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Abstract 
 

Background: Mismatch negativity (MMN) is the neurophysiological correlate of cognitive 

integration of novel stimuli. Although MMN is a well-established predictor of awakening in 

non-sedated comatose patients, its prognostic value in deeply sedated critically ill patients 

remains unknown. This prospective, observational pilot study was aimed at investigating the 

prognostic value of MMN for further awakening in deeply sedated critically ill patients. 

Methods: MMN was recorded in 43 deeply sedated critically ill patients on day-3 of ICU 

admission using a classical “Odd-ball” paradigm that delivers rare deviant sounds in a train of 

frequent standard sounds. Individual visual analyses of recordings were performed as well as 

a group level analysis. MMN amplitudes were then analysed according to the neurological 

status (awake vs. not awake) at day-28. 

Results: Median (inter-quartile range) Richmond Assessment Sedation Scale (RASS) at the 

time of recording was -5 [-5 to -4.5]. Visual detection of MMN revealed a poor inter-rater 

agreement (Kappa = 0.17 95%CI [0.07 to 0.26]). On day 28, thirty (70%) patients had 

awoken while 13 (30%) had not. Quantitative group level analysis revealed a significantly 

greater MMN amplitude for patients who awoke compared to those who had not (mean [SD] 

= -0.65 [1.4] vs 0.08 [0.17] µV respectively; p = 0.003).   

Conclusions: MMN can be observed in deeply sedated critically ill patients and could help 

predict further awakening. However, visual analysis alone is unreliable and should be 

systematically completed with individual-level statistics. 
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Introduction 
Despite the involved risks, deep sedation is still required in the management of about 20% of 

critically ill patients 1-4. Deeply sedated critically ill patients are at risk to develop new brain 

dysfunction, such as delayed awakening and delirium, 5-7 which have a considerable impact 

on short and long-term outcome 3, 8-15. Moreover, deep sedation can hamper the detection of 

either the occurrence or worsening of brain dysfunction in brain injured patients 16-17. 

Therefore, detecting and monitoring the occurrence of brain dysfunction and predicting an 

outcome in deeply sedated brain injured patients are major and challenging concerns 18-22. We 

recently demonstrated that the assessments of brainstem reflexes 23-24 EEG 25 or 

somatosensory and brainstem auditory evoked potentials 26 at the early stage of the ICU stay 

can predict 28-day mortality in deeply sedated critically ill patients. In addition to mortality, 

the prediction of awakening is also a relevant endpoint in these patients, especially those who 

required a prolonged deep sedation.  The mismatch negativity (MMN) is an event-related 

potential (ERP) component that has been extensively demonstrated to be useful in predicting 

awakening in comas of various origins 27-29. MMN is a neurophysiologic response which 

reveals the specific detection of rare and deviant sounds occurring in a train of frequent and 

standard sounds. The MMN reveals an automatic and unconscious detection of novelty which 

requires good perceptual discriminative capacity as well as iconic memory 28, 30. The presence 

of an MMN is associated with a higher chance of awakening from a coma in non-sedated 

patients 27, 29, 31-40. Moreover, it has been shown that MMN can be recorded in sedated 

patients, 41-45.  However, the prognostic value of MMN in a cohort of deeply sedated critically 

ill patients remains to be assessed.  In this prospective observational pilot study, we aimed to 

investigate if MMN could be observed in patients receiving deep sedation and whether it 

could be useful for predicting awakening in these patients. 

