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Algorithms for triple-word arithmetic
Nicolas Fabiano and Jean-Michel Muller

Abstract—Triple-word arithmetic consists in representing high-precision numbers as the unevaluated sum of three floating-point numbers.
We introduce and analyze various algorithms for manipulating triple-word numbers. Our new algorithms are faster than what one would
obtain by just using the usual floating-point expansion algorithms in the special case of expansions of length 3, for a comparable accuracy.

F

1 INTRODUCTION AND NOTATION

Numerical computations sometimes require a precision
significantly higher than the one offered by the basic
floating-point formats. This occurs for instance when eval-
uating transcendental functions with correct rounding: it
is almost impossible to guarantee last-bit accuracy in the
final result if all intermediate calculations are done in
the target precision. For instance, the CRLibm library [3]
of correctly rounded elementary functions uses “double-
double” or “triple-double” [12], [13] operations in the last
steps of the evaluation of approximating polynomials.

Double-word and Triple-word arithmetics consist in
representing a real number as the unevaluated sum of
two and three floating-point numbers, respectively. They
are frequently called “double double” and “triple double”,
because in practice the underlying format being used is
the binary64/double precision format of the IEEE 754
Standard on Floating-Point Arithmetic [6], [17].

Double-word arithmetic had been useful for imple-
menting BLAS [15]. Bailey, Barrio and Borwein [1] give
several timely examples in mathematical physics and
dynamics where higher precisions are needed.

A generalization of these arithmetics is the notion of
floating-point expansion [21], [23], [9], where a high-
precision number is represented as the sum of 𝑛 floating-
point numbers.

Arbitrary precision libraries such as GNU-MPFR [5]
have the advantage of being versatile, but may involve
a significant penalty in terms of speed and memory
consumption if one only requires computations accurate
within around 150 bits in a few critical parts of a
numerical program.

Algorithms for double word arithmetic have been
presented in [14], [8]. The purpose of this paper is to
introduce and analyze efficient algorithms for performing
the arithmetic operations in triple word arithmetic. Our
goal is to obtain algorithms that are faster to the ones we
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could obtain simply by using floating-point expansion
algorithms in the particular case 𝑛 = 3, for a comparable
accuracy.

In the following, we assume a radix-2, precision-𝑝
floating-point (FP) arithmetic system, with unlimited
exponent range and correct rounding. As a consequence,
our results will apply to “real-world” binary floating-
point arithmetic, such as the one specified by the IEEE
754-2008 Standard provided that underflow and overflow
do not occur. We also assume the availability of an
FMA (fused multiply-add) instruction. Such an instruction
evaluates expressions of the form 𝑎𝑏+ 𝑐 with one final
rounding only.

The notation 𝑎
⃒⃒
𝑏 means “𝑎 divides 𝑏”. The notation

RN(𝑡) stands for 𝑡 rounded to the nearest FP number,
ties-to-even, and RU(𝑡) (resp. RD(𝑡)) stands for 𝑡 rounded
towards +∞ (resp. −∞). If 𝑥 ̸= 0 is a real number, then
we define three functions ufp(𝑥), ulp(𝑥), and uls(𝑥) as
follows:

∙ ufp(𝑥) = 2⌊log2 |𝑥|⌋;
∙ ulp(𝑥) = ufp(𝑥) · 2−𝑝+1;
∙ uls(𝑥) is the largest power of 2 that divides 𝑥.

When 𝑥 is a FP number, ufp(𝑥) is the weight of its most
significant bit, ulp(𝑥) is the weight of its least significant
bit, and uls(𝑥) is the weight of its rightmost nonzero bit.

The number 𝑢 = 2−𝑝 = 1
2ulp(1) denotes the roundoff

error unit. When an arithmetic operation 𝑎∇𝑏 is per-
formed, where 𝑎 and 𝑏 are FP numbers, what is effectively
computed is RN(𝑎∇𝑏), and if 𝑡 is a real number and
𝑇 = RN(𝑡), then

|𝑡− 𝑇 | ≤ 𝑢

1 + 𝑢
· |𝑡| ≤ 𝑢 · |𝑡| and |𝑡− 𝑇 | ≤ 𝑢 · |𝑇 |,

and more precisely

|𝑡− 𝑇 | ≤ 1

2
ulp(𝑡) ≤ 1

2
ulp(𝑇 ).

The algorithms presented in this paper (as well as
the usual algorithms that manipulate double words or
general expansions) use as basic blocks Algorithms 1, 2,
and 3 below.
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Algorithm 1 – Fast2Sum(𝑎, 𝑏). (3 operations) [4].
Require: ∃ integers 𝑘𝑎 ≥ 𝑘𝑏,𝑀𝑎,𝑀𝑏 (with |𝑀𝑎|, |𝑀𝑏| ≤
2𝑝 − 1), s.t. 𝑎 = 𝑀𝑎 · 2𝑘𝑎 and 𝑏 = 𝑀𝑏 · 2𝑘𝑏 .

Ensure: (𝑠, 𝑒) = 𝑎+ 𝑏
𝑠← RN(𝑎+ 𝑏)
𝑧 ← RN(𝑠− 𝑎)
𝑒← RN(𝑏− 𝑧)

If there exist integers 𝑘𝑎 ≥ 𝑘𝑏,𝑀𝑎,𝑀𝑏 (with
|𝑀𝑎|, |𝑀𝑏| ≤ 2𝑝 − 1), s.t. 𝑎 = 𝑀𝑎 · 2𝑘𝑎 and 𝑏 = 𝑀𝑏 · 2𝑘𝑏

(which holds if |𝑎| ≥ |𝑏|) then values 𝑠 and 𝑒 computed
by Algorithm 1 satisfy 𝑠+ 𝑒 = 𝑎+ 𝑏. Hence, 𝑒 is the error
of the FP addition 𝑠← RN(𝑎+ 𝑏).

Algorithm 2 – 2Sum(𝑎, 𝑏). (6 operations) [16], [11].
Ensure: (𝑠, 𝑒) = 𝑎+ 𝑏

𝑠← RN(𝑎+ 𝑏)
𝑎′ ← RN(𝑠− 𝑏)
𝑏′ ← RN(𝑠− 𝑎′)
𝛿𝑎 ← RN(𝑎− 𝑎′)
𝛿𝑏 ← RN(𝑏− 𝑏′)
𝑒← RN(𝛿𝑎 + 𝛿𝑏)

Algorithm 2 requires twice as many operations as
Algorithm 1, but its output variables always satisfy
𝑠+ 𝑒 = 𝑎+ 𝑏: no knowedge of the respective magnitudes
of |𝑎| and |𝑏| is needed.

Algorithm 3 – 2Prod(𝑎, 𝑏). (2 operations) [10], [18], [17])
Ensure: (𝜋, 𝑒) = 𝑎 · 𝑏
𝜋 ← RN(𝑎 · 𝑏)
𝑒← RN(𝑎 · 𝑏− 𝜋) (FMA)

The values 𝜋 and 𝑒 computed by Algorithm 3 satisfy
𝜋 + 𝑒 = 𝑎𝑏. Algorithm 3 uses an FMA instruction (for
computing RN(𝑎 · 𝑏− 𝜋)).

Sometimes, we know in advance the value of 𝑠 of 𝜋. In
that case, 𝑒 can be computed saving the first operation,
with algorithms denoted by for instance 2Sum2(𝑠)(𝑥, 𝑦).

When one defines a number as the unevaluated sum
of two, three or more FP numbers, one has to explain
to which extent they can “overlap”: after all the sum of
the three double-precision/binary64 numbers 1, 2, and
4 is just a three-bit number, expressing it as the sum of
three FP numbers does not make it more precise. Several
definitions appear in the literature. The first needed in
this paper is Priest’s definition:

Definition 1. The sequence (𝑥𝑖) is P-nonoverlapping (with
Priest’s definition [22]) when ∀𝑖, |𝑥𝑖+1| < ulp(𝑥𝑖).

We also introduce the following definition, more re-
strictive than Shewchuk’s definition [23]:

Definition 2. The sequence (𝑥𝑖) is F-nonoverlapping (with
Fabiano’s definition) when ∀𝑖, |𝑥𝑖+1| ≤ 1

2uls(𝑥𝑖).

Definition 3. For any definition of nonoverlapping, a sequence
is said nonoverlapping wIZ (with possible interleaving zeros)
when we have a set 𝐼0 such that ∀𝑖 ∈ 𝐼0, 𝑥𝑖 = 0, and (𝑥𝑖)𝑖/∈𝐼0

nonoverlapping.

We can now formally define the double word and triple
word numbers:

Definition 4. We call Double Word number (DW) a pair
(𝑥0, 𝑥1) of FP numbers such that 𝑥0 = RN(𝑥0 + 𝑥1).

Definition 5. We call Triple Word number (TW) a triplet
(𝑥0, 𝑥1, 𝑥2) of FP numbers that is P-nonoverlapping.

The usual definition of general expansions [20] is based
on ulp-nonoverlapping (∀𝑖, |𝑥𝑖+1| ≤ ulp(𝑥𝑖)), which is
slightly less restritive than the one we chose for TW.
Therefore algorithms proven for general expansions may
not be correct for TW.

The rest of the paper is organized as follows. Section
2 presents some other basic blocks that will be used in
the rest of the paper, and some origninal results related
to them. Section 3 proves that the classical algorithm to
turn a arbitrary sequence into an expansion works for
TW. Section 4 presents an algorithm to correctly round a
TW, and proves it correctness. Section 5 does the same as
section 3 for the sum of two TW. Section 6 presents two
versions of an original algorithm for the product of two
TW, and proves their correctness and tight error bounds.
Sections 7 to 10 provide a similar analysis, in the case of
the product of a DW by a TW, the reciprocal of a TW,
the quotient of two TW, and the square root of a TW,
respectively. Section 11 compares our results to the ones
known for general 𝑛-word expansions, with 𝑛 = 3.

2 OTHER BASIC BLOCKS

The Algorithms on TW presented in this paper use as
basic blocks the 2Sum, Fast2Sum and 2Prod algorithms
presented in the previous section, as well as the following,
less classical, VecSum and VecSumErrBranch algorithms.
Properties of these algorithms have been proven else-
where [21], [19], [2], but in this paper, we will need
specific properties, proven below.

