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OPTIMAL DESIGN OF AUXETIC, ADDITIVELY MANUFACTURED,
POLYMERIC STRUCTURES

FILIPPO AGNELLI, ANDREI CONSTANTINESCU, AND GRIGOR NIKA

Abstract. This work is concerned with the optimal design, additive manufacturing, and
testing of microarchitectured polymer materials with desired macroscopic mechanichal prop-
erties. More precise, we are interested in designing and fabricating a materials microstrure
in terms of the topology as well as material distribution of the individual phases within a
periodic unit cell. In the design process we use the level set method to identify material
regions and track boundary changes within the context of the smoothed interface. The
combination of the level set method and the shape derivative obtained in the smoothed
interface context allows us to capture, within the unit cell, the topological changes that take
place. The obtained unit cells are smoothed and enhanced using standard image processing
techniques and have periodically been multiplied into rectangular specimens. The specimens
are manufactured using a commercial steoreolithography Ember printer and mechanically
tested. The observed fields are compared with predictions from the simulations.

1. Introduction

The ability to systematically design and additively manufacture multi-scale structures
that exhibit globally desired mechanical properties is one the frontiers of modern material
science. The advancement of 3D printing has enabled researchers to create high resolution
structures with complex geometries at several scales. This in turn, enabled the creation
of metamaterials that carry properties that are otherwise not possible to find in nature.
Broadly speaking, metamaterials are assemblies of microstructures that derive their effective
properties not just from the bulk composition but also from geometric arrangements of the
structure. Hence, by producing different geometries at the microscopic scale and tiling them
together, often in a periodic way, we can create macrostructures with desired properties.
These different geometric arrangements make metamaterials possess unusual properties such
as enhanced stiffness and energy absorption capabilities [15], [18], [24], indentation resistance,
greater yield strength [23], crashworthiness [17], phononic performance [12] as well as many
other interesting properties.

Since the seminal work of Lakes [20] to design auxetic structures, significant efforts have
been devoted to the development of auxetic materials. Shape and topology optimization
methods [1]–[4], [11], [35]–[36] arise as a natural way to design complex geometries. For
periodic auxetic metamaterials the overall properties can be studied using homogenization
theory where the effective coefficients computed take into account the bulk material compo-
sition as well as the geometry layout. Topology optimization using inverse homogenization
exploits this fact in order to systematically identify optimal geometries for the unit cell. This
in turn would produce a macrostructure with desired properties. The works of Wang, Mei,
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Wang [35], Michailidis [26], Nika & Constantinescu [29], Wang et.al. [37], among others, use
inverse homogenization, the level set method and the Hadamard shape derivative to identify
material regions and track boundary changes to systematically design auxetic shapes. Wang,
Mei & Wang [35], Michailidis [26], design linear elastic and thermoelastic materials with neg-
ative Poisson’s ratio while Nika & Constantinescu [29] design linear elastic multimaterials
with negative Poisson’s ratio.

The effective material tensor that characterizes the auxetic macrostructure a priori has
orthotropic symmetry. Hence, the macrostructure, in 2D, is characterized by two Young
modulii, E1, E2 and two Poisson ratios ν12, ν21. The Poisson ratio ν12 characterizes con-
traction of the structure in the direction of Oy axis when stretched in the direction of Ox
axis and in general ν12 6= ν21. In literature, most auxetic metamaterials obtain their auxetic
behavior through centers of rotations (see [19]). This type of materials tend to carry cubic
symmetry, namely, ν12 = ν21. Another interesting class of auxetic materials are re-entrant
materials. For most re-entrant structures ν12 6= ν21. The most well known re-entrant auxetic
structure is the inverted honeycomb structure first introduced by Almgren [8]. The inverted
honey comb structure was also introduced as a “bi-mode” extremal material which supports
a stress with a negative determinant in Milton & Cherkaev [27]. For isotropic structures it
is well known that the Poisson ratio remains bounded in [−1, 0.5]. Since in general these
are anisotropic materials, the bounds on Poisson’s ratio are wider (−∞,+∞) than in the
isotropic case; indeed Poisson’s ratios smaller than negative one have been reported in Lakes
[21]. In the topology optimization literature the auxetic shapes obtained tend to be exhibit
cubic symmetry with the apparent Poisson’s ratio, ν∗ ∈ [−1, 0.5]. However, as was already
mentioned, this need not be the case.