Methods 

Ethical statement  
This prospective monocentric observational cohort study was approved by the local ethics 

committee "Groupement Hospitalier Universitaire (GHU) Paris Nord, Comité d’Ethique de 

Recherche Biomédicale" (approval number: CERB 11-071). Written informed consent was 

obtained from the patients' legal representatives; and the healthy control subjects for their 

participation in this study. The Strengthening the Reporting of Observational Studies in 

Epidemiology (STROBE) guidelines 46 were followed thoroughly. 
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Patients  

Consecutive mechanically ventilated and sedated patients were enrolled into the study from 

January 2013 to December 2015. ERPs were recorded on day-3 at the bedside in deeply 

sedated patients, defined as a Richmond Assessment Sedation Scale (RASS) < -3 47. Post-

cardiac arrest and moribund patients, as well as patients in whom cerebral death was 

suspected as well as patients suffering from pre-existing of acquired neuropathies were not 

included. Since hypothermia may influence evoked potentials no recording whilst body 

temperature was below 35 °C was done 48-51. We also recorded ERPs from a control group of 

9 non-sedated, healthy subjects, age range 24 to 61 years, mean age 39 years ±14 [SD], 5 

women; using the very same passive auditory odd ball paradigm procedure and equipment as 

that used for patients.  

Baseline clinical data collection 
Demographic characteristics (i.e. age, sex) as well as body weight, date and time of ICU 

admission, category of admission (medical or surgical), co-morbidities, pre-existing risk 

factors for delirium, main cause of critical illness and brain injury, the date and cause of 

initiation of mechanical ventilation (MV) and the date and cause of initiation and maintenance 

of sedation were collected. The Simplified Acute Physiological Score II (SAPS-II)52 , the 

Sequential Organ Failure Assessment (SOFA)53, as well as key interventions and standard 

biological tests needed to calculate these scores were recorded. Baseline data collection was 

performed following a previously described method 24. 

Sedation and analgesia 

The decision to initiate sedation and its subsequent management was overseen by the 

physicians in charge of the patient and followed recent guidelines 9, 14. Sedation was 

administered through a continuous infusion of midazolam and/or propofol, alone or in 

combination with sufentanil. Total cumulative doses of administered drugs at the time of 

neuro-physiological examination were collected. The depth of sedation was monitored using 

the RASS 47, performed every 4 hours until awakening. Sedation was administrated as a 

titration aiming at obtaining the desired RASS 47. The time of onset, the reason for 

administration and duration of sedation were collected as well as the time of awakening 

(defined by eye opening and visual contact >10 sec or RASS ≥ -1). 
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Neurological examination 

At the time of recording, neurological examination, including assessment of brainstem 

reflexes was performed by senior ICU physicians, either neurologists or specifically trained 

intensivists 24.  The Glasgow Coma Scale (GCS), the Full Outline of Unresponsiveness 

(FOUR) score 54 and the RASS were assessed. Physicians in charge of the patient were not 

informed of the results of the neurophysiologic examination.  

Methodology for Event Related Potentials recording and analysis 

Event-related potential recordings 

A Dantec™ / Natus –France Keypoint® portable machine was used for evoked potentials 

acquisition. ERPs were elicited by a passive auditory oddball paradigm using duration and 

frequency deviant sound according to the classical technique 27-28, 32, 55. The stimuli were pure 

tones with a level of 80 dB delivered binaurally through inserted earphones. Eighty-five 

percent of the stimulations were frequent (standard) stimuli and fifteen percent were rare 

(deviant). Characteristics of the two types of auditory stimuli are as follows: the first stimulus 

consisted of a high frequency and long duration tone (2000Hz and 100 ms) and the second 

stimulus of a lower frequency and shorter tone (1000 Hz and 50 ms). The stimulation protocol 

included an automatic crossed design using the higher frequency and longer tone stimulus as 

the rare (deviant) during the first half of the recordings, and as the frequent one (standard) 

during the second half of the recordings 28-30, 55. 

ERPs were recorded with active electrodes positioned at Fz (frontal) and Cz (central) 

according to 10-20 EEG system. The reference electrode was set at the right mastoid and the 

ground electrode on the forehead. Sterile hypodermic needle electrodes were used and inter-

electrode impedance was kept below 3 kOhms. The amplification factor was 75 000. The 

signal was bandpass filtered with an analog 1–160 Hz filter and sampled every second from 

each stimulus onset. Elementary responses with amplitude greater than ± 10 µV were 

automatically rejected, thus eliminating eye movements and other artefacts. Standard and 

deviant responses were averaged online separately and stored when the average of 200 

suitable deviant responses was reached 29. After averaging, data were bandpass filtered with a 

3-30 Hz and Butterworth filter of order 6, to exclude baseline shifts and high-frequency noise. 