2.1 VecSum
The VecSum algorithm first appears as a part of Priest’s
normalization algorithm [21]. The name “VecSum” was
coined by Ogita et al [19]. The aim of this algorithm is
to turn a sequence that is “slightly” nonoverlapping into
one that is “more” nonoverlapping, with no error.

Algorithm 4 – VecSum(𝑥0, . . . , 𝑥𝑛−1). (6𝑛−6 operations)
Ensure: 𝑒0 + · · ·+ 𝑒𝑛−1 = 𝑥0 + · · ·+ 𝑥𝑛−1

𝑠𝑛−1 ← 𝑥𝑛−1

for 𝑖 = 𝑛− 2 to 0 do
𝑠𝑖, 𝑒𝑖+1 ← 2Sum(𝑥𝑖, 𝑠𝑖+1)

end for
𝑒0 ← 𝑠0



3

There are several theorems related to this algorithm,
that use different definitions of nonoverlapping. In what
follows, we will use the following original result:

Theorem 1. Assume, after removing possible interleaving
zeros, that we can write in a non-necessarily canonical way
𝑥𝑖 = 𝑀𝑖2

𝑘𝑖−𝑝+1, |𝑀𝑖| < 2𝑝, such that ∀𝑖 ≤ 𝑛 − 2, 𝑘𝑖−1 ≥
𝑘𝑖 + 1, and 𝑘𝑛−2 ≥ 𝑘𝑛−1. Then VecSum(𝑥0, . . . , 𝑥𝑛−1) is
F-nonoverlapping wIZ with the same sum.

In this case, Fast2Sum can be used instead of 2Sum, so that
VecSum only costs 3𝑛− 3 operations.

Proof: Interleaving zeros in the input simply give
some interleaving zeros in the output without changing
the non-zero terms, so that we can suppose that we have
removed them.

Firstly, ∀𝑖, |𝑠𝑖| ≤ (2− 2𝑢)2𝑘𝑖−1 .
Indeed, if by induction |𝑠𝑖+1| ≤ (2−2𝑢)2𝑘𝑖 , given |𝑥𝑖| ≤

(2−2𝑢)2𝑘𝑖 we get |𝑠𝑖+1|+|𝑥𝑖| ≤ (4−4𝑢)2𝑘𝑖 ≤ (2−2𝑢)2𝑘𝑖−1

so |𝑠𝑖| ≤ (2− 2𝑢)2𝑘𝑖−1 .
This gives |𝑒𝑖| ≤ 2𝑢2𝑘𝑖−1 , and justifies Fast2Sum being

used.

We suppose that |𝑒𝑖| > 1
2uls(𝑒𝑖′) with 𝑖′ < 𝑖. We

also suppose WLOG that uls(𝑒𝑖′) = 𝑢. We easily get
by induction that for all 𝑖, if 2𝑘

⃒⃒
𝑠𝑖, 𝑥𝑖−1, . . . , 𝑥0, then

2𝑘
⃒⃒
𝑒𝑖, . . . , 𝑒0. Yet |𝑒𝑖| ≤ 1

2ulp(𝑠𝑖−1) so |𝑠𝑖−1| ≥ 1 so 𝑠𝑖−1 is
a multiple of 2𝑢. Given we want a 𝑒𝑖′ non-multiple of
2𝑢, that must be the case for one of the 𝑥𝑗 , 𝑗 ≤ 𝑖− 2. In
particular, we have 2𝑘𝑗 ≤ 1

2 so by isotony 2𝑘𝑖−2 ≤ 1
2 so

2𝑘𝑖−1 ≤ 1
4 , which contradicts |𝑒𝑖| ≤ 2𝑢2𝑘𝑖−1 .

The conditions on the input of this theorem are
complex, so we will use the following corollary:

Corollary 2. Assume that we have 𝐼 ⊂ [[1, 𝑛− 2]] with no 2
consecutive indices such that

∀𝑖 ∈ [[0, 𝑛− 2]], 𝑖 /∈ 𝐼,ufp(𝑥𝑖+1) ≤
1

2
ufp(𝑥𝑖)

∀𝑖 ∈ 𝐼,ufp(𝑥𝑖+1) ≤ 2𝑝−2uls(𝑥𝑖)∧ufp(𝑥𝑖+1) ≤
1

4
ufp(𝑥𝑖−1)

Then VecSum(𝑥0, . . . , 𝑥𝑛−1) is F-nonoverlapping with the
same sum. In this case, Fast2Sum can be used, so that it only
costs 3𝑛− 3 operations.

Proof: For 𝑖 /∈ 𝐼 , we take 𝑘𝑖 = 𝑒𝑥𝑖
the canonical

exponent, and for 𝑖 ∈ 𝐼 , we take 𝑘𝑖 = max(𝑘𝑖+1 + 1, 𝑒𝑥𝑖
).

This is possible because: 2𝑘𝑖+1−𝑝+2
⃒⃒
𝑥𝑖 and 2𝑒𝑥𝑖

−𝑝+1
⃒⃒
𝑥𝑖,

which imply 2𝑘𝑖−𝑝+1
⃒⃒
𝑥𝑖, and |𝑥𝑖| ≤ 2 · 2𝑒𝑥𝑖 , which imply

|𝑥𝑖| ≤ 2 · 2𝑘𝑖 .

For 𝑖, 𝑖 + 1 /∈ 𝐼 , we have 𝑘𝑖+1 ≤ 𝑘𝑖 − 1. For 𝑖 ∈ 𝐼 , we
have on one hand 𝑘𝑖+1 ≤ 𝑘𝑖 − 1, and on the other hand
𝑒𝑥𝑖 ≤ 𝑘𝑖−1 − 1 and 𝑘𝑖+1 ≤ 𝑘𝑖−1 − 2 so 𝑘𝑖 ≤ 𝑘𝑖−1 − 1.

2.2 VecSumErrBranch

Algorithm 5 below is similar to the previous one, but
sums are computed starting from the larger terms, and
some branching helps avoiding to return too many zero
terms

Algorithm 5 – VSEB(𝑒0, . . . , 𝑒𝑛−1). (6𝑛− 6 operations &
𝑛− 2 tests)
Ensure: 𝑦0 + · · ·+ 𝑦𝑛−1 = 𝑒0 + · · ·+ 𝑒𝑛−1

𝑗 ← 0
𝜖0 ← 𝑒0
for 𝑖 = 0 to 𝑛− 3 do
𝑟𝑖, 𝜖𝑖+1 ← 2Sum(𝜖𝑖 + 𝑒𝑖+1)
if 𝜖𝑖+1 ̸= 0 then

𝑦𝑗 ← 𝑟𝑖
incr 𝑗

else
𝜖𝑖+1 ← 𝑟𝑖

end if
end for
𝑦𝑗 , 𝑦𝑗+1 ← 2Sum(𝜖𝑛−2 + 𝑒𝑛−1)
𝑦𝑗+2, . . . , 𝑦𝑛−1 ← 0

We prove the following property, of Algorithm 5, that
will be useful later on.

Theorem 3. If (𝑒𝑖) is F-nonoverlapping wIZ, then
VSEB(𝑥0, . . . , 𝑥𝑛−1) is P-nonoverlapping with the same sum,
provided that 𝑝 ≥ 𝑛− 1. In this case, Fast2Sum can be used,
so that it only costs 3𝑛− 3 operations.

Proof: Again, interleaving zeros in the input can be
ignored without changing anything, so we suppose that
we have removed them. We write 𝑒𝑖 = 𝑀𝑖 · 2𝑘𝑖 with
|𝑀𝑖| < 2𝑝 odd so that |𝑒𝑖+1| ≤ 1

22
𝑘𝑖 . By an easy induction,

for all 𝑖, 𝑟𝑖−1 and 𝜖𝑖 are multiples of 2𝑘𝑖 .
⋆ Let 𝑖0 be such that |𝜖𝑖0 | = 2𝑘𝑖0 . Let us show

by induction that for all 𝑖0 ≤ 𝑖 ≤ 𝑛 − 2, we have
|𝑟𝑖| ≤ 2𝑘𝑖0 (2− 2𝑖0−𝑖−1).

- We can initialize with 𝑖 = 𝑖0 − 1, because what is
transmitted to next step (playing the role of 𝑟𝑖0−1) is 𝜖𝑖0 ,
which exactly satisfies the condition.

- We suppose that |𝑟𝑖−1| ≤ 2𝑘𝑖0 (2− 2𝑖0−𝑖).
We have |𝑒𝑖+1| ≤ 1

22
𝑘𝑖 ≤ 1

42
𝑘𝑖−1 ≤ · · · ≤ 2𝑖0−𝑖−12𝑘𝑖0 .

Thus |𝑟𝑖−1|+ |𝑒𝑖+1| ≤ 2𝑘𝑖0 (2− 2𝑖0−𝑖−1), and this is a FP
number because 𝑖0 ≥ 1 and 𝑖 ≤ 𝑛 − 2 give 𝑖0 − 𝑖 − 1 ≥
−𝑛 + 2 ≥ −𝑝 + 1, so that |𝑟𝑖| ≤ 2𝑘𝑖0 (2 − 2𝑖0−𝑖−1). This
gives the result by induction.

In particular, with 𝑗 such that 𝑦𝑗 = 𝑟𝑖0−1, we have
ulp(𝑦𝑗) ≥ 2|𝜖𝑖0 | = 2 · 2𝑘𝑖0 so |𝑦𝑗+1| < ulp(𝑦𝑗).



4

⋆ For 𝑖0 such that |𝜖𝑖0 | > 2𝑘𝑖0 , we similarly get that
for all 𝑖 ≥ 𝑖0 such that 𝜖𝑖0+1, . . . , 𝜖𝑖 = 0, we have |𝑟𝑖| ≤
|𝜖𝑖0 |+ 2𝑘𝑖0 .

Indeed, the same proof replacing 2𝑘𝑖0 (2−· · · ) by |𝜖𝑖0 |+
2𝑘𝑖0 (1− · · · ) works, except that the equality case can be
reached in case of errors. In this case, this is sufficient
given ulp(𝑦𝑗) ≥ 2|𝜖𝑖0 | > |𝜖𝑖0 |+ 2𝑘𝑖0 ≥ 𝑦𝑗+1.