The aim of this paper is to complete a design cycle for several auxetic materials. The cycle
consists of three steps (i) the design of the microarchitecture, (ii) the manufacturing of the
material and (iii) the testing of the material. The goal is to obtain domain microarchitectured
materials with a prescribed elasticity tensor and apparent Poisson’s ratio. In order to reach
this goal topology optimization will be used for the material design process. Materials will
be manufactured using a desktop stereolithography 3D printer and then tested on standard
tensile machine. Insight into the local mechanical fields is obtained using digital image
correlation.

The paper is organized as follows. Section 2 presents the optimal design of the microarchi-
tectured material. It provides some basic results needed from the theory of homogenization,
relate the effective coefficients to the apparent Poisson ratio, and sets up the optimization
problem to systematically identify optimal auxetic shapes. Section 3 present the optimal aux-
etic microstructures obtained and describes some of their properties as well as the additive
manufacturing process. Section 4 is dedicated to the experimental testing of the structures
and the interpretation of results using digital image correlation. Additionally, an appendix
reviews the approach used to measure the apparent Poisson’s ratio by DIC and the finite
element method on periodic structures.

2. Optimal design of the microarchitectured material

The link between the properties of the material at the scale of the microarchitecture and
the macroscopic scale of the material is described using classical homogeneization theory.
This defines a precise mathematical framework which enables the application of the topology

2



optimization algorithm to compute a microstructure such that the material has a prescibed
elasticity tensor.

Next we shall only refer to the main results used in the sequel and recommend the classical
literature on homogenization for details and proofs (see for example Sanchez-Palencia [32],
Bakhavalov & Panasenko [9], Sanchez-Palencia, A. Zaoui [33], Allaire [1], Cioranescu &
Donato [13], Mei & Vernescu [25] among others)

Let us consider a linear, elastic body occupying a bounded domain Ω of RN , N = 2, 3.
Its periodic microstructure is of size ε assumed to be small in comparison to the size of
the domain and completely described by a rescaled unit cell Y = (−1/2, 1/2)N ⊂ RN .
The material properties in Ω are represented by a periodic fourth order tensor A(yyy) with
yyy = xxx/ε ∈ Y and xxx ∈ Ω the current points in the respective domains.

Ω

Y

1

1

Figure 1. Schematic of the elastic periodic composite material.

The homogenized coefficients AH of the effective medium at the scale of Ω are obtained
from the following explicit computation on the unit cell Y :

AHijm` =

∫
Y

A(Eij + ε(χχχij)) : (Em` + ε(χχχm`)) dyyy (2.1)

where (eeek)1≤k≤N is the canonical basis of RN . EEEm` = 1
2
(eeem ⊗ eee` + eee` ⊗ eeem) with m, ` ∈

{1, ..., N} denote a vector basis of the mean deformations applied on the unit cell. χχχm` are
the corresponding displacements fields created by these deformations on the unit cell Y . As
such the displacement fields χχχm` are solution of the following linear elastic problems with
periodic boundary conditions:

− div
(
A(EEEm` + εεε(χχχm`))

)
= 000 in Y (2.2)

where the displacement χχχm`(yyy) is periodic in Y and has a zero average value on the unit cell〈
χχχm`

〉
Y

= 000.

The loading is given by the distributed body force −div
(
A(EEEm`)

)
, which stems directly from

the mean deformation field EEEm` and the distribution of elastic moduli A in the unit-cell.

Orthotropic elastic materials. The homogenized tensor AH in (2.1) carries a natural
orthotropic material symmetry. The linear elastic constitutive equation on the unit cell
relating the mean stress and strain tensors, denoted as σσσH and εεεH respectively, has therefore
the following expression for the two dimensional problems under consideration:
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Figure 2. A schematic view of boundary displacements corresponding to the
three mean deformation tensors EEEm` applied on a homogeneous unit cell Y :
tensile deformations along the coordinate axes (a) EEE11, (b) EEE22 and (c) the
simple shear deformation EEE12.
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where σσσH and εεεH are the mean stress and strain respectively:

σσσH = 〈σσσ〉Y εεεH = 〈εεε〉Y .
Alternatively, one could express the effective strain as a function of the effective stress

with the following effective material tensor:ε
H
11

εH22

εH12

 =

 1/E1 −ν12/E2 0

−ν21/E1 1/E2 0

0 0 1/2G


σ

H
11

σH22

σH12


where Ei and νij denote the homogenized Young moduli and Poisson’s ratios respectively.
In order to simplify the notation, we will drop the H superscript. Let us further remark,
that by symmetry of the elastic compliance matrix, the following ratios have to be equal:

ν12

E2

=
ν21

E1

The elastic moduli, AHijkl, can equally be expressed in terms of the compliance moduli,

i.e. Young moduli and Poisson’s ratios: AH1111 = (1− ν12ν21)−1E1, AH2222 = (1− ν12ν21)−1E2,
AH1122 = ν21(1− ν12ν21)−1E1, AH2211 = ν12(1− ν12ν21)−1E2 with AH1122 = AH2211 as can be easily
obtained from the inversion of the corresponding matrices.

A simple calculation immediately yields:

ν12 =
AH1122

AH2222

and ν21 =
AH1122

AH1111

.

Moreover, the homogenized Poisson’s ratio νij are equally denoted apparent Poisson’s ratio
to highlight their reference to the homogenized unit cell. For example ν12 characterizes
the contraction of the structure in the direction of Oy axis when the cell stretched in the
direction of Ox axis and in general ν12 6= ν21. However, if the microarchitecture of the unit
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cell obeys cubic symmetry we have AH1111 = AH2222 and we trivially obtain that E1 = E2 = E∗

and ν12 = ν21 = ν∗.

The optimization problem. Next we discuss the framework of the optimization problem
without presenting the details of the algorithm which is beyond the scope of the paper.

Let us assume that the unit cell Y is a working domain and consider ω an open and bounded
subset of Y representing the shape of the architectured microstructure. The distance between
the homogenized elastic moduli over the unit cell and target elastic moduli can be measured
by the following cost functional,

J(ω) =
1

2

∥∥AH(ω)− At
∥∥2

η

where ‖·‖η is the weighted Euclidean norm, At is the target elastic tensor, and η are the
weight coefficients. We define a set of admissible shapes contained in the working domain Y
and have a fixed volume by Uad = {ω ⊂ Y such that |ω| = V t} . Hence, the optimal shape
design of the microarchitecture can be formulated as the following optimization problem:

inf
ω⊂Uad

J(ω),

χχχm` satisfies (2.2).
(2.3)

Level set representation of the shape. The shape ω is represented in a fixed mesh
inside the unit cell Y using the the level set method. If we denote by φ a level set, then the
corresponding shape ω is defined in the following way:

φ(yyy) = 0 if yyy ∈ ∂ω ∩ Y,
φ(yyy) > 0 if yyy ∈ Y \ω,
φ(yyy) < 0 if yyy ∈ ω,

See also Figure 3 for a graphical example.

Figure 3. Schematic representation of the level set φ of the domain ω

The optimization of J(ω) is carried out by advecting an initial shape ω0 with velocity v ob-
tained from the shape derivative 〈J ′(ω) | θθθ〉 in the direction θθθ (see Allaire, Jouve, Toader [4],
Wang, Mei, Wang [35]). The advection is realized by solving the Hamilton-Jacobi equation,

∂tφ+ v|∇φ| = 0,
5



where v is the velocity of the interface computed from the shape derivative 〈J ′(ω) | θθθ〉. The
numerical algorithm can be summarized in the following steps:

(i) Initialize the level set φ0 corresponding to the initial form ω0.
(ii) Update the level set φ0 using the signed distance function dω0.

(iii) Iterate until convergence for k ≥ 0:
a. Calculate the local solutions wwwm`k for m, ` = 1, 2 by solving the linear elasticity

problem in Y .
b. Deform the domain ωk by solving the above Hamilton-Jacobi equation. The new

shape ωk+1 is characterized by the level set ψk+1 after a time step ∆tk. The time
step ∆tk is chosen so that J(ωk+1) ≤ J(ωk).

(iv) If needed for stability reasons, re-initialize the level set functions φk.

The complete algorithm as well as several examples are presented in Nika & Constantinescu
[29]. The interested reader is encouraged to consult the works of Allaire [2], Allaire, Jouve
& Toader [4], Allaire et. al. [5], Michailidis [26], Wang, Mei & Wang [35] for more details
about the mathematical results and algorithmic issues for the solution method.

