Again, GL−C(q1,q2) =
GWL−C(q1)/GWL = GWL = 1 if α = 0, β = 0 or
εj = 0. Moreover, we have verified that GL−C(q1,q2) = 1
and GWL−C(q1)/GWL = 1 for a circular and an arbitrary
Gaussian interference, respectively, which is consistent with
the optimality of the L and WL MVDR beamformers
respectively in such situations. Otherwise, we have proved
in particular, from (74) and the results of Section IV-B, that
for a strong non-filtered BPSK interference:

GWL−C(0) ≈ GWL−C(1) ≈ GWL−C(3) ≈ GL−C(0,1)

≈ GL−C(0,2) ≈ GL−C(0,3) ≈ GL−C(1,3)

≈ GL−C(0) ≈ 1+
α2

1−α2
> GWL ≈ GL−C(1)

≈ 1+
α2

2−α2
> GL−C(3) > GL−C(2) ≈ 1, (75)

whereas for a strong non-filtered QPSK interference:

GL−C(1,3) ≈ 1 +
α2

1− α2
> GL−C(1) ≈ 1 +

α2

2− α2

> GL−C(3)>GWL=GL−C(0)=GL−C(2)=1. (76)

This result shows in particular that in this latter case,
SINRL−C(1,3) ≈ εs which proves the quasi-optimality
(among the beamformers which use the total noise statistics
only) of the L-C(1,3) MVDR beamformer for a strong non-
filtered QPSK interference. Finally, let us note that in all
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cases, the WL-C(0,1,2,3) MVDR beamformer reaches at
least the performance of the best WL-C(q1) and L-C(q1, q2)
MVDR beamformer and is thus quasi-optimal not only for
strong non-filtered BPSK and QPSK interference but also
for very impulsive interference, circular or not.

D. Performance illustrations
In order to illustrate the results of Sections IV-B and IV-C,
we consider a two-element array with unit gain sensors
and we assume that the SOI has a signal to noise ratio
(SNR), πs/η2, equal to 10dB. This SOI is assumed to be
corrupted by a single interference whose INR, πj/η2, is
equal to 30dB. Under these assumptions, Fig.2 displays, for
a non-filtered BPSK interference, the variations of SINRB

at the output of the B MVDR beamformers as a function
of α, for B = L, WL, L-C(q), q = 0, .., 3, L-C(1,3), WL-
C(0), WL-C(0,1), WL-C(0,1,3) and WL-C(0,1,2,3). Note
that this figure confirms the results (75), i.e., the equiva-
lent performance of the L-C(0), WL-C(0) and L-C(1, 3)
MVDR beamformers and the better performance of the L-
C(0) MVDR beamformer with respect to the WL MVDR
beamformer, itself better than the L-C(1), L-C(3) and L-
C(2) MVDR beamformers, the latter being equivalent to
the Capon beamformer. Moreover, Fig. 2 shows the very
weak information brought by the WL-C(0,1), WL-C(0,1,3)
and WL-C(0,1,2,3) MVDR beamformers with respect to the
L-C(0) or L-C(1,3) MVDR beamformers which are quasi-
optimal.
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Fig.2 SINRB as a function of α, non-filtered BPSK interference.

Under the assumptions of Fig.2, Fig.3 displays the same
variations as Fig.2, but for a non-filtered QPSK interference
and for B = L, L-C(q), q = 1, 3 and L-C(1,3). Again, this fig-
ure confirms the results (76), i.e., the better performance of
the L-C(1,3) MVDR beamformer with respect to the L-C(1)
MVDR beamformer, itself better than the L-C(3) MVDR
beamformer, itself better than the Capon beamformer.