⋆ Finally, we can use Fast2Sum. Indeed, we have
2𝑘𝑖

⃒⃒
𝑒0, . . . , 𝑒𝑖 so 2𝑘𝑖

⃒⃒
𝜖𝑖, and |𝑒𝑖+1| ≤ 2𝑘𝑖 .

Usually, we do not want to keep the complete output,
but only a fixed number of terms. The resulting algorithm
is denoted by VSEB(𝑘)(𝑒0, . . . , 𝑒𝑛−1).

It costs as many operations, but the number of tests
depends on how this is performed in practice. In what
follows, we will assume in our complexity analysis
that everything is unrolled (which is reasonable because
typically 𝑛 = 4), so that only the 𝑛− 2 tests are required.

Theorem 4. If the total output would be P-nonoverlapping,
then the relative error caused by keeping only the first 𝑘 terms
is bounded by 2𝑢𝑘 − 4.2𝑢𝑘+1, provided that 𝑝 ≥ 6.

Proof: We have by P-nonoverlapping:

ufp(𝑦𝑘) ≤ 𝑢ufp(𝑦𝑘−1) ≤ · · · ≤ 𝑢𝑘ufp(𝑦0)

|𝑦𝑘|+ · · ·+ |𝑦𝑛−1| ≤ (2− 2𝑢)(𝑢𝑘 + 𝑢𝑘+1 + · · ·+ 𝑢𝑛)ufp(𝑦0)

|𝑦𝑘 + · · ·+ 𝑦𝑛−1| ≤ 2𝑢𝑘ufp(𝑦0)

|𝑦0+ · · ·+𝑦𝑛−1| ≥ |𝑦0|−|𝑦1+ · · ·+𝑦𝑛−1| ≥ (1−2𝑢)ufp(𝑦0)

|𝑦𝑘 + · · ·+ 𝑦𝑛−1| ≤
2𝑢𝑘

1− 2𝑢
|𝑦0 + · · ·+ 𝑦𝑛−1|

Thus the relative error is bounded by 2𝑢𝑘 + 4.2𝑢𝑘+1,
provided that 𝑝 ≥ 5.

2.3 Composed algorithm

Algorithms VecSum and VSEB were designed to be
composed. In that case, we note that the first 2Sum in
VSEB can be skipped because (𝑒0, 𝑒1) is already a DW.
When Fast2Sum can be used everywhere, we get a total
of 6𝑛− 9 operations and 𝑛− 2 tests.

3 ARBITRARY THREE FP NUMBERS TO TW
Before manipulating Triple-Word numbers, we want to
be able to turn any unevaluated sum of three FP numbers
into a TW, with no error (this is the equivalent of the
2Sum algorithm for 3 FP numbers). We can use Algorithm

6, which can be found in [20, page 87] for general
expansions:

Algorithm 6 – ToTW(𝑎, 𝑏, 𝑐). (21 operations & 1 test)
Ensure: 𝑟 TW and 𝑟 = 𝑎+ 𝑏+ 𝑐

𝑑0, 𝑑1 ← 2Sum(𝑎, 𝑏)
𝑒0, 𝑒1, 𝑒2 ← VecSum(𝑑0, 𝑑1, 𝑐)
𝑟0, 𝑟1, 𝑟2 ← VSEB(𝑒0, 𝑒1, 𝑒2)

We have,

Theorem 5. If 𝑎, 𝑏, 𝑐 are FP numbers, then 𝑡𝑜𝑇𝑊 (𝑎, 𝑏, 𝑐) is
a TW, provided that 𝑝 ≥ 4.

Proof: If (𝑒0, 𝑒1, 𝑒2) is F-nonoverlapping, then Theo-
rem 3 concludes.

First, |𝑒1| ≤ 1
2ulp(𝑒0) gives (𝑒0, 𝑒1) F-nonoverlapping.

We denote 𝑠 := RN(𝑑1 + 𝑧) the intermediate value in
VecSum(𝑑0, 𝑑1, 𝑐).

∙ If 𝑒1 ̸= 0, we suppose WLOG that uls(𝑒1) = 𝑢, and
𝑒2 > 1

2𝑢. Then |𝑒2| ≤ 1
2ulp(𝑠) gives 𝑠 ≥ 1 so 2𝑢

⃒⃒
𝑠 but

𝑒1 is not divisible by 2𝑢 so 𝑑0 neither, hence 𝑑0 < 1,
so |𝑑1| ≤ 1

2ulp(𝑑0) ≤ 1
2𝑢.

Furthermore, |𝑐+ 𝑑1| ≥ 1+ 1
2𝑢. Thus |𝑐| ≥ (1+ 1

2𝑢)−
1
2𝑢 = 1 so ulp(𝑐) ≥ 2𝑢 > 2|𝑑1| so 𝑠 = 𝑐 and 𝑒2 = 𝑑1,
which is impossible since |𝑒2| > 1

2𝑢 ≥ |𝑑1|.
So (𝑒1, 𝑒2) is F-nonoverlapping too.

∙ If 𝑒1 = 0, then the same reasoning works with 𝑒0
instead of 𝑒1.

Another typical way of forming a TW consists in using
any of the following algorithms, but with inputs that are
DW instead of TW (with an implicit third term equal to
zero, and simplifications obtained by removing useless
operations).

4 ROUNDING OF TW TO FP NUMBER
Once our calculations are done, we may want to obtain
the FP number closest to our TW result. This is for
instance the case when we are using TW numbers
in intermediate calculations for implementing correctly
rounded elementary functions. This can be done using
Algorithm 7.

Algorithm 7 – RoundTW(𝑥0, 𝑥1, 𝑥2). (3 operations & 4
tests)
Require: �̄� TW
Ensure: 𝑦 = RN(�̄�)

if RN(𝑥0 + 2𝑥1) inexact operation or (⋆) RN(−( 32𝑢 −
2𝑢2) · 𝑥0) ̸= 𝑥1 then

𝑦 ← RN(𝑥0 + 𝑥1)
else if 𝑥2 > 0 then
𝑦 ← RU(𝑥0 + 𝑥1)

else if 𝑥2 < 0 then
𝑦 ← RD(𝑥0 + 𝑥1)

else
𝑦 ← RN(𝑥0 + 𝑥1)

end if
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Remark 1. Depending on the underlying architecture, the
fact that the operation 𝑥0 + 2𝑥1 is exact can be detected by
checking a flag, but if this is too expensive to do, we can
instead start computing Fast2Sum(𝑥0, 2𝑥1) and test whether
𝑧 = 𝑦 to know if 𝑒 is zero. This costs 2 more operations.

Remark 2. Instead of testing 𝑥2 > 0 (resp. 𝑥2 < 0), it may
be better to test something like 𝑥2 > 64𝑢|𝑥1| (resp. 𝑥2 <
−64𝑢|𝑥1|) and to raise a warning if none of them is true,
because it means that we are in the “grey zone” of rounding
errors.

Theorem 6. If �̄� is a TW, then 𝐹𝑟𝑜𝑚𝑇𝑊 (�̄�) = RN(�̄�),
provided that 𝑝 ≥ 4.

Proof: First, if 𝑥0+𝑥1 is a FP number, then 𝑦 = 𝑥0+𝑥1

anyway, and it is easy to check that 𝑥0+𝑥1 = RN(�̄�). We
suppose for the rest of the proof that this is not the case.

Given |𝑥1| < ulp(𝑥0), the first condition is false iff
𝑥0 + 𝑥1 is halfway between two adjacent FP numbers, or
in a special case that can WLOG be reduced to 𝑥0 = 1+2𝑢
and 𝑥1 = − 3

2𝑢. When that first condition is false, the
condition (⋆) is designed to be true in the special case,
but false elsewise (because of the magnitude of |𝑥1|).

- If 𝑥0+𝑥1 is halfway between two adjacent FP numbers,
then the rounding is decided by the sign of 𝑥2.

- Otherwise, one easily checks that RN(𝑥0+𝑥1+𝑥2) =
RN(𝑥0 + 𝑥1), given |𝑥2| < ulp(𝑥1).

Remark 3. When we implement correctly rounded elementary
functions, we may know that when TW are needed, this is
because the final value �̄� is close to the midpoint of two adjacent
FP numbers, so that Condition (⋆) can be skipped. This saves
1 operation and 1 test.

5 SUM

To compute the sum of two TW, we simply use the
composition of VecSum and VSEB after a preliminary
sort of the input. This gives Algorithm 8 below. That
algorithm would of course also work to compute the sum
of a DW and a TW, or of two DW, with same correctness
theorem and same error bound but with less operations
and tests.

Algorithm 8 – 3Sum(𝑥0, 𝑥1, 𝑥2, 𝑦0, 𝑦1, 𝑦2). (42 operations
& 8 tests)
Require: �̄� and 𝑦 TW
Ensure: 𝑟 TW and

⃒⃒⃒
𝑟−(�̄�+𝑦)

�̄�+𝑦

⃒⃒⃒
≤ 2𝑢3 + 4.2𝑢4

𝑧0, . . . , 𝑧5 ←𝑀𝑒𝑟𝑔𝑒((𝑥0, 𝑥1, 𝑥2), (𝑦0, 𝑦1, 𝑦2))
𝑒0, . . . , 𝑒5 ← VecSum(𝑧0, . . . , 𝑧5)
𝑟0, 𝑟1, 𝑟2 ← VSEB(3)(𝑒0, . . . , 𝑒5)

5.1 Correctness of Algorithm 8

We have,

Theorem 7. Let 𝑥0, . . . , 𝑥5 be FP numbers such that

∀𝑖, |𝑥𝑖+1| ≤ |𝑥𝑖| and ∀𝑖, |𝑥𝑖+2| < ulp(𝑥𝑖).

Then VSEB (VecSum(𝑥0, . . . , 𝑥5)) is P-nonoverlapping, pro-
vided that 𝑝 ≥ 4.

