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A systematic study of the proximity properties of Bregman distances is carried out. This investigation leads to the introduction of a new type of proximity operator which complements the usual Bregman proximity operator. We establish key properties of these operators and utilize them to devise a new alternating procedure for solving a broad class of joint minimization problems. We provide a comprehensive convergence analysis of this algorithm. Our framework is shown to capture and extend various optimization methods.

Introduction 1.Standing assumptions

Throughout, X = R J is the standard Euclidean space with inner product •, • and induced norm

• , and

(1) f : X → ]-∞, +∞] is convex and differentiable on U = int dom f = ∅.

Recall that (see [START_REF] Censor | Parallel Optimization: Theory, Algorithms, and Applications[END_REF])

(2) D f : X × X → [0, +∞] : (x, y) → f (x) -f (y) -f (y), x -y , if y ∈ U ; +∞, otherwise
is the Bregman distance associated with f , also denoted by D for brevity. Let Γ 0 (X) be the set of all proper lower semicontinuous convex functions from X to ]-∞, +∞]. In addition, f satisfies the following standard properties:

A1 f ∈ Γ 0 (X) is a convex function of Legendre type, i.e., f is essentially smooth and essentially strictly convex in the sense of [START_REF] Rockafellar | Convex Analysis[END_REF]Section 26];

A2 f exists and is continuous on U ;

A3 D is jointly convex, i.e., convex on X × X;

A4 (∀x ∈ U ) D(x,
•) is strictly convex on U ;

A5 (∀x ∈ U ) D(x, •) is coercive, i.e., the lower level set {y ∈ X : D(x, y) ≤ η} is bounded, for every η ∈ R.

These assumptions allow us to encompass several important scenarios, see Example 2.5. Finally, ϕ and ψ are two functions such that

(3)

     ϕ ∈ Γ 0 (X), (∀y ∈ U ) ϕ(•) + D(•, y) is coercive, dom ϕ ∩ U = ∅, and 
     ψ ∈ Γ 0 (X), (∀x ∈ U ) ψ(•) + D(x, •) is coercive, dom ψ ∩ U = ∅.

Problem statement

Bregman distances were introduced in [START_REF] Bregman | The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming[END_REF] as an extension to the usual discrepancy measure (x, y) → x -y 2 and have since found numerous applications in optimization, convex feasibility, convex inequalities, variational inequalities, monotone inclusions, equilibrium problems; see [START_REF] Bauschke | Bregman monotone optimization algorithms[END_REF][START_REF] Butnariu | Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization[END_REF][START_REF] Censor | Parallel Optimization: Theory, Algorithms, and Applications[END_REF] and the references therein. The problem under consideration in the present paper is the joint minimization problem (4) minimize Λ : (x, y) → ϕ(x) + ψ(y) + D(x, y) over U × U.

The optimal value of (4) and its set of solutions will be denoted by [START_REF] Bauschke | Legendre functions and the method of random Bregman projections[END_REF] p = inf Λ(U × U ) and S = (x, y) ∈ U × U : Λ(x, y) = p , respectively.

The objective function Λ in (4) consists of a separable term (x, y) → ϕ(x) + ψ(y) and of a coupling term D. This structure arises explicitly or implicitly in a variety of problems, for instance in the areas of image processing [START_REF] Aujol | Image decomposition into a bounded variation component and an oscillating component[END_REF][START_REF] Vese | Modeling textures with total variation minimization and oscillating patterns in image processing[END_REF], signal recovery [START_REF] Combettes | Inconsistent signal feasibility problems: Least-squares solutions in a product space[END_REF], statistics [START_REF] Byrne | Proximity function minimization using multiple Bregman projections, with applications to split feasibility and Kullback-Leibler distance minimization[END_REF][START_REF] Csiszár | Information geometry and alternating minimization procedures[END_REF][START_REF] Iusem | A short convergence proof of the EM algorithm for a specific Poisson model[END_REF], mechanics [START_REF] Mercier | Inéquations Variationnelles de la Mécanique[END_REF], and wavelet synthesis [START_REF] Pesquet | Wavelet synthesis by alternating projections[END_REF]. Further applications will be described in Section 5.

Let ∆ = {(x, x) : x ∈ X}. Then it follows from Lemma 2.4(i) and A1 that [START_REF] Bauschke | Bregman monotone optimization algorithms[END_REF] (∀(x, y) ∈ U × U ) D(x, y) = 0 ⇔ (x, y) ∈ ∆.