Under the assumptions of Fig.2, Fig.4 displays the varia-
tions of GB at the output of the B MVDR beamformers
as a function of α, but for an impulsive circular inter-
ference, such that |j(t)| follows a Bernoulli distribution
with p = 0.001. For this figure, B = L-C(1), L-C(1,3)
and L-C(0,1,2,3). The value p = 0.001 gives the high

value κj,c = 1000 (11) and thus this figure confirms
that in this case GLC(1) ≈ 1 + α2/(1 − α2) is quasi-
optimal. As a consequence, the beamformers L-C(1,3) and
L-C(0,1,2,3) bring no further gains with respect to L-C(1).
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Fig.3 SINRB as a function of α, non-filtered QPSK interference.
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Fig.4 GB as a function of α, circular Bernoulli impulsive interference.
To show the interest of the proposed beamformers for

moderate values of the INR, Fig.5 shows, for N = 2, a
BPSK interference and several values of the modulus α
of the spatial correlation coefficient between the SOI and
interference, the variations, as a function of the input INR
of the interference, of the SINR gain with respect to Capon
beamformer, at the output of the WL-C(0) beamformer.
To complete these results, Fig. 6 shows similar variations
but for a QPSK interference and at the output of the L-
C(1,3) beamformer. Note that these performance gains are
independent of the SNR and are thus valid for arbitrary
values of the SNR, weak or strong, as shown by expressions
((49), (51), (52) to (59), (74)). In other words, a given
value of INR may be associated with a small, moderate
or high value of the ratio INR/SNR. These figures show
that the gain at the output of the proposed beamformers
increases with the INR whatever the value of α. However,
this gain in performance may remain relatively high even
for moderate INR. For example, for α = 0.9, Fig.5 and
Fig.6 indicate that a SINR gain of 5, 4, 3, 2dB may be
obtained for INR = 21, 17, 14, 11dB and 21.5, 18.5, 16.5,
14dB, respectively for BPSK and QPSK interference, which
correspond to classical values of INR for numerous appli-
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cations as explained hereafter. This shows that substantial
gains in performance with respect to Capon beamformer
may also be obtained for moderate values of the INR, hence
the practical interest of the proposed beamformers even
for moderate values of the INR. Note that for an array
of N = 5 antennas, similar gains would be obtained but
for still lower values of the INR, as explained previously.
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Fig.5 Gain of the WL-C(0) beamformer as a function of INR
for a BPSK interference.
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Fig.6 Gain of the L-C(1,3) beamformer as a function of INR
for a QPSK interference.

Note finally that in practice, both the INR and the nature
of the interference may change, depending on the applica-
tion. In particular, for military communications (HF, tactical,
naval, airborne..), the interference may correspond to hostile
jammers with arbitrary waveforms and power levels. In such
situations, the INR may vary from a few dB to a few tens
of dB, depending on the power, the bandwidth and the
distance of the jammer with respect to the SOI. For spectrum
monitoring of HF and VUHF links, the probability to receive
several sources, and/or several propagation paths of a given
source, increases with the receiver bandwidth. Depending on
parameters such as the transmitted power, the propagation
channel, the bandwidth or the distance to the receiver of
the received sources, the latter may be received over a very
large power range, of a few tens of dB. For such situations
both the SNR and the INR may vary between a few dB
to several tens of dB. Strong dynamic ranges may also be
encountered for metrology, or interference analysis, of the

downlink of cellular networks, where the received signals
correspond to signals emitted by different base station using
the same frequency.

V. ADAPTIVE IMPLEMENTATION

As for the Capon beamformer, several adaptive imple-
mentations may be developed from the GSC structure of the
third-order Volterra MVDR beamformers. We propose here
to use an extension of the sample matrix inversion (SMI)
algorithm [48] to implement (42). It consists to estimate the
Rx̃ matrix from the K observation snapshots x̃(kTe), where
Te is the sample period, by the empirical estimate given by

R̂x̃ =
1

K

K∑
k=1

x̃(kTe)x̃
H(kTe) (77)

and then to compute an estimate, ̂̃w′a,opt, of w̃′a,opt, given
by: ̂̃

w′a,opt = [KBHR̂x̃BKH ]−1KBHR̂x̃w̃f . (78)

For sufficiently oversampled and cycloergodic observations,̂̃
w′a,opt asymptotically converges towards w̃′a,opt.