Examples of optimal microstructures. In all the examples that follow we have set
the Young modulus for the void (or weak) material equal to E0 = 0.0001 and for the strong
material to E1 = 0.91. The Poisson’s ratio for both phases was set to ν = 0.3. The quadratic
unit cell Y was meshed with a structured symmetric grid of 100 × 100 quadrangular each
formed of four equal triangular P1 elements. All computations were carried out using an in
house programming of the preceding algorithm [29] operating on FreeFEM++ software [16].

We would like to remark that we only controlled the coefficients and is reported in Table
1 with varying values for the three different structures.

In all examples the target objective was defined only in terms of AH1111, A
H
1122, A

H
2222. The

shear coefficient AH1212 as well as the AH1211 and AH1222 coefficients were left free. Therefore
only the elastic moduli of the unit cell corresponding to the direction 11 and 22 directions
of strain and stresses were controlled. However all targets had as an underlying objective an
apparent Poisson ratio which will be discussed next.
Example 1. The first microstructure to be optimized is a structure whose target appar-
ent Poisson’s ratio is equal ν∗ = −1.0. The volume constraint was set to V t = 50% and
was enforced using a Lagrange multiplier computed by assuming that the optimality cri-
terion was satisfied, namely 〈J ′(ω) | θθθ〉 + ` 〈V ′(ω) | θθθ〉 = 0. The Lagrange multiplier was

updated by imposing `n+1 = (`n+`)
2

+ ε(V − V t), where ε is a small positive real number and
` = −〈J ′(ω) | θθθ〉 / 〈V ′(ω) | θθθ〉. This technique has been initially proposed and discussed by
Allaire and Pantz [6]. We further note that for this structure we enforced symmetry only
along the Oy axis in the algorithm, by symmetrizing the shape after each iteration.
The initial and final shape of the microstructure on the unit-cell and as a periodic material
are represented in figure 4. The final shape can be characterized as an inverted honeycomb
structure and looks similar to the designs imagined by Almgren [8]. Its homogenized coef-
ficients, displayed in Table 1, show that the structure exhibits orthotropic symmetry and a
simple calculation yields ν12 = −1.25 and ν21 = −0.42. Hence, the expansion of the structure
along the Oy axis when stretched in the Ox axis is larger the expansion along the Ox axis
when stretched in the Oy axis. This non-symmetric effect has been enabled as the symmetry
relation was only imposed along the Oy axis in the algorithm.
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Initial design Final design Macro-structure

Figure 4. The design process of the material from initial guess to final macro-
structure represented in the unit cell and as a periodic material. Young
modulus of 0.91, void.

Objective Volume constraint

Figure 5. Convergence history of the objective function and the volume con-
straint.

The convergency history of the cost-functional and of the volume constraint displayed in
Figure 5 shows that the target coefficient where reached in slightly more than 20 iteration
and that the later iteration contributed only to small improvements without bringing the cost
functional to less than 0.06 which corresponds to 92% decrease of the initial value. The gap
with respect to the target moduli can be read from Table 1. It is interesting to remark, that
the final optimized microstructure has a shear moduli close to 0. However the final apparent
Poisson’s ratio is close to the imagined target as will be discussed in the comparison with
the printed samples.

The volume constraint has a different evolution than the cost-functional with an initial
increase given by the initial evolution of the holes and then a fast and a slow evolution which
lies within the proposed range of the constraint.
Example 2. The second microstructure to be optimized is a structure whose target apparent
Poisson’s ratio was also ν∗ = −1.0. The Young modulus and Poisson’s ratio are the same as in
example 1. The volume constraint was of an inequality type, and was set to 16% ≤ V t ≤ 60%.
For the enforcement of the constraint we used an augmented Lagrangian. The Lagrange
multipliers for the weight were updated the following way, `n+1 = `n + β(V − V t), where β
is a penalty term that was updated every 10 iterations. We point out that the augmented
Lagrangian approach would require a re-computation of the shape derivative. As result,
initial guesses for ` and β would both have an effect on final optimal shape (see also the
discussion on the algorithmic issues in Nika & Constantinescu [29]).
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Initial design Final design Macro-structure

Figure 6. The design process of the material from initial guess to final macro-
structure represented in the unit cell and as a periodic material. Young
modulus of 0.91, void.