Therefore, Problem (4) can be viewed as a relaxation of [START_REF] Bauschke | Iterating Bregman retractions[END_REF] minimize (x, y) → ϕ(x) + ψ(y) + ι ∆ (x, y) over U × U, which, in turn, is equivalent to the standard problem [START_REF] Bauschke | The asymptotic behavior of the composition of two resolvents[END_REF] minimize ϕ + ψ over U.

For the sake of illustration, let us consider the case when f = 1 2 • 2 , so that U = X and D : (x, y) → 1 2 x -y 2 . If ϕ and ψ are the indicator functions of two nonempty closed convex sets A and B, respectively, then [START_REF] Bauschke | The asymptotic behavior of the composition of two resolvents[END_REF] corresponds to the convex feasibility problem of finding a point in A ∩ B. When no such point exists, a sensible alternative is to look for a pair (x, y) ∈ A × B such that x -y = inf A -B . This formulation, which corresponds to (4), was proposed in [START_REF] Cheney | Proximity maps for convex sets[END_REF] and has found many applications in engineering [START_REF] Combettes | Inconsistent signal feasibility problems: Least-squares solutions in a product space[END_REF][START_REF] Mercier | Inéquations Variationnelles de la Mécanique[END_REF][START_REF] Pesquet | Wavelet synthesis by alternating projections[END_REF]. The algorithm devised in [START_REF] Cheney | Proximity maps for convex sets[END_REF] to solve this joint best approximation problem is the alternating projections method [START_REF] Bauschke | The method of forward projections[END_REF] fix x 0 ∈ X and set (∀n ∈ N) y n = P B (x n ) and x n+1 = P A (y n ).

More generally, let prox θ : x → argmin y θ(y)+ 1 2 x-y 2 be the proximity operator [START_REF] Moreau | Propriétés des applications prox[END_REF][START_REF] Moreau | Proximité et dualité dans un espace hilbertien[END_REF] associated with a function θ ∈ Γ 0 (X). In [START_REF] Acker | Convergence d'un schéma de minimisation alternée[END_REF], [START_REF] Bauschke | The method of forward projections[END_REF] was extended to the algorithm [START_REF] Bertsekas | Parallel and Distributed Computation: Numerical Methods[END_REF] fix x 0 ∈ X and set (∀n ∈ N)

y n = prox ψ (x n ) and x n+1 = prox ϕ (y n ) in order to solve (11) minimize (x, y) → ϕ(x) + ψ(y) + 1 2 x -y 2 over X × X.
The purpose of this paper is to introduce and analyze a proximal-like method to solve (4) under the assumptions stated above. The lack of symmetry of D prompts us to consider two single-valued operators defined on U , namely [START_REF] Butnariu | Iterative averaging of entropic projections for solving stochastic convex feasibility problems[END_REF] ← --

prox ϕ : y → argmin x∈U ϕ(x) + D(x, y) and --→ prox ψ : x → argmin y∈U ψ(y) + D(x, y).
The operators ← -prox ϕ and --→ prox ψ will be called the left and the right proximity operator, respectively. While left proximity operators have already been used in the literature (see [START_REF] Bauschke | Bregman monotone optimization algorithms[END_REF] and the references therein), the notion of a right proximity operator at this level of generality appears to be new. We note that [27, p. 26f] observes (but does not exploit) a superficial similarity between the iterative step of a multiplicative algorithm and the application of the right proximity operator --→ prox ψ in the Kullback-Leibler divergence setting (see Example 2.5(ii)), where ψ is assumed to be the sum of a continuous convex function and the indicator function of the nonnegative orthant in X.

In this paper, we shall provide a detailed analysis of these operators and establish key properties. With these tools in place, we shall be in a position to tackle (4) by alternating minimizations of Λ. We thus obtain the following algorithm [START_REF] Butnariu | Iterative methods of solving stochastic convex feasibility problems and applications[END_REF] fix x 0 ∈ U and set (∀n ∈ N)