Blocks of averaged standard responses and of deviant ones were stored for off-line analysis. 

Note that since this clinical acquisition setting does not allow captures of individual trials, but 
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performs an online averaging process, it does not allow performing individual inter-trials 

analysis. 

Event-related potential analysis 

Individual visual analyses of ERPs were separately performed by five trained 

neurophysiologists (EA, BR, FF, JS and LN), blinded to the clinical data. P1/N1, MMN and 

P300 of each patient were scored as present or absent on a visual wave detection basis, 

according to a standardized criterion including waves’ polarity, expected latency range and a 

minimal amplitude threshold value using the superposed curves and the difference curve 

(deviant minus standard). The inter-observer agreement rates between five raters were 

assessed using Fleiss' Kappa scores. ERPs grand-averages across subjects were computed and 

both conditions were compared using a sample-by-sample paired t-test. Differences were 

considered significant only if we could observe at least 10 consecutives p-value < .05 

(corresponding to effects lasting ≥ 10 ms). In addition to the visual analysis and in order to 

circumvent the impossibility to compute individual inter-trial statistics with our clinical 

setting, we quantified individual amplitude values of MMN for each patient during the time-

window defined on the group lever (on the grand average). Because of poor inter-rater 

agreement, we chose to estimate individual MMN amplitudes by subtracting deviant minus 

standard curves over the time window previously defined at the group level analysis (i.e. 250 

to 269 ms). For controls, we measured individual P1, MMN and P300 amplitudes form 

baseline to the peak. For patients, MMN amplitudes were measured on the subtracted curve 

(deviant minus standard) during the time window defined at the group-level. Individual MMN 

amplitude values of patients who awake and those who did not after discontinuation of 

sedation were then compared using a Wilcoxon rank-sum tests (bilateral). Finally, we 

computed correlations between these individual MMN’s values and variables of interest using 

Spearman correlation coefficients. All analyses were performed using the R statistical 

software version 3.4.0. 

Follow-up 

During sedation, GCS, FOUR, and RASS were assessed daily. After discontinuation of 

sedation, GCS and CAM-ICU 11 were assessed daily for detecting awakening, consciousness 

recovery and delirium. Coma was defined by GCS below 8, awakening by eye opening and 

visual contact >10 sec (=RASS ≥ -1), delirium by a positive CAM-ICU and consciousness 

recovery by GCS of 15 associated with a negative CAM-ICU. Duration of mechanical 
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ventilation, sedation, and length of ICU stay; date of awakening, and when applicable, of 

death as well as the cause of death were collected. Delayed awakening was defined by the 

absence of awakening within the first three days following discontinuation of sedation.  

Results 

Patients’ baseline characteristics and outcome data 
From January 2013 to December 2015, 43 consecutive mechanically ventilated and deeply 

sedated patients were included. Baseline characteristics of the patients are presented in Table 

1. Fourteen (33 %) patients were admitted to the ICU for brain injury and 29 (67%) for a non-

neurological critical illness (Table 1). Coma and acute respiratory failure were the main 

indications for mechanical ventilation. Deep sedation was mainly required for 

synchronization of the ventilator or for severe intracranial hypertension. At the time of 

recording, 38 (88 %) patients were sedated by midazolam, 7 (16 %) by propofol, with 

respective median [IQR] cumulative doses of 5 [4.25 to 10] and 10 [3 to 40] mg/kg/min. 