The theoretical analysis of the third-order Volterra SMI
algorithm is beyond the scope of this paper and we simply
illustrate its convergence through Monte-Carlo experiments.
For this purpose, we consider again the total noise model
(48) with N = 2 and we assume that α = 0.95. The SOI and
interference have the same waveform and are such that SNR
= 10dB, INR = 30dB and φsi = π/4. The SINR at the output
of a third-order Volterra beamformer implemented by the
SMI algorithm from K independent observation snapshots
is defined by:

SINR(K)=
πs

(w̃f−B
̂̃
w′a,opt)HRx̃(w̃f−B

̂̃
w′a,opt)−πs

(79)

Under these assumptions, Fig.7 shows, for a non-filtered
QPSK SOI and a non-filtered BPSK interference, the vari-
ations, as a function of K, of the estimated mean value
of SINR(K), Ê(SINR(K)), computed over 1000 runs, at
the output of several beamformers proposed in the paper
or borrowed from the literature and corresponding to the
Capon, MDDR [43], WL-MVDR [9], WL-MMSE [13],
WL-MDDR [44], L-C(0), L-C(1,3) and WL-C(0) beam-
formers. Fig.7 shows that for the considered scenario, the
MDDR beamformer is not faster than the Capon beam-
former, while the WL MDDR beamformer is slightly faster
than the WL MVDR beamformer but not faster than the
WL MMSE beamformer. Nevertheless, we verify that the
steady state performance of the WL MDDR beamformer
are upper-bounded by the performance of the theoretical WL
MMSE beamformer, itself a bit higher than the performance
of the theoretical WL MVDR beamformer for the considered
scenario, itself better than the theoretical Capon beamformer
since the interference is rectilinear. However, we note that
the WL-C(0), L-C(1,3) and L-C(0) beamformers are much
better than the WL MVDR beamformer for K ≥ 12 and
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much better than the WL MDDR beamformer for K ≥ 8,
with a convergence speed decreasing as the number, Ni,
of entries increases, hence the great interest of the proposed
third-order beamformers with respect to the WL MDDR one
in particular.
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Fig.7 Ê(SINR(K)) as a function of K for a non-filtered QPSK SOI
and a non-filtered BPSK interference

VI. COMPLEXITY ELEMENTS

Due to a lack of place, we only give some complexity ele-
ments of the proposed third-order MVDR beamformers for a
per-block strategy of adaptation, assuming the observations
are stationary over the block. In such a case, the beamform-
ers are estimated only one time per block of K observation
snapshots, which generates a complexity of O(N9/K) to
generate one output sample. Moreover, for a given third-
order MVDR beamformer, to ensure the invertibility of the
correlation matrix estimate of the input vector, z̃′(t), of the
adaptive part of its associated GSC structure, K must be
greater than or equal to the size, Ni, of z̃′(t). This means
that K must be necessarily at least equal to O(N3), which
remains relatively low for small-scale systems (1 ≤ N ≤ 5).
This constraint generates, whatever the possible values of
K, third-order beamformer complexities necessarily lower
than O(N6), which remains very acceptable for small-scale
systems. In practice, K is often chosen as a multiple of
Ni, i.e., K = pNi, where p is an integer such that p ≥ 1.
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Fig.8 Complexity of several first-order and third-order beamformers
as a function of N , p = 20

Under these assumptions, Fig.8 shows, for p = 20, the
variations, as a function of N , of the number of complex

operations (cops) required to generate one output sample of
several first and third-order beamformers. We note that for
small-scale systems, the number of cops required by most of
the third-order beamformers to generate one output sample
does not exceed 1000, which remains very acceptable,
hence the interest of the proposed beamformers also from a
complexity point of view.

VII. CONCLUSION

A family of third-order Volterra MVDR beamformers,
containing L-cubic and WL-cubic MVDR beamformers,
have been presented and analyzed in this paper, for the
reception of an unknown SOI, whose waveform is unknown
but whose steering vector in known, corrupted by potentially
non-Gaussian and/or non-circular interference. These beam-
formers correspond to third-order extensions of the Capon
or WL-MVDR1 beamformers, allowing us to take into
account the potential non-Gaussiannity and non-circularity
of interference up to the SIO. These new beamformers
are mainly developed for small-scale systems, having low
spatial resolution, and for which the Capon beamformer may
have limited performance in the presence of interference.
Such systems are omnipresent for both civilian and military
applications borrowed from radiocommunications, metrol-
ogy or spectrum monitoring of the latter and for which the
dynamic range of interference may reach a few tens of dB.
These beamformers do not require any a priori information
about the interference and turn out to be particularly well-
suited for spectrum monitoring in circular or non-circular
non-Gaussian contexts. Each of these beamformers has an
equivalent GSC structure, allowing, for small-scale systems,
its simple adaptive implementation with a very acceptable
complexity from the extended block SMI algorithm. An
analytical performance analysis of some L-cubic and WL-
cubic MVDR beamformers in the presence of one interfer-
ence has been presented for N = 2 antennas. It allows us
to specify how these beamformers outperform the Capon
and the WL MVDR1 beamformers for circular and non-
circular non-Gaussian interference respectively, depending
on both the interference INR and the SO, FO and SIO
interference statistics. This analysis enlightens the great
interest of the proposed beamformers which outperform, in
most situations, most of the beamformers of the literature
such as the MDDR or WL MDDR beamformers. Further
works about the proposed third-order MVDR beamformers
may concern the behavior of the latter in the presence of
multiple interference.