y n = --→ prox ψ (x n ) and x n+1 = ← -- prox ϕ (y n ).
It is important to realize that it is quite nontrivial to see that this iteration is even well defined. The difficulty lies in guaranteeing that every iterate formally defined in [START_REF] Butnariu | Iterative methods of solving stochastic convex feasibility problems and applications[END_REF] lies again in U , so that the iterative update can be carried out. The crucial details of our analysis rely on various results on the interplay between the Bregman distance and the assumptions A1-A5 imposed on f . Armed with those results, we shall analyze the asymptotic behavior of this algorithm and, in particular, we shall establish convergence to a solution of (4). In the special case when ψ = 0, we recover variants and particular versions of the classical Bregman proximal method proposed in [START_REF] Censor | Proximal minimization algorithm with D-functions[END_REF] (see also [START_REF] Butnariu | Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization[END_REF] and [START_REF] Censor | Parallel Optimization: Theory, Algorithms, and Applications[END_REF]). Moreover, if we let ϕ = 0, we obtain a completely new proximal point method. We shall also extend and recover special cases of various known parallel decomposition algorithms, including least-squares techniques for inconsistent feasibility problems with finitely many sets. Let us also note that if ϕ is an indicator function and ψ is the sum of an indicator function and a differentiable convex function, then problem (4) reduces to a setting discussed in [START_REF] Eggermont | On EM-like algorithms for minimum distance estimation[END_REF]Remark 2.18]. However, the proofs in that manuscript are somewhat sketchy as several details are omitted. For instance, [START_REF] Eggermont | On EM-like algorithms for minimum distance estimation[END_REF] does not explain why the iteration ( 13) is well defined. Algorithm (13) may also be interpreted as a cyclic descent or nonlinear Gauss-Seidel method. However, the typical general convergence results for the latter methods (see, e.g., [10, Proposition 3.3.9]) fail to cover our main result (Theorem 4.4).

The paper is organized as follows. In Section 2, we collect the technical results required by our analysis. Left and right Bregman proximity operators are introduced and studied in Section 3. The asymptotic properties of Algorithm [START_REF] Butnariu | Iterative methods of solving stochastic convex feasibility problems and applications[END_REF] are investigated in Section 4. Finally, various applications and connections with previous works are described in Section 5.

Notation and conventions. Given a function g, denote its subdifferential map (resp. gradient map, conjugate function, and domain) by ∂g (resp. g or ∇g, g * and dom g). If C is a set, then we write ι C (resp. int C and cl C) for its indicator function (resp. interior and closure). We write N = {0, 1, 2, . . .} for the nonnegative integers. When dealing with the Boltzmann-Shannon entropy, it will be convenient to define 0 • ln(0) = 0, and to allow expressions such as x ≤ y, x • y, and x/y, which are understood coordinate-wise, for two vectors x and y in R J .

Auxiliary results

To make the paper self contained and to improve the presentation of the proofs of the main results in the later sections, we collect in this section several technical results. Lemma 2.1 Let g : X → ]-∞, +∞] be a proper convex function with V = int dom g. Proof. The inequality inf g(C) ≥ inf g(C) is clear. Since C ∩ dom g = ∅, the convexity of dom g and [START_REF] Rockafellar | Convex Analysis[END_REF]Corollary 6.3.2] imply that there exists c ∈ C ∩ ri dom g. Now fix x ∈ C ∩ dom g and note that, by [START_REF] Rockafellar | Convex Analysis[END_REF]Theorem 6.1], [START_REF] Butnariu | Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization[END_REF] ]x, c] ⊂ C ∩ ri dom g.

(i) If V = ∅ and g is differentiable on V , then g is continuous on V .
Next, we define, for every α ∈ ]0, 1], (i) Energy:

x α = (1 -α)x + αc ∈ C ∩ ri dom g. It follows from the segment continuity property [40, Theorem 7.5] that g(x) = lim α→0 + g(x α ). Thus, g(x) ≥ inf g(C). We conclude that inf g(C) ≥ inf g(C). Lemma 2.4 (i) (∀x ∈ X)(∀y ∈ U ) D(x, y) = 0 ⇔ x = y. (ii) (∀y ∈ U ) D(•, y) is coercive. (iii) If x ∈ U and (y n ) n∈N is a sequence in U such that y n → y ∈ bdry U , then D(x, y n ) → +∞.
If f : x → 1 2 x 2 , then U = X and D(x, y) = 1 2 x -y 2 .
(ii) Boltzmann-Shannon entropy:

If f : x → J j=1 ξ j ln(ξ j ) -ξ j , then U = {x ∈ X :
x > 0} and one obtains the Kullback-Leibler divergence

D(x, y) = J j=1 ξ j ln(ξ j /η j ) -ξ j + η j , if x ≥ 0 and y > 0; +∞, otherwise. (iii) Fermi-Dirac entropy: If f : x → J j=1 ξ j ln(ξ j ) + (1 -ξ j ) ln(1 -ξ j ), then U = {x ∈ X : 0 < x < 1} and D(x, y) = J j=1 ξ j ln(ξ j /η j ) + (1 -ξ j ) ln (1 -ξ j )/(1 -η j ) , if 0 ≤ x ≤ 1 and 0 < y < 1; +∞, otherwise.
Lemma 2.6 Suppose that x ∈ X and {u, v} ⊂ U . Then:

(15) D(x, v) = D(x, u) + D(u, v) + f (v) -f (u), u -x .
Moreover, D is continuous on U × U and D(u, •) ∈ Γ 0 (X).