Sufentanil was given to 35 (81 %) patients with a median [IQR] cumulative dose of 20 [8.7 to 

30] µg/kg/h. The median [IQR] RASS and FOUR score were -5 [-5 to -4.5] and 4 [2 to 6] 

respectively. Overall median [IQR] duration of sedation was 9.5 [4 to 14] days (Table 1). By 

day 28 of admission, 30 (70%) patients had awoken. All patients who had not awoken died by 

day 28. Causes of death were brain death in 2 patients and multiple organ failure in 11 

patients.  A decision to limit active treatments occurred in 3 patients, without being based on 

the results of the ERPs. Patients who will wake up exhibited less severe critical illness, according 

to SAPS-II and SOFA scores but GCS, RASS and cumulative doses of midazolam, propofol and 

sufentanil did not significantly differ between the two groups.  

ERPs data 

Visual interpretation: 
Visual interpretation of ERPs: Fleiss' Kappa inter-rater agreement scores obtained among five trained 

neurophysiologists who performed blinded visual interpretations of patients’ ERPs probing P1/N1, 

MMN and P300 were all < 0.2 (respectively: k [95%CI] = 0.05 [-0.04 to 0.14], 0.17 [0.07 to 0.26] and 

0.18 [0.08 to 0.27]). These results indicate a poor agreement and emphasize the difficulty in visual 

detection of ERPs recorded in critically ill patients while no individual inter-trials statistics are 

available. Visual interpretation of the 9 healthy volunteers’ recordings revealed latencies and 

amplitudes of the N100, MMN and P300 components recorded at Cz position were as following: mean  
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Table 1 – Patients’ main characteristics at time of inclusion (ERP) and at follow up.  

Variables  

n (women  %)                                               43 (44 %) 

Age (years) -  mean ± SD 59 ± 20 

SAPS II – median [IQR] 48 [31 to 59] 

At time of inclusion (ERP recording time) 

RASS – median [IQR] -5 [-5 to - 4.5] 

GCS – median [IQR] 3 [3 to 3] 

FOUR score – median [IQR] 4 [2 to 6] 

Body temperature - mean (SD) °C 36.2 (1.1)  

Drugs used for sedation:   

             Midazolam – n (%)                                               38 (88 %) 

 Sufentanil – n (%)                                               35 (81 %) 

 Propofol – n (%)                                               7 (16 %) 

 Atracurium – n (%) 4 (9.3 %) 

SOFA – median [IQR] 11[8 to 14] 

At Follow up  

Duration of sedation (days) – median [IQR] 9.5 [4 to 14] 

Duration of mechanical ventilation (days) – median [IQR] 15 [8 to 29] 

Delirium or Delayed awakening post sedation – n (%)                                               28 (65 %) 

Awake at Day-28 – n (%) 30 (70 %) 

Length of stay in the ICU (days) – median [IQR] 19.5 [11.25 to 36] 

 

Abbreviations: SAPS-II: New Simplified Acute Physiology Score; ERP: Event Related 
Potentials; ARDS: Acute Respiratory Distress Syndrome; RASS: Richmond Assessment 
Sedation Scale; SOFA: Sepsis-related Organ Failure Assessment; ICU: Intensive Care Unit. 

 

 

 

Etiologies   

 Sepsis – n (%)                                               13 (30%) 

 ARDS – n (%)                                               16 (37 %) 

 Traumatic brain injury – n (%) 7 (16%) 

 Stroke – n (%) 7 (16%) 
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latencies (SD) in ms: N100= 140 (71), MMN= 186 (21) and P300= 339 (28); and mean 

amplitudes (SD) in µV: N100= -2.15 (1.33), MMN= -1.23 (0.65) and P300= 1.77 (1.75). 

Group analysis: 

Figure 1 features grand average ERPs curves recorded at Cz and Fz scalp positions from the 

group of 9 non-sedated healthy volunteers in our laboratory (A), the 43 deeply sedated 

critically ill patients (B), the subgroup of 13 deeply sedated critically patients who did not 

awake (C) and the subgroup of 30 deeply sedated patients who awoke (D), using the same 

recording paradigm. The P1/N1 complex as well as the MMN were easily distinguishable in 

healthy volunteers. While the P1/N1 complex was challenging to be identified in deeply 

sedated critically ill patients, a significant MMN was observed at around 260 ms latency 

range (from 250 to 269 ms). Compared to non-sedated healthy controls, MMN was slightly 

delayed in deeply sedated critically ill patients. As featured in Figure 1, ERPs obtained at the 

Fz location did not appear to be of added value compared with those recorded at Cz which 

seemed relatively more robust and reproducible. We therefore limited quantitative analysis of 

ERP in this study to data obtained in the Cz position.  