Remark 4. This theorem may not hold for more than 6 floating-
point inputs. Indeed, for 7 inputs, we can consider

(𝑥𝑖) = 1−𝑢,−1+2𝑢,−𝑢+𝑢2, 𝑢−𝑢2, 𝑢2−𝑢3, 𝑢2−𝑢3, 𝑢3−𝑢4

which gives (𝑒𝑖) = 𝑢, 𝑢2, 𝑢2,−𝑢3,−𝑢4, and finally

(𝑦𝑖) = 𝑢, 2𝑢2,−𝑢3,−𝑢4

with 2𝑢2 = ulp(𝑢).
This is why it is reasonable to use the notion of P-

nonoverlapping for TW only, but not for general expansions,
for which Algorithm 8 preserves ulp-nonoverlapping only [20,
page 90].

Sketch of the proof: For space constraints, the proof
is not detailed. The main steps are:

∙ prove by induction that |𝑠𝑖| ≤ 2ufp(𝑥𝑖−1) and |𝑠𝑖| ≤
4ufp(𝑥𝑖);

∙ if 𝑒𝑖 > 1
2uls(𝑒𝑗) for some 𝑗 < 𝑖, deduce some

conditions on 𝑖 and the nearby terms in various
cases;

∙ conclude with a case study: 𝑖 ≤ 3 and 𝑒𝑖 >
1
2uls(𝑒𝑗);

𝑖 ≥ 4 and 𝑒𝑖 >
1
2uls(𝑒𝑗); or 0 < 𝑒𝑖 ≤ 1

2uls(𝑒𝑗).

5.2 Number of operations
In the 𝑀𝑒𝑟𝑔𝑒, if the last two numbers to sort are 𝑥2 and
𝑦2, there is no need to do it because they play symmetrical
roles in 2Sum. Thus this part costs only 4 tests. In VecSum,
there are for each block examples where Fast2Sum cannot
be used, so it costs 30 operations. One easily checks that
Fast2Sum can be used in VSEB, so it costs 12 operations
and 4 tests.

6 PRODUCT OF TWO TW
To compute the product of two TW, we simply distribute
the sub-products and aggregate the terms ensuring P-
nonoverlapping, with an error as small as possible. The
algorithms presented below guarantee commutativity,
even if it is rarely useful in practice.

Algorithm 9 – 3Prod𝑎𝑐𝑐
3,3 (𝑥0, 𝑥1, 𝑥2, 𝑦0, 𝑦1, 𝑦2). (46 opera-

tions & 2 tests)
Require: �̄� and 𝑦 TW ; 𝑝 ≥ 6

Ensure: 𝑟 TW and
⃒⃒⃒
𝑟−�̄�𝑦
�̄�𝑦

⃒⃒⃒
≤ 28𝑢3 + 107𝑢4

𝑧+00, 𝑧
−
00 ← 2Prod(𝑥0, 𝑦0)

𝑧+01, 𝑧
−
01 ← 2Prod(𝑥0, 𝑦1)

𝑧+10, 𝑧
−
10 ← 2Prod(𝑥1, 𝑦0)

𝑏0, 𝑏1, 𝑏2 ← VecSum(𝑧−00, 𝑧
+
01, 𝑧

+
10)

𝑐← RN(𝑏2 + 𝑥1𝑦1) (FMA)
𝑧3,1 ← RN(𝑧−10 + 𝑥0𝑦2) (FMA)
𝑧3,2 ← RN(𝑧−01 + 𝑥2𝑦0) (FMA)
𝑧3 ← RN(𝑧3,1 + 𝑧3,2)
𝑒0, 𝑒1, 𝑒2, 𝑒3, 𝑒4 ← VecSum(𝑧+00, 𝑏0, 𝑏1, 𝑐, 𝑧3)
𝑟0 ← 𝑒0
𝑟1, 𝑟2 ← VSEB(2)(𝑒1, 𝑒2, 𝑒3, 𝑒4)
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6.1 Estimates of the different terms
We suppose WLOG that 1 ≤ 𝑥0, 𝑦0 < 2, so that |𝑥1|, |𝑦1| <
2𝑢 and |𝑥2|, |𝑦2| < 2𝑢2. Then, we have:

1 ≤ |𝑧+00| < 4
|𝑧−00| ≤ 2𝑢 ; uls(𝑧−00) ≥ 4𝑢2

|𝑧+01|, |𝑧
+
10| < 4𝑢 |𝑏2| ≤ 4𝑢2

|𝑥1𝑦1| < 4𝑢2 − 4𝑢3 |𝑐| < 8𝑢2

|𝑧−01|, |𝑧
−
10| ≤ 2𝑢2 |𝑥0𝑦2|, |𝑥2𝑦0| < 4𝑢2

|𝑧3,1|, |𝑧3,2| ≤ 6𝑢2 |𝑧3| ≤ 12𝑢2

|𝑠3| ≤ 20𝑢2

6.2 Correctness of Algorithm 9
We have,

Theorem 8. If �̄�, 𝑦 are TW, then 3𝑃𝑟𝑜𝑑𝑎𝑐𝑐3,3 (�̄�, 𝑦) is a TW,
provided that 𝑝 ≥ 6.

Lemma 9. For all FP numbers 𝑥, 𝑦, 1
2ulp(𝑥)

⃒⃒
RN(𝑥+ 𝑦).

Proof of the lemma: If ufp(𝑦) ≥ 1
2ufp(𝑥), then

1
2ulp(𝑥)

⃒⃒
𝑥+ 𝑦 so 1

2ulp(𝑥)
⃒⃒
RN(𝑥+ 𝑦).

If ufp(𝑦) ≤ 1
4ufp(𝑥), then |𝑦| < 1

2 |𝑥| so |𝑥+𝑦| ≥ 1
2ufp(𝑥)

so 1
2ulp(𝑥)

⃒⃒
RN(𝑥+ 𝑦).

Proof of the theorem:
⋆ First, let us prove that the last 2 lines are equivalent

to computing 𝑟0, 𝑟1, 𝑟2 = VSEB(3)(𝑒0, 𝑒1, 𝑒2, 𝑒3, 𝑒4)
∙ If 𝑒1 ̸= 0, then the fact that 𝑒0 = RN(𝑒0 + 𝑒1)

concludes immediately.
∙ If 𝑒1 = 0, one easily checks that |𝑠1|, |𝑠2|, |𝑠3| < 16𝑢 ≤

1
2ufp(𝑧+00) so that the next nonzero |𝑒𝑖| is strictly less
than 1

2ulp(𝑒0), which concludes.

⋆ Then, let us prove that, with this equivalent version,
(𝑟0, 𝑟1, 𝑟2) is P-nonoverlapping.

We denote 𝑎 := RN(𝑧+01 + 𝑧+10) and 𝑠3 := RN(𝑐 + 𝑧3)
intermediate sums in VecSum.

We want to show that VecSum(𝑧+00, 𝑏0, 𝑏1, 𝑠3) is F-
nonovelapping, with 𝑒4 F-nonovelapping them too.

Thanks to Theorem 3, this would give (𝑟0, 𝑟1, 𝑟2) P-
nonoverlapping.

- First, let us show that (𝑧+00, 𝑏0, 𝑏1, 𝑠3) satisfies the
conditions of Theorem 2.

First, we always have ufp(𝑧+00) ≥ 1 much larger than
four times any other number computed ; and in case on
they are non-zero ufp(𝑏1) ≤ 1

2ulp(𝑏0) < 1
2ufp(𝑏0).

For the rest of the sequence, we suppose WLOG that
|𝑥1| ≥ |𝑦1|.

On one hand, we easily obtain |𝑠3| ≤ 10ulp(𝑥1).
On the other hand lemma 9 gives 1

2ulp(𝑥1)
⃒⃒
𝑎 with

1
2ulp(𝑥1) ≤ 𝑢2 < uls(𝑧−00) so 1

2ulp(𝑥1)
⃒⃒
𝑏0, 𝑏1.

∙ Case 𝑠3 = 0: we use 𝐼 = ∅. (nothing more to show)
∙ Case 𝑠3 ̸= 0 and 𝑏0 = 0 (so 𝑏1 = 0): we use 𝐼 = ∅.

(idem)
∙ Case 𝑠3 ̸= 0, 𝑏0 ̸= 0 and 𝑏1 = 0: we use 𝐼 = {1}.

Indeed, we have ufp(𝑠3) ≤ 1
4ufp(𝑧+00), and ufp(𝑠3) ≤

2𝑝−2uls(𝑏0). (using 𝑝 ≥ 6)
∙ Case 𝑠3 ̸= 0, 𝑏0 ̸= 0 and 𝑏1 ̸= 0: we use 𝐼 = {2}.

Indeed, we have ufp(𝑠3) ≤ 16ufp(𝑏1) ≤ 1
4ufp(𝑏0)

and ufp(𝑠3) ≤ 2𝑝−2uls(𝑏1). (using 𝑝 ≥ 6)

It also allows us to call Fast2Sum instead of the three
2Sum in this part of the algorithm.

- Then, let us show that 𝑒4 is F-nonoverlapping with
the other 𝑒𝑖.

Firstly, ulp(𝑠3) ≥ 2|𝑒4|. Secondly, we have seen that
uls(𝑏0),uls(𝑏1) ≥ 1

2ulp(𝑥1) ≥ 1
20 |𝑠3| ≥ ulp(𝑠3). (using

𝑝 ≥ 6). Thirdly, ulp(𝑧+00) ≥ 2𝑢 > ulp(𝑠3).
Thus 𝑒0, 𝑒1 and 𝑒2 are divisible by ulp(𝑠3) ≥ 2|𝑒4|.

6.3 Number of operations

Before the last 3 lines, we count 22 operations. There are
3 Fast2Sum in VecSum(𝑧+00, 𝑏0, 𝑏1, 𝑐, 𝑧3), so that it costs 15
operations. Finally, the call to VSEB costs 9 operations
and 2 tests. Thus the total is 46 operations and 2 tests.

Remark 5. The optimization that directly uses 𝑒0 = 𝑟0 does
not save any operation, but it saves the first branching, which
is very interesting.

6.4 Bound on the error

Theorem 10. If �̄�, 𝑦 are TW, then the relative error committed
by 3𝑃𝑟𝑜𝑑𝑎𝑐𝑐3,3 (�̄�, 𝑦) is bounded by 28𝑢3+107𝑢4, provided that
𝑝 ≥ 6.