Proof. The proof of the identity ( 15) is clear from [START_REF] Aujol | Image decomposition into a bounded variation component and an oscillating component[END_REF]. The continuity of D on U × U follows from Lemma 2.1(i) The function D(u, •) is convex by A3, and proper since u ∈ U . To verify lower semicontinuity of D(u, •), it suffices -in view of (2) -to take a sequence (y n ) n∈N in U that converges to y ∈ cl(U ) and to show that

D(u, y) ≤ lim D(u, y n ). If y ∈ U , then D(u, y n ) → D(u, y) by continuity of D on U × U . If y ∈ bdry(U ), then Lemma 2.4(iii) implies that D(u, y n ) → +∞ = D(u, y).
Identity ( 15) is also known as the "three points identity", see [START_REF] Chen | Convergence analysis of a proximal-like minimization algorithm using Bregman functions[END_REF]Lemma 3.1]. The next result follows by expanding (2) and some calculus.

Lemma 2.7 Take z ∈ U and h ∈ X. Then:

(16) lim t→0 + D(z, z + th) t = 0 = lim t→0 + D(z + th, z) t .
Because of A2 and A3, the function D f conforms to (1) and therefore its Bregman distance D D f , which will play a central role in our analysis, is well-defined.

Lemma 2.8 [9, Lemma 2.9] Take {x, y, u, v} ⊂ U . Then:

(17) D D f (x, y), (u, v) = D f (x, y) + D f (x, u) -D f (x, v) + f (v)(u -v), y -v . Moreover, D D f is continuous on U 4 .
Note that D f itself does not satisfy the counterparts of properties A1-A5; for instance, strict convexity fails as we shall see shortly. However, the expression for D D f becomes simpler when we deal with the energy or the Boltzmann-Shannon entropy (which are defined in Example 2.5):

Example 2.9 [9, Example 2.12] Take {x, y, u, v} ⊂ U . Then:

(i) If f is the energy, then D D f (x, y), (u, v) = D f x, y + (u -v) . (ii) If f is the Boltzmann-Shannon entropy, then D D f (x, y), (u, v) = D f x, yu/v ,
where the product and the quotient is taken coordinate-wise.

We do not know whether a similar simplification can be obtained for the Fermi-Dirac entropy.

Lemma 2.10 Let θ : X → ]-∞, +∞] be convex and x ∈ X be such that dom θ ∩ U = ∅ and

θ(•) + D(x, •) is coercive. Suppose (y n ) n∈N is a sequence in U such that θ(y n ) + D(x, y n ) n∈N is bounded.
Then (y n ) n∈N is bounded and all its cluster points belong to U .

Proof. The coercivity assumption implies the boundedness of (y n ) n∈N . Now let y be a cluster point of (y n ) n∈N , say y kn → y. We argue by contradiction and assume that y ∈ bdry U . By Lemma 2.1(ii), the function θ has an affine minorant, say a. On the other hand, Lemma 2.4(iii) implies that D(x, y kn ) → +∞. Hence -∞ ← θ(y kn ) ≥ a(y kn ) → a(y) > -∞, which is contradictory. 

(∀x ∈ C)(∀n ∈ N) D(x, y n+1 ) ≤ D(x, y n ). (18) 
Then (y n ) n∈N converges to a point in C if and only if all cluster points of (y n ) n∈N lie in C.

Lemma 2.12 Take θ ∈ Γ 0 (X) such that dom θ ∩ U = ∅. Consider the following properties:

(a) dom θ ∩ U is bounded. (b) inf θ(U ) > -∞.
(c) f is supercoercive, i.e., lim

x →+∞ f (x)/ x = +∞. (d) (∀x ∈ U ) D(x, •) is supercoercive.
Then:

(i) If any of the conditions (a), (b), or (c) holds, then 

(19) (∀y ∈ U ) θ(•) + D(•, y) is coercive or, equivalently, (20) 
(∀x ∈ U ) θ(•) + D(x, •) is coercive. Proof. By Lemma 2.1(ii), there exists (z * , α) ∈ X × R such that θ(•) ≥ z * , • + α. (a) ⇒ (b): By Cauchy-Schwarz, we have inf θ(U ) = inf θ(dom θ ∩ U ) ≥ -z * • sup dom θ ∩ U + α > -∞ as dom θ ∩ U is bounded. (b) ⇒ (19) (21) 
: Suppose to the contrary that there exists a sequence Lemma 2.13 Let g : X → ]-∞, +∞] be proper, coercive, and convex. Then inf g(X) > -∞.