Objective Volume constraint

Figure 7. Convergence history of the objective function and the volume con-
straint.

Let us further specify, that we enforced in the symmetry of the shape along both the Ox axis
and Oy axis, by symmetrizing the shape during the algorithmic iterations. The resulting
structure exhibits cubic symmetry with apparent Poisson’s ratio ν∗ = ν12 = ν21 = −0.42.
Hence, the expansion along the Ox and Oy axis is the same. As in the first example, one
can read the target and final elastic moduli from Table 1. As before, the final optimized
microstructure has a shear moduli close to 0 and the final apparent Poisson ratio is close to
the imagined target.
The evolution of the cost-functional displayed in Figure 7 shows that the decrease was not
monotonous and that several interventions in the step size and algorithmic details where nec-
essary to reestablish convergence. Moreover these moments are correlated with the important
variations in the volume constraint, however the final volume ratio at approximatevely 35%
lies in the middle of the imposed interval.
Example 3. The third microstructure to be optimized is a structure whose target apparent
Poisson’s ration is ν∗ = −0.5. The volume constraint is set to V t = 40% and is updated
the same exact way as in the first example. Again, as in example 2, we symmetrized the
structure along the Ox and Oy axis.

The structure exhibits cubic symmetry with apparent Poisson ratio ν∗ = −0.47. Moreover
one can remark that the final elastic moduli are very close to the target and that this structure
has a shear moduli which is of the same order of magnitude as the other moduli.
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Initial design Final design Macro-structure

Figure 8. The design process of the material from initial guess to final macro-
structure. Young modulus of 0.91, void.

Objective Volume constraint

Figure 9. Convergence history of objective function and the volume constraints.

3. Analysis of fabricated polymer structures

Manufacturing process: equipment and materials. The optimal shapes have been
additively manufactured with digital light processing stereo-lithography technology (DLP)
using a EMBER DLP 3D printer. A digital projector screen flashes a single image of each
layer across the entire surface of the vat filled of photo-sensitive liquid resin at once, causing
chains of molecules to link and thus forming solid polymer. The process is repeated until
the 3D model is complete. Then the vat is drained of liquid, revealing the solidified model
and the solid model is washed with a solvant.

The printer has a resolution of 50µm, corresponding to 1 pixel in the digital projector
screen, and a range of the processing layer thickness of 10− 100µm. The largest processing
build volume is 64mm × 40mm × 134mm (note that 64mm × 40mm correspond to a
1280×800 pixels picture). For a thickness of 25µm per layer, the speed range is of 18mm/h.
The printable minimal feature size of the specimens is announced at 0.4mm corresponding
roughly to 8 pixels.

We selected a rubber-like material, commercially denoted as GM08b, as the base material
because of its compliant nature. Figure 10 displays a representative tensile stress–strain
curve of the GM08b material. As expected for a rubber-like material it does not display an
ideal linear elastic behavior, it exhibits a gradually variation of the stiffness with increasing
strain. However, we can linearly approximate the stiffness with a 7 MPa Young’s modulus
in accordance with one of the manufacturers data sheet (see https://dl.airtable.com).
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Target tensor At Homogenised tensor AH Unit cell

 0.1 −0.1 0
−0.1 0.1 0

0 0 G

  0.12 −0.05 0
−0.05 0.04 0

0 0 6× 10−3



 0.1 −0.1 0
−0.1 0.1 0

0 0 G

  0.12 −0.05 0
−0.05 0.12 0

0 0 0.003



 0.2 −0.1 0
−0.1 0.2 0

0 0 G

  0.19 −0.09 0
−0.09 0.19 0

0 0 0.6


Table 1. Target tensor values and homogenized tensor values computed nu-
merically for each corresponding shape.

Figure 10. Uniaxial tensile test. Homogeneous stress-strain curves

Moreover, let us further remark that the Poisson coefficient of the material has not been
measured, but we should expect it to be close to the incompressible limit of ν ≈ 0.5.