Proof: There are three sources of error: the terms that
are ignored, the roundings in the computation of 𝑧3 and
𝑐 and the terms not kept in VSEB. A naive analysis gives:

|𝜖0| := |𝑥1𝑦2 + 𝑥2𝑦1 + 𝑥2𝑦2|
≤ 2(2𝑢− 2𝑢2)(2𝑢2 − 2𝑢3) + (2𝑢2 − 2𝑢3)2

≤ 8𝑢3 − 11.9𝑢4

|𝜖1| := |(𝑧−10 + 𝑥0𝑦2)− 𝑧3,1|
≤ 𝑢ufp(𝑧−10 + 𝑥0𝑦2)
≤ 𝑢ufp(2𝑢2 + 4𝑢2)
≤ 4𝑢3

|𝜖2| := |(𝑧−01 + 𝑥2𝑦0)− 𝑧3,2|
≤ 4𝑢3

|𝜖3| := |(𝑧3,1 + 𝑧3,2)− 𝑧3|
≤ 8𝑢3

|𝜖4| := |(𝑏2 + 𝑥1𝑦1)− 𝑐|
≤ 4𝑢3

|𝜖5| := |(𝑧+00 + 𝑏0 + 𝑏1 + 𝑐+ 𝑧3)− (𝑟0 + 𝑟1 + 𝑟2)|
≤ (2𝑢3 + 4.2𝑢4)|𝑧+00 + 𝑏0 + 𝑏1 + 𝑐+ 𝑧3|

Yet, �̄�, 𝑦 ≥ 1 − (2𝑢 − 2𝑢2) − (2𝑢2 − 2𝑢3) ≥ 1 − 2𝑢 so
�̄�𝑦 ≥ 1− 4𝑢. We eventually obtain that the error cannot
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be too large if 𝜖5 ̸= 0 (not detailed here, but similar to
the proof of Theorem 11), and finally:⃒⃒⃒

𝑟−�̄�𝑦
�̄�𝑦

⃒⃒⃒
≤ 28𝑢3−11.9𝑢4

1−4𝑢

≤ 28𝑢3 + 107𝑢4

This bound is very tight. Indeed, for instance for
binary64, if we take:

𝑥0, 𝑥1, 𝑥2 = 1 + (13 · 226 + 28)𝑢, 2𝑢− 227𝑢2, 2𝑢2 − 4𝑢3

𝑦0, 𝑦1, 𝑦2 = 1 + 7 · 227𝑢, 2𝑢− (228 − 8)𝑢2, 2𝑢2 − 4𝑢3

we obtain a relative error around (28− 10−5)𝑢3.

6.5 Faster version

In this version, 𝑒4 is not computed.

Algorithm 10 – 3Prod𝑓𝑎𝑠𝑡
3,3 (𝑥0, 𝑥1, 𝑥2, 𝑦0, 𝑦1, 𝑦2). (38 oper-

ations & 1 test)
Require: �̄� and 𝑦 TW ; 𝑝 ≥ 6

Ensure: 𝑟 TW and
⃒⃒⃒
𝑟−�̄�𝑦
�̄�𝑦

⃒⃒⃒
≤ 44𝑢3 + 176𝑢4

[same 5 first lines as 9]
𝑧3,1 ← RN(𝑧−10 + 𝑥0𝑦2) (FMA)
𝑧3,2 ← RN(𝑧−01 + 𝑥2𝑦0) (FMA)
𝑧3 ← RN(𝑧3,1 + 𝑧3,2)
𝑠3 ← RN(𝑐+ 𝑧3)
𝑒0, 𝑒1, 𝑒2, 𝑒3 ← VecSum(𝑧+00, 𝑏0, 𝑏1, 𝑠3)
𝑟0 ← 𝑒0
𝑟1, 𝑟2 ← VSEB(2)(𝑒1, 𝑒2, 𝑒3)

This saves 8 operations and 1 test. Correctness is still
ensured for the same reasons, provided that 𝑝 ≥ 6.
Concerning the error bound, the proof is similar (in fact,
simpler) than for the previous algorithm, so we omit it,
and we obtain ⃒⃒⃒

𝑟−�̄�𝑦
�̄�𝑦

⃒⃒⃒
≤ 44𝑢3−11.9𝑢4

1−4𝑢

≤ 44𝑢3 + 176𝑢4

This bound is very tight, because the same input as
for the previous version gives a relative error around
(44− 10−5)𝑢3.

7 PRODUCT OF A DW WITH A TW

To compute the product of a DW with a TW, we use
the same algorithms as previously, slightly simplified
using 𝑥2 = 0. Additionally to being interesting in itself,
this operation will be used to compute reciprocals and
quotients, which justifies a detailed analysis.

Algorithm 11 – 3Prod𝑎𝑐𝑐
2,3 (𝑥0, 𝑥1, 𝑦0, 𝑦1, 𝑦2). (45 operations

& 2 tests)
Require: �̄� DW and 𝑦 TW ; 𝑝 ≥ 6

Ensure: 𝑟 TW and
⃒⃒⃒
𝑟−�̄�𝑦
�̄�𝑦

⃒⃒⃒
≤ 10.5𝑢3 + 39𝑢4

[same 5 first lines as 9]
𝑧3,1 ← RN(𝑧−10 + 𝑥0𝑦2) (FMA)
𝑧3 ← RN(𝑧3,1 + 𝑧−01)
𝑒0, 𝑒1, 𝑒2, 𝑒3, 𝑒4 ← VecSum(𝑧+00, 𝑏0, 𝑏1, 𝑐, 𝑧3)
𝑟0 ← 𝑒0
𝑟1, 𝑟2 ← VSEB(2)(𝑒1, 𝑒2, 𝑒3, 𝑒4)

7.1 Estimates of the different terms
We suppose WLOG that 1 ≤ 𝑥0, 𝑦0 < 2, so that |𝑥1| ≤ 𝑢,
|𝑦1| < 2𝑢 and |𝑦2| < 2𝑢2. Then:

1 ≤ |𝑧+00| < 4
|𝑧−00| ≤ 2𝑢 ; uls(𝑧−00) ≥ 4𝑢2

|𝑧+01| < 4𝑢 ; |𝑧+10| < 2𝑢 |𝑏2| ≤ 4𝑢2

|𝑥1𝑦1| < 2𝑢2 |𝑐| ≤ 6𝑢2

|𝑧−01| ≤ 2𝑢2 ; |𝑧−10| ≤ 𝑢2 |𝑥0𝑦2| < 4𝑢2

|𝑧3,1| ≤ 5𝑢2 |𝑧3| ≤ 7𝑢2

|𝑠3| ≤ 13𝑢2

7.2 Correctness and number of operations
Given this is a particular case of the previous algorithm,
correctness is directly ensured, provided that 𝑝 ≥ 6.

Compared to the previous algorithm, we saved 1
operation, so that the total is 41.

7.3 Bound on the error
Theorem 11. If �̄� DW and 𝑦 TW, then the relative error
committed by 3𝑃𝑟𝑜𝑑𝑎𝑐𝑐2,3 (�̄�, 𝑦) is bounded by 10.5𝑢3 + 39𝑢4,
provided that 𝑝 ≥ 6.

Proof: The new naive error analysis gives:

|𝜖0| := |𝑥1𝑦2| ≤ 2𝑢3 − 2𝑢4

|𝜖1| := |(𝑧−10 + 𝑥0𝑦2)− 𝑧3,1| ≤ 4𝑢3

|𝜖3| := |(𝑧3,1 + 𝑧−01)− 𝑧3| ≤ 4𝑢3

|𝜖4| := |(𝑏2 + 𝑥1𝑦1)− 𝑐| ≤ 4𝑢3

|𝜖5| := |(𝑧+00 + 𝑏0 + 𝑏1 + 𝑐+ 𝑧3)− (𝑟0 + 𝑟1 + 𝑟2)|
≤ (2𝑢3 + 4.2𝑢4)|𝑧+00 + 𝑏0 + 𝑏1 + 𝑐+ 𝑧3|

We get |𝜖0 + · · ·+ 𝜖4| ≤ 14𝑢3 − 2𝑢4, and finally⃒⃒⃒
𝑟−�̄�𝑦
�̄�𝑦

⃒⃒⃒
≤ (2𝑢3 + 4.2𝑢4) + (14𝑢3−2𝑢4)(1+2𝑢3+4.2𝑢4)

1−4𝑢

≤ 16𝑢3 + 62𝑢4

⋆ First, we distinguish cases depending on whether �̄�𝑦
is significantly larger than 1 or not.

- We suppose that |𝜖1| > 2𝑢2.
Then, given |𝑧−10| ≤ 𝑢2, we must have |𝑥0𝑦2| > 3𝑢2 so

|𝑥0| > 1.5, so that �̄�𝑦 ≥ 1.5− 5𝑢.

- We suppose that |𝜖4| > 2𝑢2.
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Then, given |𝑥1𝑦1| ≤ 2𝑢2, we must have |𝑏2| > 2𝑢2 so
|𝑧+01 + 𝑧+10| > 4𝑢. This gives 𝑥0(2𝑢 − 2𝑢2) + 𝑦0𝑢 ≥ 4𝑢, so
that 𝑥0𝑦0 ≥ 1.5 and �̄�𝑦 ≥ 1.5− 5𝑢.

Thus �̄�𝑦 ≥ 1.5−5𝑢 (instead of 1−4𝑢) or |𝜖1|, |𝜖4| ≤ 2𝑢3

(instead of 4𝑢3 each).

⋆ Then, we suppose 𝜖5 ̸= 0. By P-nonoverlapping, 𝑟
covers at least 3𝑝 bits, so this implies that one of the 𝑒𝑖
is not divisible by 2𝑢3ufp(𝑟0).

- We suppose that ufp(𝑟0) ≥ 2. Then by P-nonover-
lapping we must have 𝑟 ≥ 2− 4𝑢 so by the naive error
bound �̄�𝑦 ≥ 2− 5𝑢.

- We suppose that ufp(𝑟0) ≤ 1.
Then we must have a number among 𝑧+00, 𝑧−00, 𝑧+01, 𝑧+10,

𝑐 and 𝑧3 that is not divisible by 2𝑢3, so in particular
whose absolute value is strictly smaller than 𝑢2.