(x n ) n∈N in dom f such that x n → +∞ and (θ(x n ) + D(x n , y)) n∈N is bounded. Now observe that µ = inf θ(dom f ) = inf θ(U ) > -∞
∈ U ) θ + f -f (y), • is coercive ⇔ (∀y ∈ U ) 0 ∈ dom(θ + f -f (y), • ) * ⇔ (∀y ∈ U ) f (y) ∈ int dom (f + θ) * ⇔ (20
θ(x) + D(x, y) ≥ α -f (y) + f (y), y + x f (x) x -z * -f (y) → +∞.
Proof. Set µ = inf g(X) and take a sequence (x n ) n∈N in X such that g(x n ) → µ. Since g is coercive, (x n ) n∈N is bounded and therefore it has a cluster point, say x kn → x. By Lemma 2.1(ii), there exists an affine minorant of g, say a. Then µ ← g(x kn ) ≥ a(x kn ) → a(x) > -∞.

3 Bregman envelopes and proximity operators

Definition 3.1 Take θ : X → ]-∞, +∞]. The left Bregman envelope of θ is (24) ←-env θ : X → [-∞, +∞] : y → inf x∈X θ(x) + D(x, y),
and the right Bregman envelope of θ is

(25) -→ env θ : X → [-∞, +∞] : x → inf y∈X θ(y) + D(x, y).
Let us provide two illustrations of these definitions.

Example 3.2 Suppose f = 1 2 • 2 and take θ : X → ]-∞, +∞]. Then D : (x, y) → 1 2 x -y 2 and ←-env θ = -→ env θ = θ ( 1 2 • 2 ) is the Moreau envelope of θ [41, Section 1.G]. Example 3.3 Let C be a subset of X. The left Bregman distance to C is defined by (26) ← - D C = ←-env ι C : y → inf x∈C D(x, y),
and the right Bregman distance to C is defined by

(27) -→ D C = -→ env ι C : x → inf y∈C D(x, y).
The following propositions collect some basic properties of Bregman envelopes.

Proposition 3.4 Let θ : X → ]-∞, +∞] be such that dom θ ∩ U = ∅. Then:

(i) dom ←env θ = U and (∀y ∈ U ) ←env θ (y) ≤ θ(y).

(ii) dom -→ env θ = dom f and (∀x ∈ U ) -→ env θ (x) ≤ θ(x).

(iii) Suppose that θ is convex. Then ←env θ is convex and continuous on U . If, in addition, (19) holds, i.e., (∀y ∈ U ) θ(•) + D(•, y) is coercive, then ←env θ is proper.

(iv) Suppose that θ is convex. We now provide additional conditions guaranteeing that the infima in Definition 3.1 are uniquely attained in U . 

) n∈N in U such that z n → z. Then ← - D C (z n ) ≡ 0, but ← - D C (z) = +∞. Hence ← - D C
is not lower semicontinuous at z. Therefore, left Bregman envelopes need not belong to Γ 0 (X). Left (i.e., classical Bregman) proximity operators have already been used in several works, see e.g., [START_REF] Bauschke | Bregman monotone optimization algorithms[END_REF], [START_REF] Censor | Proximal minimization algorithm with D-functions[END_REF], [19, Chapter 3], [START_REF] Chen | Convergence analysis of a proximal-like minimization algorithm using Bregman functions[END_REF], [START_REF] Eckstein | Nonlinear proximal point algorithms using Bregman functions, with applications to convex programming[END_REF], and [START_REF] Kiwiel | Proximal minimization methods with generalized Bregman functions[END_REF]. On the other hand, the notion of a right proximity operator appears to be new. We note that [27, p. 26f] discusses the formal resemblance between a multiplicative algorithm and the right proximity operator in the Kullback-Leibler divergence setting when θ is the sum of a continuous convex function and the indicator function of the nonnegative orthant in X. Further, we point out below (see Example 3.9) that in the special case of indicator functions, the right proximity operator was previously considered in [START_REF] Bauschke | The method of forward projections[END_REF].