The optimal shapes obtained in examples 1–3 (see Figure 4, Figure 6, Figure 8 are
represented by the final level set function. The later presents a smooth variation between
values corresponding to the two materials in a neighborhood of their interface and therefore
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the levelset representation has been binarized and then extruded in the Oz direction in order
to create a 3D object. More precisely, the 3D-printed samples have been produced by the
following procedure:

(i) Binarize the level set function representing by shape optimisation. As the later
presents a smooth variation between values corresponding to the two materials in
a neighborhood of their interface.

(ii) Create a periodic array for each sample: 8 × 6 unit cells for example 1, 5 × 4 unit
cells for example 2 and example 3, using the software ImageJ [31]. The final result
was a binarised 1280× 800 pixels image (see Figure 11 for details) .

(iii) Extrude the preceding image to obtain the 3D sheet of the desired height. The final
dimensions of the printed samples are 64 × 38 × 6mm for example 1 and 64× 40 ×
6mm for example 2 and 3.

(iv) Print the files with the following processing parameters: laser power was 5W , the
exposure time 1 s per layer and the layer thickness was 50µm.

(v) Wash the samples in an isopropanol bath for 5min
(vi) Post-cure the samples for 30min in an UV oven at 2000W.

4. Testing and full-field displacement measurement using digital image
correlation

A series of uniaxial static tensile tests were undertaken to assess the tensile properties
of the auxetic lattice structures by using a home-made testing machine with a symmetric
displacement of the two crossheads and equipped with a 100N load cell. The tensile tests
were performed at a rate of 0.05mm/s up to 3mm, which corresponds to a strain rate of
ε̇ = 10−3 s−1 up to a maximal strain of ε = 5%.

Several pictures were taken during the tensile experiment and the complete displacement
field of the specimen was computed using digital image correlation (DIC). The pictures with
a resolution of 4904× 3280 were obtained using a high-resolution digital camera (Schneider
Optics 8-bit camera with a Makro-UNIFOC 100/77 lens) mounted on the tensile testing
machine and grey scale pictures were recorded every second during the loading. The camera
is mounted on a perpendicular axes with respect to the plane of the specimen, which enables
the direct use of a 2D DIC. To improve the precision of the measurement, a white speckle
pattern was placed on the sample by airbrushing.

The DIC was done using the CorrelManuV 2D (CMV) software, developed by M. Bornert
[7]. The processed displacement field corresponds to a single unit cell in the middle of the
structure at 5 different loading time steps, using a 100 × 100 grid, i.e. having 10000 mea-
surement points. For each node, the subset size was set to 20×20 pixels, while the searching
area was set to 100× 100 pixels. The measurement included a computation without trans-
formation, i.e. rotation of the subset window and a re-optimisation allowing transformations
with a reduced searching area of 30× 30 pixels.

Finite Element Computations. A series of finite element computation were undertaken
under the assumption small strains, large displacements and plane stress using the finite
element solver Cast3M2018 (http://http://www-cast3m.cea.fr). The mesh was obtained
using image processing from the binarized images of the optimal level set function and
completed to the sample geometry including the grips. The sample was loaded by the
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Example 1: Input design Example 1: Fabricated result

Example 2: Input design Example 2: Fabricated result

Example 3: Input design Example 3: Fabricated result

Figure 11. Fabricated auxetic microstructures with different apparent Pois-
son ratios (right) and the initial input design (left).

imposing the displacements of the clamps of the tensile machine. Other boundaries were
stress free edges. The elastic behavior was considered to be linear and corresponded to the
linear approximation of the base material displayed in Figure 12.

Results. The stress strain response under a uniaxial tensile test for the three materials are
displayed in Figure 12. One can easily observe a linear behavior of the samples that up to
a maximal strain of 5% strain despite the nonlinearity of the rubber-like base material in the
same strain range. This indicates that the samples have as expected structural deformation
where different parts of the ”lattice” behave as rigid struts and deformable hinges. This
effect will be highlighted by the DIC measurements discussed later.