∙ We have seen that 𝑧+00 and 𝑧−00 are always divisible
by 4𝑢2.

∙ If |𝑧+01| < 𝑢2, then |𝑥1| < 𝑢2 so |𝜖0| ≤ 2𝑢4 (instead of
2𝑢3 − 2𝑢4)

∙ If |𝑧+10| < 𝑢2, then |𝑦1| < 𝑢2 so |𝑦2| < 𝑢3 so |𝜖0| ≤ 𝑢4

(instead of 2𝑢3 − 2𝑢4)
∙ If |𝑧3| < 𝑢2, then |𝜖3| ≤ 1

2𝑢
3 (instead of 4𝑢3).

∙ If |𝑐| < 𝑢2, then |𝜖4| ≤ 1
2𝑢

3 (instead of 4𝑢3).

⋆ Finally, we are left with several cases:

- Case �̄�𝑦 ≥ 2− 5𝑢. Then⃒⃒⃒
𝑟−�̄�𝑦
�̄�𝑦

⃒⃒⃒
≤ (2𝑢3 + 4.2𝑢4) + (14𝑢3−2𝑢4)(1+2𝑢3+4.2𝑢4)

2−5𝑢

≤ 10𝑢3

- Case 2− 5𝑢 > �̄�𝑦 ≥ 1.5− 5𝑢 and 𝜖5 = 0. Then⃒⃒⃒
𝑟−�̄�𝑦
�̄�𝑦

⃒⃒⃒
≤ 14𝑢3−2𝑢4

1.5−5𝑢

≤ 10𝑢3

- Case 2− 5𝑢 > �̄�𝑦 ≥ 1.5− 5𝑢 and 𝜖5 ̸= 0. Then⃒⃒⃒
𝑟−�̄�𝑦
�̄�𝑦

⃒⃒⃒
≤ (2𝑢3 + 4.2𝑢4) + (12𝑢3+2𝑢4)(1+2𝑢3+4.2𝑢4)

1.5−5𝑢

≤ 10𝑢3 + 34𝑢4

- Case 1.5− 6𝑢 > �̄�𝑦 and 𝜖5 = 0. Then⃒⃒⃒
𝑟−�̄�𝑦
�̄�𝑦

⃒⃒⃒
≤ 10𝑢3−2𝑢4

1−4𝑢

≤ 10𝑢3 + 41𝑢4

- Case 1.5− 6𝑢 > �̄�𝑦 and 𝜖5 ̸= 0. Then (the worst case
being the one where only |𝑐| < 𝑢2, because it is partially
redundant with what 1.5− 6𝑢 > �̄�𝑦 gives)⃒⃒⃒

𝑟−�̄�𝑦
�̄�𝑦

⃒⃒⃒
≤ (2𝑢3 + 4.2𝑢4) + (8.5𝑢3−2𝑢4)(1+2𝑢3+4.2𝑢4)

1−4𝑢

≤ 10.5𝑢3 + 39𝑢4

It is unclear whether this bound is very tight, but it
is not so far from optimality. Indeed, for instance for
binary64, if we take:

𝑥0, 𝑥1 = 1 + 3 · 227𝑢, 𝑢− 227𝑢2

𝑦0, 𝑦1, 𝑦2 = 1 + (3 · 226 + 6)𝑢, 2𝑢− 5 · 227𝑢2, 2𝑢2 − 26𝑢3

we get a relative error around (10− 2 · 10−6)𝑢3.

7.4 Faster version

Algorithm 12 – 3Prod𝑓𝑎𝑠𝑡
2,3 (𝑥0, 𝑥1, 𝑦0, 𝑦1, 𝑦2). (37 opera-

tions & 1 test)
Require: �̄� DW and 𝑦 TW ; 𝑝 ≥ 6

Ensure: 𝑟 TW and
⃒⃒⃒
𝑟−�̄�𝑦
�̄�𝑦

⃒⃒⃒
≤ 18𝑢3 + 75𝑢4

[same 5 first lines as 9]
𝑧3,1 ← RN(𝑧−10 + 𝑥0𝑦2) (FMA)
𝑧3 ← RN(𝑧3,1 + 𝑧−01)
𝑠3 ← RN(𝑐, 𝑧3)
𝑒0, 𝑒1, 𝑒2, 𝑒3 ← VecSum(𝑧+00, 𝑏0, 𝑏1, 𝑠3)
𝑟0 ← 𝑒0
𝑟1, 𝑟2 ← VSEB(2)(𝑒1, 𝑒2, 𝑒3)

Similarly to what was done before, we obtain, provided
that 𝑝 ≥ 6, ⃒⃒⃒⃒

𝑟 − �̄�𝑦

�̄�𝑦

⃒⃒⃒⃒
≤ 18𝑢3 + 75𝑢4.

This bound is very tight, because the same input as
for the previous version gives a relative error around
(18− 2.4 · 10−6)𝑢3.

8 RECIPROCAL OF A TW

To compute the reciprocal of a TW, we use Algorithm 13
below, which is based on Newton-Raphson iteration,
following the idea of [7]. This algorithm requires the
stronger constraint 𝑝 ≥ 10. For computing 1/𝑥, the
Newton-Raphson iteration is

𝑟𝑛+1 = 𝑟𝑛(2− 𝑟𝑛𝑥)

which ensures a quadratic convergence towards 1
𝑥 as

soon as 𝑟0 is close enough to 1/𝑥 because⃒⃒⃒⃒
𝑟𝑛+1 −

1

𝑥

⃒⃒⃒⃒
= |𝑥| ·

⃒⃒⃒⃒
𝑟𝑛 −

1

𝑥

⃒⃒⃒⃒2
.

Algorithm 13 – 3Reci(𝑥0, 𝑥1, 𝑥2). (73 operations & 2 tests,
resp. 65 operations & 1 test)
Require: �̄� TW ; 𝑝 ≥ 10

Ensure: 𝑦 TW and
⃒⃒⃒
𝑦−�̄�−1

�̄�−1

⃒⃒⃒
≤ 11.5𝑢3+1465𝑢4, resp. 19𝑢3+

1502𝑢4

𝑎← RN ((1 + ulp(1))/𝑥0)
ℎ1,1 ← 2Prod2(1 + ulp(1))(𝑎, 𝑥0)
ℎ1 ← RN(−ℎ1,1 − 𝑎𝑥1) (FMA)
𝑏0,1, 𝑏1,1 ← 2Prod(𝑎, 1− ulp(1))
𝑏1,2 ← RN(𝑏1,1 + 𝑎ℎ1) (FMA)
�̄�← Fast2Sum(𝑏0,1, 𝑏1,2)
�̄�← 2− 3𝑃𝑟𝑜𝑑2,3(�̄�, �̄�)
𝑦 ← 3𝑃𝑟𝑜𝑑2,3(�̄�, �̄�)
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8.1 Computation of ℎ̄

Algorithm 13 uses 1 + ulp(1) instead of 1 to start the
calculations in order to take profit from the following
lemma :

Lemma 12. For any FP number 𝑥, RN(𝑥 × RN( 1+2𝑢
𝑥 )) =

1 + 2𝑢.

Proof: Denote 𝑎 := RN( 1+2𝑢
𝑥 ), which can WLOG be

assumed to be in 1, 2[. If 𝑎 ∈ [1+4𝑢, 2[, then we conclude
using

|RN(𝑥𝑎)− (1 + 2𝑢)|
≤ (1 + 2𝑢)

(︁
𝑢

1+𝑢 + 𝑢
1+5𝑢 + 𝑢2

(1+𝑢)(1+5𝑢)

)︁
< 2𝑢

Thus, we are left with only 𝑥 ∈ {1− 2𝑢, 1− 𝑢, 1, 1 + 2𝑢},
which are easily treated separately.

Thus in Algorithm 13, one has to imagine a “virtual”
ℎ0 = 2− (1 + ulp(1)) = 1− ulp(1).

8.2 Bound on the error

Momentarily, the computation of �̄� is seen as a black box
(see Section 8.3). We have⃒⃒⃒

𝑎− 1
𝑥0

⃒⃒⃒
≤

⃒⃒⃒
𝑎− 1+2𝑢

𝑥0

⃒⃒⃒
+
⃒⃒⃒
1+2𝑢
𝑥0
− 1

𝑥0

⃒⃒⃒
≤ 𝑢

⃒⃒⃒
1+2𝑢
𝑥0

⃒⃒⃒
+
⃒⃒⃒
2𝑢
𝑥0

⃒⃒⃒
≤ (3𝑢+ 2𝑢2) ·

⃒⃒⃒
1
𝑥0

⃒⃒⃒
,

which implies
⃒⃒⃒
1−3.1𝑢

𝑥0

⃒⃒⃒
≤ |𝑎| ≤

⃒⃒⃒
1+3.1𝑢

𝑥0

⃒⃒⃒
, so that |ℎ1| ≤

(1 + 𝑢)(𝑢|𝑎𝑥0|+ |𝑎| · 2𝑢|𝑥0|) ≤ 3𝑢+ 13𝑢2. Now,⃒⃒⃒
1
𝑥0
− 1

𝑥0+𝑥1

⃒⃒⃒
=

⃒⃒⃒
1

𝑥0+𝑥1

⃒⃒⃒ ⃒⃒⃒
1− 𝑥0+𝑥1

𝑥0

⃒⃒⃒
≤ (2𝑢− 2𝑢2)

⃒⃒⃒
1

𝑥0+𝑥1

⃒⃒⃒⃒⃒⃒
𝑎− 1

𝑥0+𝑥1

⃒⃒⃒
≤ (5𝑢+ 6𝑢2)

⃒⃒⃒
1

𝑥0+𝑥1

⃒⃒⃒
⃒⃒⃒
𝑎(2− 𝑎(𝑥0 + 𝑥1))− 1

𝑥0+𝑥1

⃒⃒⃒
= |𝑥0 + 𝑥1|

(︁
𝑎− 1

𝑥0+𝑥1

)︁2

≤ (25𝑢2 + 61𝑢3)
⃒⃒⃒

1
𝑥0+𝑥1

⃒⃒⃒
→ |𝑎| ≤

⃒⃒⃒
1+6𝑢
𝑥0+𝑥1

⃒⃒⃒
⃒⃒
ℎ̄− (2− 𝑎(𝑥0 + 𝑥1))