Example 3.8 Suppose that f = 1 2 • 2 and take θ ∈ Γ 0 (X). Since f is supercoercive, it follows from Lemma 2.12(i) that ( 19) is satisfied, and we obtain Moreau's proximity operator [START_REF] Moreau | Propriétés des applications prox[END_REF][START_REF] Moreau | Proximité et dualité dans un espace hilbertien[END_REF][START_REF] Rockafellar | Variational Analysis[END_REF]:

← -- prox θ = --→ prox θ = (Id +∂θ) -1 .
Example 3.9 Let C ⊂ X be a closed convex set such that C ∩ U = ∅. Since ι C is bounded below, Lemma 2.12 guarantees that ( 19) and ( 21) hold; furthermore, ← -prox ι C = ← -P C is the (left, i.e.,) classical Bregman projector onto C [START_REF] Bauschke | Legendre functions and the method of random Bregman projections[END_REF][START_REF] Bregman | The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming[END_REF][START_REF] Byrne | Proximity function minimization using multiple Bregman projections, with applications to split feasibility and Kullback-Leibler distance minimization[END_REF][START_REF] Censor | Block-iterative algorithms with underrelaxed Bregman projections[END_REF] and --→ prox ι C = -→ P C is the right Bregman projector onto C [START_REF] Bauschke | Iterating Bregman retractions[END_REF][START_REF] Bauschke | The method of forward projections[END_REF]. Note that in the last two references, the left and right Bregman projector are called backward and forward Bregman projector. However, because of possible ambiguity in the context of splitting methods, the notions of left and right Bregman projector are preferable.

From now on, we also utilize the notation ∇g to describe the derivative g of a given function g. This increases readability when g is a more complicated expression. The following properties will be needed later. Proposition 3.10 Let θ ∈ Γ 0 (X) be such that dom θ ∩ U = ∅.

(i) Suppose that (19) holds. Then for every (x, y) ∈ U 2 , the following conditions are equivalent:

(a) x = ← -- prox θ (y); (b) 0 ∈ ∂θ(x) + f (x) -f (y); (c) (∀z ∈ X) f (y) -f (x), z -x + θ(x) ≤ θ(z).
Moreover,

(30) ← -- prox θ = (f + ∂θ) -1 • f is continuous on U .
(ii) Suppose that (21) holds. Then for every (x, y) ∈ U 2 , the following conditions are equivalent:

(a) y = --→ prox θ (x); (b) 0 ∈ ∂θ(y) + f (y)(y -x); (c) (∀z ∈ X) f (y)(x -y), z -y + θ(y) ≤ θ(z).
Moreover, --→ prox θ is continuous on U .

Proof. (i): We verify only continuity as the equivalence of (a)-(c), as well as the identity [START_REF] Kiwiel | Proximal minimization methods with generalized Bregman functions[END_REF] 

∇(f + θ) * • f = ∂(f + θ) -1 • f = (f + ∂θ) -1 • f = ← -- prox θ is continuous on U . (ii):
The equivalence of (a)-(c) is clear from [START_REF] Iusem | A short convergence proof of the EM algorithm for a specific Poisson model[END_REF] and convex calculus. To establish the continuity of --→ prox θ on U , pick a sequence (x n ) n∈N in U converging to x ∈ U and set y n = --→ prox θ (x n ), for all n ∈ N. Take q ∈ dom θ ∩ U . Then, using Lemma 2.6, Lemma 2.8, and item (ii)(c), we obtain

D(x, q) ← D(x, q) + D(x, x n ) = D D f (x, q), (x n , y n ) + D(x, y n ) -f (y n )(x n -y n ), q -y n ≥ D(x, y n ) -f (y n )(x n -y n ), q -y n ≥ D(x, y n ) + θ(y n ) -θ(q). (31) 
It follows that θ(y n ) + D(x, y n ) n∈N is bounded. By ( 21) and Lemma 2.10, the sequence (y n ) n∈N is bounded and its cluster points belong to U . Let us extract a converging subsequence, say y kn → y ∈ U . In view of item (ii)(c), we have (32) (∀z ∈ X)(∀n ∈ N) f (y kn )(x kn -y kn ), z -y + θ(y kn ) ≤ θ(z).

We let n tend to +∞ in (32), use continuity of f (see A2) and lower semicontinuity of θ to obtain

(33) (∀z ∈ X) f (y)(x -y), z -y + θ(y) ≤ θ(z).
The equivalence between items (ii)(a) and (ii)(c) now results in y = --→ prox θ (x).

Remark 3.11

The proof of continuity of ← -prox θ presented above extends Lewis' unpublished proof [32] of continuity of ← -P C , where C ⊂ X is a closed convex set such that C ∩ U = ∅. Furthermore, the continuity of ← -P C when f is the Boltzmann-Shannon entropy was first established in [START_REF] Butnariu | Iterative averaging of entropic projections for solving stochastic convex feasibility problems[END_REF].