Furthermore, one can directly observe a lateral expansion during the tensile extension
indicating a negative apparent Poisson’s ratio for all the samples. The precise measurements
of the apparent Poisson’s ratio corresponding to a single central unit cell are presented in
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Figure 12. Stress strain curves for all three examples obtained by performing
a uniaxial tensile test. All three materials exhibit linear behaviour for strains
up to 5%.

figure 16. The precise method for the computation of the apparent Poisson’s ratio of a
single unit cell from DIC measurements was based on homogenization assumptions and is
presented in detail in the appendix A. The results show that the initial apparent Poisson
ratio was for all samples close to the target value used in the optimization process and
was not degraded during the manufacturing process. During tensile loading, the apparent
Poisson’s ratio tends to increase, indicating a decrease of the “auxeticity” of the samples of
up to increases by 10% for a 5% strain. Let us first remark, that the evolution is close to
predictions of the deformation of the samples obtained by the finite element method under
the assumption of large displacements. Second, one can remark that the evolution of the
apparent Poisson ratio with applied strain has already been observed and discussed in [14]
on polymeric filament structure. Moreover, they arrived to correct the phenomenon up to
20% strain using a nonlinear material behavior in the optimization process, see [14, 37] for
more details on the subject. In the case of the optimization procedure presented here, the
extension to nonlinear material behavior is currently under works.

The displacements fields obtained using DIC permit a further comparison with predictions
and give an insight of the deformation mechanism in the samples, i.e. how the structure
moves and deforms. Figures 13–15 display the measured and the computed vertical dis-
placement, i.e. the uy displacement component, of the central unit-cell. A comparison of the
values and the shapes of the colormaps exhibits a good match between the measurements
and finite element prediction. Moreover the displacement fields permits to better under-
stand the local movements of the microstructure which conducts to the global auxeticity
effect by combining almost rigid regions submitted to translations and rotations with local
concentrated deformation exhibiting local hinges.
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Figure 13. Dimensionless values of the vertical displacement field for the unit
cell of the structure in example 1 as measured using Digital Image Correlation
(right) and Finite Element Analysis (left). Scale bar is 1 mm.

testing, it is noted that the lateral expansion during tension test indicates a negative apparent
Poisson’s ratio for all the samples.

Using DIC we have obtained an idea of how the structure moves. On Figures 13–15 we
illustrate the vertical displacement of each sample by a colormap which allows us to capture
the auxetic e↵ect for each structure. It is evident that each structure displays di↵erent aux-
eticity. These DIC measurements are to put in comparison with the same displacement field
obtained numerically via finite element analysis. The numerical computation was performed
under the assumption of elastic behaviour, small strains, large displacements, plane stress
using Cast3M2018. The boundary conditions were chosen to mimic a tensile test. The right
and left boundaries are blocked by the clamps. Conversely the top and bottom boundary
are free edges. A displacement is imposed to the right end of the sample, equivalent to the
e↵ect of applying a uniform horizontal strain of ✏ = 5%. For each structure, we have a
good agreement between the digital image correlation measurements and the finite element
analysis.

Figure 13. Non-dimentionalized values of the vertical displacement field for
the unit cell of the structure in example 1 as measured using Digital Image
Correlation (right) and Finite Element Analysis (left). Scale bar is 1 mm.

Figure 14. Non-dimentionalized values of the vertical displacement field for
the unit cell of the structure in example 1 as measured using Digital Image
Correlation (left) and Finite Element Analysis (right).
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Figure 14. Dimensionless values of the vertical displacement field for the unit
cell of the structure in example 1 as measured using Digital Image Correlation
(left) and Finite Element Analysis (right).
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Figure 15. Dimensionless values of the vertical displacement field for the unit
cell of the structure in example 3 as measured using Digital Image Correlation
(left) and Finite Element Analysis (right).

Figure 16. Evolution of the apparent Poisson ratio plotted as a function
of the strain. We observe the all three materials lose their auxeticity as the
uniaxial strain increases.

5. Conclusion

This paper presented a complete design cycle for auxetic materials based on a topology
optimization of the microstructure, the manufacturing of the material with a periodic mi-
crostructure using a commercial stereolithography printer and its testing. The topology
optimization technique was based on the level set method and the Hadamard shape deriva-
tive to track the topological changes imposed by the variation of the cost functional.
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The results showed that optimal shapes could be directly printed without additional en-
hancement of the surface, which is a direct consequence of the in the smoothed interface
technique used in the optimization. Moreover the manufactured materials had the designed
mechanical behavior. The targeted apparent Poisson’s ratios have been experimentally at-
tained and the local material behavior was close to predictions obtained by the finite element
method. However, the results showed that the nonlinear material behavior both in terms of
the constitutive law and of large strains and displacements should be included in the design
process in order to control the target materials in the large strains regime.