⃒⃒
= |ℎ1 − (−ℎ1,1 − 𝑎𝑥1)|
≤ 𝑢|ℎ1|
≤ 3𝑢2 + 13𝑢3⃒⃒

�̄�− 𝑎ℎ̄
⃒⃒

= |𝑏1,2 − (𝑏1,1 + 𝑎ℎ1)|
≤ 𝑢|𝑏1,1 + 𝑎ℎ1|
≤ 𝑢 (𝑢|𝑎|(1− 2𝑢) + |𝑎ℎ1|)
≤ (4𝑢2 + 11𝑢3)|𝑎|⃒⃒⃒

�̄�− 1
𝑥0+𝑥1

⃒⃒⃒
≤ (7𝑢2 + 24𝑢3)|𝑎|+ (25𝑢2 + 61𝑢3)

⃒⃒⃒
1

𝑥0+𝑥1

⃒⃒⃒
≤ (32𝑢2 + 121𝑢3)

⃒⃒⃒
1

𝑥0+𝑥1

⃒⃒⃒

⃒⃒⃒
1

𝑥0+𝑥1
− 1

�̄�

⃒⃒⃒
=

⃒⃒
1
�̄�

⃒⃒ ⃒⃒⃒
1− �̄�

𝑥0+𝑥1

⃒⃒⃒
≤ 2𝑢2

1−2𝑢

⃒⃒
1
�̄�

⃒⃒
≤ (2𝑢2 + 5𝑢3)

⃒⃒
1
�̄�

⃒⃒⃒⃒
�̄�− 1

�̄�

⃒⃒
≤ (34𝑢2 + 126𝑢3)

⃒⃒
1
�̄�

⃒⃒⃒⃒
�̄�(2− �̄��̄�)− 1

�̄�

⃒⃒
= |�̄�|(�̄�− 1

�̄� )
2

≤ 1165𝑢4
⃒⃒
1
�̄�

⃒⃒
→

⃒⃒⃒
1−35𝑢2

�̄�

⃒⃒⃒
≤ |�̄�| ≤

⃒⃒⃒
1+35𝑢2

�̄�

⃒⃒⃒
Remark 6. This term is ultimately negligible if 𝑝 is large,
because the accuracy is doubled at each step so it jumps from
roughly 2 words to roughly 4 instead of just 3. Thus it is not
a problem that computations were not performed precisely, for
instance starting with 1 + ulp(1) instead of 1.

We denote 𝛿1 the relative error committed when
computing �̄� (taken relatively to �̄��̄�) and 𝛿2 the one for 𝑦.
They are supposed less than 20𝑢3 (see later).

⃒⃒̄
𝑖− (2− �̄��̄�)

⃒⃒
≤ 𝛿1|�̄��̄�|
≤ 𝛿1(1 + 35𝑢2)

|̄𝑖| ≤ |2− �̄��̄�|+ 𝛿1(1 + 35𝑢2)
≤ 1 + 35𝑢2⃒⃒

𝑦 − �̄̄�𝑖
⃒⃒
≤ 𝛿2|�̄̄�𝑖|
≤ 𝛿2(1 + 35𝑢2)|�̄�|⃒⃒

𝑦 − 1
�̄�

⃒⃒
≤ (𝛿1 + 𝛿2)(1 + 35𝑢2)|�̄�|+ 1165𝑢4

⃒⃒
1
�̄�

⃒⃒
≤

(︀
(𝛿1 + 𝛿2)(1 + 70𝑢2) + 1165𝑢4

)︀ ⃒⃒
1
�̄�

⃒⃒
.

To conclude, we only have to bound 𝛿1 and 𝛿2 as
accurately as possible depending on the algorithms used.

8.3 Computation of �̄�

We have seen that |�̄��̄�−1| ≤ 35𝑢2. Inside the computation
of 3𝑃𝑟𝑜𝑑2,3(�̄�, �̄�), we have seen that |𝑒− �̄��̄�| ≤ 20𝑢3. Thus
|𝑒 − 1| ≤ 36𝑢2. Given that 𝑒 is F-nonoverlapping, we
have |𝑒0 − 𝑒| ≤ (1 − 2−4)uls(𝑒0). If |𝑒0| < 1, then |𝑒| ≥
(1 − 𝑢) + (1 − 2−4)𝑢 = 1 − 2−4𝑢 < 1 − 36𝑢2, which is
excluded, and we can exclude similarly |𝑒0| > 1. Thus
𝑒0 = 1.

Remark 7. This property is the one that necessitates 𝑝 ≥ 10.
It probably works for some smaller values of 𝑝, but we have
no proof of that.

Therefore, in order to compute 2− 3𝑃𝑟𝑜𝑑2,3(�̄�, �̄�), we
can simply replace 𝑒1, . . . by their opposites by turning
some + into − operations and conversely in order not
to waste any operation. Correctness and the error bound
are still ensured for the same reasons. For instance, if we
choose to use the accurate version, we obtain algorithm 14.
One operation (the computation of 𝑒0) is saved compared
to the general version.
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Algorithm 14 – 2 - 3Prod𝑎𝑐𝑐
2,3 (𝑏0, 𝑏1, 𝑥0, 𝑥1, 𝑥2). (44 opera-

tions & 2 tests)
𝑧+00, 𝑧

−
00 ← 2Prod(𝑏0, 𝑥0)

𝑧+01, 𝑧
−
01 ← 2Prod(𝑏0, 𝑥1)

𝑧+10, 𝑧
−
10 ← 2Prod(𝑏1, 𝑥0)

𝑏′0, 𝑏
′
1, 𝑏

′
2 ← VecSum(𝑧−00, 𝑧

+
01, 𝑧

+
10)

𝑐← RN(𝑏′2 + 𝑏1𝑥1) (FMA)
𝑧3,1 ← RN(𝑧−10 + 𝑏0𝑥1) (FMA)
𝑧3 ← RN(𝑧3,2 + 𝑧−01)
𝑠1, 𝑒2, 𝑒3, 𝑒4 ← VecSum(−𝑏′0,−𝑏′1,−𝑐,−𝑧3)
(𝑖0 = 1)
𝑒1 ← Fast2Sum2(1)(−𝑧+00, 𝑠1)
𝑖1, 𝑖2 ← VSEB(2)(𝑒1, 𝑒2, 𝑒3, 𝑒4)

8.4 Computation of 𝑦

We have very precise information about �̄�, so we use a
modified version of the fast algorithm.

Algorithm 15 – 3Prod𝑓𝑎𝑠𝑡
2,3 (𝑏0, 𝑏1, (1), 𝑖1, 𝑖2). (20 opera-

tions)
𝑧+01, 𝑧

−
01 ← 2Prod(𝑏0, 𝑖1)

𝑏′0, 𝑏
′
1 ← Fast2Sum(𝑏1, 𝑧

+
01)

𝑧3,1 ← RN(𝑧−01 + 𝑏1𝑖1) (FMA)
𝑧3 ← RN(𝑧3,1 + 𝑏0𝑖2) (FMA)
𝑠3 ← RN(𝑏′1 + 𝑧3)
𝑒0, 𝑒1, 𝑒2 ← VecSum(𝑏0, 𝑏

′
0, 𝑠3)

𝑦0 ← 𝑒0
𝑦1, 𝑦2 ← Fast2Sum(𝑒1, 𝑒2)

Remark 8. In VecSum(𝑏0, 𝑏
′
0, 𝑠3), the sum of 𝑏′0 and 𝑠3 is

performed with a 2Sum in order to ensure correctness, but we
can still use a Fast2Sum for the second one.

A Fast2Sum can be used for the sum of 𝑏1 and 𝑧+01 because
if the condition for Fast2Sum to be errorless is not satisfied,
this means that |𝑏1| is very small, so that the global error will
be small anyway.

Given the estimates on �̄�, basically all errors are
negligible, except the one when computing 𝑠3. We get:⃒⃒⃒⃒

𝑦 − �̄̄�𝑖

�̄̄�𝑖

⃒⃒⃒⃒
≤ 𝑢3 + 256𝑢4

(1− 2𝑢)(1− 35𝑢2)

Thus we can take 𝛿2 = 𝑢3 + 260𝑢4.

8.5 Final error bound and number of operations

If we use the accurate version for the first 3𝑃𝑟𝑜𝑑2,3, then
we can use 𝛿1 = 10.5𝑢3 + 39𝑢4 and finally obtain

Theorem 13. If �̄� is a TW, then the relative error committed
by 3𝑅𝑒𝑐𝑖𝑎𝑐𝑐(�̄�) is bounded by 11.5𝑢3+1465𝑢4, provided that
𝑝 ≥ 10.

The total cost is 73 operations and 2 tests. If we use
the fast version, then we can use 𝛿1 = 18𝑢3 + 75𝑢4 and
finally obtain

Theorem 14. If �̄� is a TW, then the relative error committed
by 3𝑅𝑒𝑐𝑖𝑓𝑎𝑠𝑡(�̄�) is bounded by 19𝑢3 + 1502𝑢4, provided that
𝑝 ≥ 10.

The total cost is 65 operations and 1 test.

9 QUOTIENT OF TWO TW
In this section, we also assume 𝑝 ≥ 10. In order to
compute 𝑧/�̄�, we could simply compute the product
of 𝑧 and the reciprocal of �̄�. However, this would mean
that we compute something like 𝑧 × (�̄�× (2− �̄��̄�)), while
it is significantly better to compute (𝑧�̄�)× (2− �̄��̄�).

Indeed, this allows to parallelize the computations
of 𝑧�̄� and 2 − �̄��̄�, and the optimizations allowed by
the constraints on �̄� are more efficiently used when
multiplying by a TW rather than by a DW.