Individual analysis: 

MMN amplitudes computed on the time-window defined at the group level in patients who 

awoke were significantly larger than in the group of non-awoken patients: mean [SD] = -0.65 

[1.4] vs 0.08 [0.17] µV; Wilcoxon p-value = 0.003; Figure 2. MMN amplitudes’ values did 

not correlate either with clinical severity score on the day of recording (day-3 SOFA scores; 

Spearman correlation coefficient r = 0.24, p-value = 0.11), nor with initial severity (admission 

SAPS-II scores, r = - 0.023, p-value: 0.89). Furthermore, MMN amplitudes did not correlate 

with the cumulative dose of midazolam (r = 0.009, p-value: 0.95), sufentanil (r = -0.2, p-

value: 0.21) or propofol (r= -0.039, p-value: 0.8).  
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Figure 1:  Grand average ERPs curves recorded at Cz and Fz scalp positions from the 
group of 9 non-sedated healthy volunteers in our laboratory (A), the 43 deeply sedated 
critically ill patients (B), the subgroup of 13 deeply sedated critically patients who did 
not awake (C) and the subgroup of 30 deeply sedated patients who awoke (D), using 
the same recording paradigm. Blue areas show significant differences (paired t-test p-
values <.05 for a duration ≥ 10ms). 

 

However, the MMN amplitudes were significantly lower in the subgroup of patents with 

RASS -5 compared to those with RASS -4 (Wilcoxon p-value = 0.0017). MMN median 

amplitudes did not different between patients with or without brain injury (Mann-Whitney 

test, p-value = 0.55). 
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Figure 2. Individual patient mismatch negativity (MMN) amplitudes according to Day 
28 awakening outcome (Wilcoxon test). 

 

 

 

Discussion 
Three main findings emerge from this study. First the auditory MMN can be observed in 

critically ill patients receiving deep sedation. Secondly, the preservation of MMN seemed 

associated with awakening after discontinuation of sedation. Third, classical visual 

interpretation of individual ERPs seemed not reliable in ICU. 

Compared to healthy volunteers, MMN observed in deeply-sedated patients was of smaller 

amplitude and the P300 component was totally suppressed (Figure 1). These results are 

consistent with previously reported data describing effects of deep sedation on brain signals 
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56-59. Human and primate study of general anesthesia support that sedatives agents such as 

ketamine (a NMDA-antagonist) and propofol (a GABA-A agonist) reduce neural complexity 

and disrupt brain network connectivity, leading to dramatic decrease of the EEG signal power 

and ERPs components 60-63. Using the local-global ERP paradigm 64-65, that dissociates two 

hierarchical levels of auditory predictive coding by examining the brain responses to a first 

order (local) and a second order (global) sequence violations, Uhrig and colleagues 

demonstrated that both, propofol, and ketamine preserve initial auditory processing, but 

disturbs short-term and long-term auditory predictive coding mechanisms, in primates 63.  

As previously described for non-sedated comatose patients, the observed relationship between 

“preserved MMN” and “occurrence of awakening” after discontinuation of sedation could be 

explained by a better preservation of higher cortical function. The current results are 

complementary to our previous studies on prognostication in deeply sedated critically ill 

patients which probed the predictive value of brainstem and sub-cortical functions, yielding a 

systematic approach for ICU-physician 23-26. Indeed, in these populations, abolition of cough 

reflex, heterogeneous abolition of brainstem reflexes, increased SSEP intracranial conduction 

time and absence of EEG reactivity are associated with increased mortality while the presence 

of MMN seems to be associated with awakening. However, we would like to emphasize that 

these clinical or neurophysiologic tests can be used for assessing the patients’ severity but not 

to support decision for care limitations or withdrawal. We also acknowledge that a 

multimodal approach integrating these clinical and neurophysiological markers should be 

tested in a larger cohort. This is the purpose of a multicenter observational study that we are 

currently conducting (ClinicalTrials.gov number: NCT02395861). 