Proposition 3.12 Let θ ∈ Γ 0 (X) be such that dom θ ∩ U = ∅. (i) If (19) holds, then ←-env θ is differentiable on U and (34) (∀y ∈ U ) ∇ ←-env θ (y) = f (y)(y -← -- prox θ (y)).
(ii) If (21) holds, then -→ env θ is differentiable on U and After dividing this chain of inequalities by t, we take the limit as t → 0 + . Lemma 2.7, A2, and the continuity of P (see Proposition 3.10(i)) imply that the leftmost limit is the same as the rightmost limit, namely f (y)(h), y -P (y) . It follows that

(35) (∀x ∈ U ) ∇ -→ env θ (x) = f (x) -f ( --→ prox θ (x)). Proof. (i): Fix y ∈ U , h ∈ X,
+ ←-env θ (y + th) -←-env θ (y) t = f (y)(h), y -P (y) . (36) lim t→0 
(ii): Fix x ∈ U , h ∈ X, and t ∈ ]0, +∞[ such that x + th ∈ U . We set P = --→ prox θ and obtain, using Lemma 2.6 twice, D(x + th, x) + f (x) -f (P (x + th)), th = D(x + th, P (x + th)) -D(x, P (x + th))

= θ(P (x + th)) + D(x + th, P (x + th)) -θ(P (x + th)) -D(x, P (x + th))

≤ θ(P (x + th)) + D(x + th, P (x + th)) -θ(P (x)) -D(x, P (x)) = -→ env θ (x + th) --→ env θ (x) ≤ θ(P (x)) + D(x + th, P (x)) -θ(P (x)) -D(x, P (x)) = D(x + th, P (x)) -D(x, P (x)) = D(x + th, x) + f (x) -f (P (x)), th
Let us divide this chain of inequalities by t, and then take the limit as t → 0 + . Lemma 2.7 and the continuity of P (see Proposition 3.10(ii)) imply that the leftmost limit is the same as the rightmost limit, namely f (x) -f (P (x)), h . Thus [START_REF] Moreau | Proximité et dualité dans un espace hilbertien[END_REF] lim

t→0 + -→ env θ (x + th) --→ env θ (x) t = f (x) -f (P (x)), h .
Remark 3.13 Special cases of Proposition 3.12(i) have been observed previously in the literature; see, for instance, [42, Theorem 4.1(b)] when inf θ(U ) > -∞ (so that [START_REF] Censor | Parallel Optimization: Theory, Algorithms, and Applications[END_REF] holds by Lemma 2.12(i)) and [19, Proposition 3.2.3] when dom θ = X. The differentiability of -→ D C was established in [START_REF] Butnariu | Iterative averaging of entropic projections for solving stochastic convex feasibility problems[END_REF] for the case where f is the Boltzmann-Shannon entropy.

Let us now provide two illustrations of Proposition 3.12.

Example 3.14 If θ ∈ Γ 0 (X) and f = 1 2 • 2 , then Proposition 3.12 reduces to Moreau's gradient formula [START_REF] Moreau | Proximité et dualité dans un espace hilbertien[END_REF]Proposition 7.d

], namely ∇ θ ( 1 2 • 2 ) = Id -(Id +∂θ) -1 .
Example 3.15 Let C ⊂ X be a closed convex set such that C ∩ U = ∅ and take {x, y} ⊂ U . In view of Examples 3.3 and 3.9, setting θ = ι C in Proposition 3.12 yields ∇ ← -

D C (y) = f (y)(y- ← - P C (y)) and ∇ -→ D C (x) = f (x) -f ( -→ P C (x)).
As the following proposition shows, left and right envelopes and prox operators arise naturally in connection with our basic problem (4). Let us introduce the two auxiliary relaxed problems [START_REF] Pesquet | Wavelet synthesis by alternating projections[END_REF] minimize ←env ϕ + ψ over U and (39) minimize ϕ + -→ env ψ over U.

Their solution sets will be denoted by ( 40)

F = y ∈ U | ←-env ϕ (y) + ψ(y) = inf( ←-env ϕ + ψ)(U ) and (41) 
E = x ∈ U | ϕ(x) + -→ env ψ (x) = inf(ϕ + -→ env ψ )(U ) ,
respectively. In the standard metric setting, i.e., f = 1 2 • 2 , (38) and ( 39) are the two classical partial Moreau regularizations of ( 8), e.g., [START_REF] Mahey | Partial regularization of the sum of two maximal monotone operators[END_REF]. We now relate the sets E and F to the set S, defined in [START_REF] Bauschke | Legendre functions and the method of random Bregman projections[END_REF], as well as to the operators ← -prox ϕ and --→ prox ψ .