Algorithm 16 – 3Div(𝑧0, 𝑧1, 𝑧2, 𝑥0, 𝑥1, 𝑥2). (119 operations
& 4 tests, resp. 103 operations & 2 test)
Require: 𝑧,�̄� TW ; 𝑝 ≥ 10

Ensure: 𝑦 TW and
⃒⃒⃒
𝑦−𝑧/�̄�
𝑧/�̄�

⃒⃒⃒
≤ 24𝑢3 +1509𝑢4, resp. 39𝑢3 +

1582𝑢4

[same 5 first lines as 13]
�̄�← Fast2Sum(𝑏0,1, 𝑏1,2)
�̄�← 2− 3𝑃𝑟𝑜𝑑2,3(�̄�, �̄�)
�̄�← 3𝑃𝑟𝑜𝑑2,3(�̄�, 𝑧)
𝑦 ← 3𝑃𝑟𝑜𝑑3,3(�̄�, �̄�)

For the computation of 2− �̄��̄�, the same algorithm and
error bound as previoulsy are used. For the computation
of 𝑧�̄�, 3𝑃𝑟𝑜𝑑2,3 is used (the relative error is denoted by
𝛿3). For the computation of the final product, algorithm
17 is used.

Algorithm 17 – 3Prod𝑓𝑎𝑠𝑡
3,3 (𝑎0, 𝑎1, 𝑎2, (1), 𝑖1, 𝑖2). (21 opera-

tions)
𝑧+01, 𝑧

−
01 ← 2Prod(𝑎0, 𝑖1)

𝑏′0, 𝑏
′
1 ← Fast2Sum(𝑎1, 𝑧

+
01)

𝑧3,1 ← RN(𝑧−01 + 𝑎1𝑖1) (FMA)
𝑧3,2 ← RN(𝑧3,1 + 𝑎0𝑖2) (FMA)
𝑧3 ← RN(𝑧3,2 + 𝑏′1)
𝑠3 ← RN(𝑧3 + 𝑎2)
𝑒0, 𝑒1, 𝑒2 ← VecSum(𝑏0, 𝑏

′
0, 𝑠3)

𝑦0 ← 𝑒0
𝑦1, 𝑦2 ← Fast2Sum(𝑒1, 𝑒2)

The error analysis is similar to the one of Algorithm 15
with an additional 2𝑢3, and we get⃒⃒⃒⃒

𝑦 − �̄��̄�

�̄��̄�

⃒⃒⃒⃒
≤ 3𝑢3 + 256𝑢4

(1− 2𝑢)(1− 35𝑢2)
≤ 3𝑢3 + 264𝑢4.

Globally, we have,⃒⃒⃒
𝑦 − 𝑧

�̄�

⃒⃒⃒
≤

(︀
(𝛿1 + 𝛿2 + 𝛿3)(1 + 70𝑢2) + 1165𝑢4

)︀ ⃒⃒⃒ 𝑧
�̄�

⃒⃒⃒
If we use the accurate versions, then we can use 𝛿1 =

10.5𝑢3 + 39𝑢4 = 𝛿3, and we finally obtain
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Theorem 15. If �̄�,𝑧 are TW, then the relative error committed
by 3𝐷𝑖𝑣𝑎𝑐𝑐(𝑧, �̄�) is bounded by 24𝑢3+1509𝑢4, provided that
𝑝 ≥ 10.

The total cost is 119 operations and 4 tests. If we use
the fast versions, then we can use 𝛿1 = 18𝑢3 + 75𝑢4 = 𝛿3
and finally obtain

Theorem 16. If �̄�,𝑧 are TW, then the relative error committed
by 3𝐷𝑖𝑣𝑓𝑎𝑠𝑡(𝑧, �̄�) is bounded by 39𝑢3+1582𝑢4, provided that
𝑝 ≥ 10.

The total cost is 103 operations and 2 tests.

10 SQUARE ROOT OF A TW
In this section, we assume 𝑝 ≥ 11. To compute the square
root of a TW, we use Algoirithm 18 below, based again
on the Newton-Raphson iteration. Its analysis and the
optimizing tricks are very similar to the ones used before
for division. The underlying iteration is now

𝑟𝑛+1 = 𝑟𝑛(1.5−
1

2
𝑟2𝑛𝑥),

which ensures a quadratic convergence towards 1√
𝑥

as
soon as 𝑟0 is close enough to

√
𝑥, because⃒⃒⃒⃒

𝑟𝑛+1 −
1√
𝑥

⃒⃒⃒⃒
=

1

2

√
𝑥(𝑟𝑛
√
𝑥+ 2)

⃒⃒⃒⃒
𝑟𝑛 −

1√
𝑥

⃒⃒⃒⃒2

Algorithm 18 – 3SqRt(𝑥0, 𝑥1, 𝑥2). (127 operations & 4
tests, resp. 111 operations & 2 tests)
Require: �̄� TW ; 𝑝 ≥ 11

Ensure: 𝑦 TW and
⃒⃒⃒
𝑦−

√
�̄�√

�̄�

⃒⃒⃒
≤ 24𝑢3+10260𝑢4, resp. 39𝑢3+

10333𝑢4

𝑎← RN
(︀
(1 + 2ulp(1))/RN(

√
𝑥0)

)︀
𝑎′ = 1

2𝑎 (exact)
ℎ
(1)
0 , ℎ

(1)
1,1 ← 2Prod(𝑎, 𝑥0)

ℎ
(1)
1 ← RN(−ℎ(1)

1,1 − 𝑎𝑥1) (FMA)
ℎ
(2)
0,1, ℎ

(2)
1,1 ← 2Prod(𝑎′, ℎ(1)

0 )

ℎ
(2)
0 ← 1.5− ℎ

(2)
0,1 (exact)

ℎ
(2)
1 ← RN(−ℎ(2)

1,1 − 𝑎′ℎ
(1)
1 ) (FMA)

𝑏0,1, 𝑏1,1 ← 2Prod(𝑎, ℎ(2)
0 )

𝑏1,2 ← RN(𝑏1,1 + 𝑎ℎ
(2)
1 ) (FMA)

�̄�← Fast2Sum(𝑏0,1, 𝑏1,2)
�̄�′ = 1

2 �̄� (exact)
𝑖(1) ← 3𝑃𝑟𝑜𝑑2,3(�̄�, �̄�)

𝑖(2) ← 1.5− 3𝑃𝑟𝑜𝑑2,3(�̄�
′, 𝑖(1))

𝑦 ← 3𝑃𝑟𝑜𝑑3,3(𝑖(1), 𝑖(2))

The computation of ℎ
(2)
0 is exact because ℎ

(2)
0,1 ≥ 0.5

(this is why we started with 1 + 2ulp(1) instead of 1).
The computation of 𝑖(1) is performed with a 3𝑃𝑟𝑜𝑑2,3

algorithm (relative error bounded by 𝛿1).
The computation of 𝑖(2) is performed using Algo-

rithm 14 (or its fast version), where the penultimate line

is replaced by 𝑒1 ← Fast2Sum(.5)(−𝑧+00, 𝑠1) (relative error
bounded by 𝛿2). This works provided that 𝑝 ≥ 11.

The computation of 𝑦 is performed using Algorithm 17
(relative error bounded by 𝛿3 = 3𝑢3 + 263𝑢4).

We obtain⃒⃒⃒⃒
�̄�− 1√

�̄�

⃒⃒⃒⃒
≤ (81𝑢2 + 622𝑢3)

⃒⃒⃒⃒
1√
�̄�

⃒⃒⃒⃒
, and⃒⃒⃒⃒

�̄��̄�(1.5− 1

2
�̄�2�̄�)−

√
�̄�

⃒⃒⃒⃒
≤ 9916𝑢4

√
�̄�

Globally, we have

⃒⃒⃒
𝑦 −
√
�̄�
⃒⃒⃒
≤

⎛⎜⎜⎝
𝛿1(1.5 + 287𝑢2)
+𝛿2(0.5 + 123𝑢2)
+𝛿3(1 + 162𝑢2)

+9916𝑢4

⎞⎟⎟⎠√�̄�
so that,

Theorem 17. If �̄� is a TW, then the relative error committed
by 3𝑆𝑞𝑅𝑡𝑎𝑐𝑐(�̄�) (resp. 3𝑆𝑞𝑅𝑡𝑓𝑎𝑠𝑡(�̄�)) is bounded by 24𝑢3 +
10260𝑢4 (resp. 39𝑢3 + 10333𝑢4).

The total cost is 127 operations and 4 tests (resp. 111
operations and 2 tests).

11 COMPARISON WITH GENERAL EXPAN-
SIONS (𝑛 = 3)
The algorithms presented in this paper can be compared
to the “general” floating-point expansion algorithms (in
the special case 𝑛 = 3), and to the algorithms related
presented in [20].

11.1 Sum
The algorithm used is the same, but using P-
nonoverlapping instead of ulp-nonoverlapping roughly
divides the error in the worst case by 4.

11.2 Product
Many more terms are sought in the general algorithms,
so that the relative error is bounded by only around
8𝑢3. Still, if we have in mind the implementation of
correctly rounded elementary functions, our bounds will,
in general, be far enough.

The cost of the general algorithms is around twice
larger than ours: 88 operations and 2 tests for the “quick-
and-dirty” algorithm, assuming that “Renormalize” can
be used.

11.3 Reciprocal, division and square root
Our algorithms cannot be fairly compared with Newton-
Raphson based algorithms, because they are designed
for a number of terms being a power of 2.

Concerning the “paper-and-pencil” method for di-
vision, using it with our algorithms (for instance the
accurate versions) for sum and product costs around 150
operations and gives a relative error around 29𝑢3. It is
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clearly possible to improve these figures, but probably
not enough to compete with the algorithm we proposed.

It is anyway significantly better than what Priest
proposes in [22, page 116], where he provides 7265 as a
bound for the number of operations, and ≈ 213𝑢3 for the
relative error.

12 CONCLUSION

We have shown that usual floating-point expansion
algorithms adapted for building and adding triple word
numbers are correct in the context of triple words, and
we have introduced algorithms for rounding, multiplying,
reciprocating, dividing and computing square roots of
triple word numbers, along with correctness proofs and
error bounds.

Some bounds have been shown to be tight, but this is
not the case for 2𝑃𝑟𝑜𝑑𝑎𝑐𝑐2,3 , and for the reciprocal, division
and square root algorithms, so the error bounds on these
algorithms may be improved.

The natural continuation of this paper would be to
suggest additional algorithms that would make TW
arithmetic efficiently compatible with general expansions:
for instance, adding a TW with a quad-word number to
get a TW output cannot be done with the usual algorithm,
because of the counter-example we presented.
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