The topology optimization process proved to be efficient tool to reach the desired apparent
Poisson’s ratios. However, the process was not as efficient in reaching a precise tensor of
elastic moduli. The theoretical problem of reachable elasticity tensors has theoretically been
solved using laminates in the seminal paper of Milton & Cherkaev [27] starting from two
isotropic materials with arbitrary Young moduli. Given geometric and materials constraints
that 3D printing introduces we are not certain that all targets of elastic moduli can be
attained. In other words, the definition of the set of elastic moduli determined by all printable
designs is a priori not know. Moreover, we are in need of a simple method to assess the set
of realizable tensors when starting from a combination of real materials and given geometry
constraints imposed by the 3D printer constraints.

The designed examples had two or three non-zero eigenelastic moduli and indicate that
the design of unimode, bimode, pentamode, etc. materials as theoretically proposed in [27]
could be pursued by topology optimization.
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Appendix A. Computation of the apparent Poisson’s ratio

This appendix reviews the mathematical approach that was used to measure/compute the
apparent Poisson’s ratio of a unit cell in both measurement by digital image correlation and
numerical estimation using a finite element method. For the following computation, we place
ourselves in the case of small strain assumption.

Figure 17. Representation of a unit cell

The effective material is supposed to carry a natural orthotropic material behaviour. The
apparent Poisson’s ratio ν12, characterising the transverse strain of the structure in the
direction Oy axis when stretched in the direction Ox, is defined as:

ν∗12 =
AH1122

AH2222

(A.1)

We remind that AH1122 and AH2222 are coefficients of the effective elastic stiffness tensor. In
general ν12 6= ν21. During a uniaxial tensile test in the direction Ox, equation (A.1) yields
to the negative of the ratio of macroscopic transverse strain to macroscopic axial strain:

ν∗12 = −ε
H
22

εH11

(A.2)

In small strain assumption, the strain field can be linearised as:

εεεH = 〈εεε〉Ω =
1

2

(
〈F〉TΩ + 〈F〉Ω

)
− I (A.3)

where F is the average transformation gradient. Considering the small strain assumption:

〈F〉Ω =
1

VΩ

∫
Ω

(I +∇uuu)dΩ (A.4)

Using Ostrogradsky’s theorem, we can express the transformation gradient at the bound-
ary ∂Ω:
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〈F〉Ω =
1

VΩ

(∫
Ω

IdΩ +

∮
Γ

uuu⊗ nnndΓ

)
(A.5)

Study of a unit cell

〈F〉Ω = I+
1

VΩ

(∫
∂ΩT

uuu⊗ eeeydΓ +

∫
∂ΩB

uuu⊗ (−eeey)dΓ +

∫
∂ΩR

uuu⊗ eeexdΓ +

∫
∂ΩL

uuu⊗ (−eeex)dΓ

)
(A.6)

〈F〉Ω = I +
1

VΩ


∫
∂ΩR

uxdΓ−
∫
∂ΩL

uxdΓ
∫
∂ΩT

uxdΓ−
∫
∂ΩB

uxdΓ∫
∂ΩR

uydΓ−
∫
∂ΩL

uydΓ
∫
∂ΩT

uydΓ−
∫
∂ΩB

uydΓ

 (A.7)

Thus from equation (A.3):ε11 = 1
VΩ

(∫
∂ΩR

uxdΓ−
∫
∂ΩL

uxdΓ
)

ε22 = 1
VΩ

(∫
∂ΩT

uydΓ−
∫
∂ΩB

uydΓ
) (A.8)

For each edge of the square unit cell, the integral of the contour is computed by integrating
the displacement of the material in contact with the edge. In other words, the void phase is
not considered in the computation.

ν∗12 = −
∫
∂ΩT

uydΓ−
∫
∂ΩB

uydΓ∫
∂ΩR

uxdΓ−
∫
∂ΩL

uxdΓ
(A.9)

In practice, using a finite element method, equation (A.9) becomes :

ν∗12 = −

1
NT

NT∑
i=1

uiy − 1
NB

NB∑
b

uiy

1
NR

NR∑
i=1

uix − 1
NL

NL∑
i=1

uix

(A.10)

where Ni, i ∈ {T,B,R, L} are respectively the number of nodes on top, bottom, right and
left edges.
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