Though group analysis is valuable in a research setting, for a clinical use, clinicians need 

reliable individual results. In this study we used a typical evoked potential recorder very 

similar to common equipment available in any clinical neurophysiological department. 

Contrarily to research devices, these clinical devices perform an online averaging of trials 

which precludes any further inter – trials statistics. Our results clearly confirmed that this 

traditional visual interpretation, although reliable for other evoked potentials analysis (like 

somatosensory, brainstem auditory or visual evoked potentials), is totally unreliable for the 

interpretation of ERPs in the very unfavourable signal/noise ratio ICU environment. We think 

that any further study should enable inter-trail statistics. However, if the research community 

generally agrees on the need of statistics for ERPs interpretation, several concerns have been 

raised on the important variability of the methods across studies and there is still no gold-
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standard 66-67. Since we were able to demonstrate the existence of an MMN at the group – 

level, we could probe individual MMN amplitudes accordingly to the latency observed at the 

group level. This methodological approach was in some extend validated by the fact that the 

MMN amplitudes were correlated with the occurrence of awakening after discontinuation of 

sedation. However, we acknowledge that the overlap of MMN values between patients who 

will eventually awake compared to those who will not suggest that this method of amplitude 

estimation on a defined time window should be use with caution in a clinical setting. An 

alternative solution allowing some inter-trial reliability while using clinical devices that 

perform online average, could have been to separate the total number of stimulations in a few 

(e.g. 4 or 5) different averaged series (e.g. of 50 deviants and around 300 standards) to 

visually assess the reproducibility of ERPs across series during the recording. This suggestion 

has been included in recent guidelines68. 

Study limitations 

Since our aim was to assess the predictive value for awakening of MMN in deeply sedated 

patients, we have opted to study both primarily brain-injured and non-brain-injured patients. 

MMN has previously been shown as predictive of awakening in comatose patients 

independently of the aetiology of the coma 32. Trying to identify neurophysiologic differences 

between brain-injured and non-brain-injured patients might have been hampered by a lack of 

power. Since we did not adjust statistical tests for multiple comparisons, our results should be 

viewed as exploratory. This limitation is mitigated by the fact that we tested a small number 

of scientific hypotheses—those pertaining to the association of a preserved MMN and 

awakening.  

One may argue that the prognostic value of MMN could simply reflect the negative effect of 

an over sedation, as it was correlated with RASS and cumulative dose of midazolam. In 

addition to sedation, the MMN amplitude might also depend on many other factors, notably 

the severity of organ failures. Indeed, it tended to be related to the SOFA score. As we 

previously discussed, it’s difficult to disentangle these two possibly combined effects on brain 

responses 23, 26. We hypothesized an interaction between these two factors: the same amount 

of sedative agent could have a stronger effect on brain functions accordingly to the intensity 

of critical illness, reflecting that way the brain dysfunction. However, only investigating a 

larger cohort would enable to address the respective influence of critical illness and sedation 

but also to identify other factors (i.e. type of sedative agents, duration of sedation etc.). 
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Conclusion 
This pilot study suggests that the preservation of MMN is predictive of awakening in deeply 

sedated critically ill patients, primarily brain-injured or not. However, the detection of MMN 

cannot be based on visual analysis. We acknowledge that our result needs to be confirmed on 

a larger cohort and with robust individual inter-trial statistics. Investigating with a multimodal 

approach on a larger cohort is warranted for confirming these results, to identify new 

determinants of MMN and to confirm its prognosis value against other neurological and 

neurophysiologic responses. 
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