APPENDIX

Proof of (52)
For arbitrary steering vectors s = (1, eiωs)T and j =

(1, eiωj )T with ωs, ωj ∈ [−π,+π], it is straightforward to
prove that α = | cos

(
ωj−ωs

2

)
| and the choice wf = s

2 and
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u1 =
ieiφsign(ωs−ωj)√

2
(ei(ωj−ωs)/2,−ei(ωj+ωs)/2))T give the

simplified model:

yf (t)
def
= wH

f x(t) = s(t)+
1√
2
(αj′(t)+n1(t)) (80)

z(t)
def
= uH1 x(t) = βj′(t) + n2(t), (81)

with β =
def
=
√
1− α2 and j′(t)

def
=
√
2 j(t)e−iφ (where

sH j
2 = αeiφ) and where n1(t) and n2(t) are independent

zero-mean circular Gaussian distributed with variance η2.
By the orthogonal projection theorem, <E|y2f (t)|>=<

E|ŷ2f (t)|> + <E|y2(t)|> and thus the SINR at the output
of the GSC structure is given by:

SINRL−C(q) =
<E|s2(t)|>

<E|y2(t)| > − <E|s2(t)|>

=
<E|s2(t)|>

<E|y2f (t)|>−<E|ŷ2f (t)|>−<E|s2(t)|>

=
πs

α2πj +
η2
2 − <E|ŷ

2
f (t)|>

. (82)

To compute <E|ŷ2f (t)|>, we use a Gram-Schmidt orthonor-
malization of the couple (z(t), z3,q(t)), which gives the unit
variance uncorrelated random variables:

v1(t) =
z(t)

<E|z2(t)|>
and

v2(t)=
z3,q(t)−

(
<E(z∗(t)z3,q(t))>

<E|z2(t)|>

)
z(t)√

<E

(∣∣∣z3,q(t)−(<E(z∗(t)z3,q(t))>
<E|z2(t)|>

)
z(t)

∣∣∣2>) . (83)

In this new basis, the output of the optimal linear filtering
of z̃(t) = (z(t), z3,q(t))

T is given by:

ŷf (t) =<E [v∗1(t)yf (t)]> v1(t)+ <E [v∗2(t)yf (t)]> v2(t),
(84)

which gives <E|ŷ2f (t)|>= | <E [v∗1(t)yf (t)]> |2 + | <
E [v∗2(t)yf (t)]> |2. Noting that for the Capon beamformer
ŷf (t) =<E [v∗1(t)yf (t)]> v1(t) implying <E|ŷ2f (t)|>= |<
E [v∗1(t)yf (t)]> |2, the SINR at its output is given by

SINRL =
πs

α2πj +
η2
2 − |<E [v∗1(t)yf (t)]> |2

. (85)

Consequently, comparing the expressions of SINRL−C(q)

and SINRL given in (82) and (85), we deduce that the gain
GL−C(q) in SINR with respect to the Capon beamformer
satisfies the relation:

G−1L−C(q) = 1− SINRL

πs
|<E [v∗2(t)yf (t)]> |2 ≤ 1. (86)

Replacing respectively, v2(t) by (83) where z(t) is given by
(81), and yf (t) by (80), the values of |<E [v∗2(t)yf (t)]> |2
are deduced for q = 0, 1, 2, 3 after cumbersome algebra
derivations and thus (59) is derived from (86). Then using
(49), the general expression (52) is proved.
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