Proposition 3. [START_REF] Byrne | Proximity function minimization using multiple Bregman projections, with applications to split feasibility and Kullback-Leibler distance minimization[END_REF] The following properties hold:

(i) E and F are convex.

(ii) (∀(x, y) ∈ U × U ) (x, y) ∈ S ⇔ x = ← -- prox ϕ (y) and y = --→ prox ψ (x) . (iii) E = Fix ← -- prox ϕ • --→ prox ψ and F = Fix --→ prox ψ • ← -- prox ϕ . (iv) (∀(x, y) ∈ E × F ) x, --→ prox ψ (x) ∈ S and ← -- prox ϕ (y), y ∈ S.
Example 4.12 Take (x, y), ( x, y) ⊂ S. Then:

(i) If f is the energy, then y -x = y -x.

(ii) If f is the Boltzmann-Shannon entropy, then y/x = y/ x.

Proof. Combine Corollary 4.11, Example 2.9, and [START_REF] Bauschke | Bregman monotone optimization algorithms[END_REF].

We now turn to an optimization problem dual to (4), namely, to determine 

* ) = f (y) -f (x), f (y)(x -y) . Consequently, if (x n , y n ) n∈N is generated by (46), then f (y n ) -f (x n ), f (y n )(x n -y n ) → (x * , y * ).
Proof. Let (x * , y * ) be a solution of (63) and take (x, y) ∈ S, i.e., (x, y) solves (4). Then, using the Fenchel Duality Theorem The "Consequently" part follows from Theorem 4.4 and the continuity of f and f (see A2).

Remark 4.14 Take (x, y) ∈ S. Proposition 4.13 asserts that (x * , y * ) = f (y)-f (x), f (y)(x-y) is the unique solution of (63).

(i) If f is the energy, then (x * , y * ) = (y -x, x -y) = (x * , -x * ).

(ii) If f is the Boltzmann-Shannon entropy, then (x * , y * ) = ln(y/x), x/y -1 = x * , exp(-x * ) -1 .

(iii) If f is the Fermi-Dirac entropy, then (x * , y * ) = ln y/x (1 -y)/(1 -x) , x -y y(1 -y) .

Note that (i) and (ii) combined with the uniqueness of (x * , y * ) lead to an alternative proof of the identities in Example 4.12.

5 Applications and connections with previous works

Preliminaries

In this section, we discuss various applications of Theorem 4.4 revolving around the basic constrained optimization problem (66) minimize θ over C ∩ U, where θ ∈ Γ 0 (X), dom θ ∩ U = ∅, and C is a closed convex subset of X such that C ∩ U = ∅. We are going to consider increasingly specialized realizations of (66). First, suppose that C = X, that I is an ordered finite index set, and that θ can be decomposed as θ = i∈I ω i θ i , where

(∀i ∈ I) θ i ∈ Γ 0 (X) and dom θ i ∩ U = ∅, (67) 
and the weights {ω i } i∈I ⊂ ]0, 1] satisfy i∈I ω i = 1. Then (66) becomes (68) minimize i∈I ω i θ i over U.

In particular, if we set

(69) (∀i ∈ I) θ i = 1 2 max{0, g i } 2
, where g i ∈ Γ 0 (X) and dom g i ∩ U = ∅, then (68) reduces to solving a system of convex inequalities, namely, (70) find x ∈ U such that max

i∈I g i (x) ≤ 0.
Furthermore, if we set (g i ) i∈I = (ι S i ) i∈I , where (S i ) i∈I is a family of closed convex sets such that, for every i ∈ I, S i ∩ U = ∅, then (70) reduces to the basic convex feasibility problem

(71) find x ∈ U ∩ i∈I S i .
We shall employ a product space setup initially introduced in [START_REF] Pierra | Decomposition through formalization in a product space[END_REF] for metric projection methods and revisited in [19, Section 5.9] in the context of feasibility problems with Bregman distances.

Denote the standard Euclidean product space X I by X and write x = (x i ) i∈I , for x ∈ X (hence,

x 2 = i∈I x i 2 ). Now define (72)            ∆ = (x, . . . , x) ∈ X : x ∈ X , f : X → ]-∞, +∞] : x → i∈I ω i f (x i ), U = U I = int dom f , θ : X → ]-∞, +∞] : x → i∈I ω i θ i (x i ).
Then f induces a Bregman distance D on X defined by

(73) (∀(x, y) ∈ X × X) D(x, y) = i∈I ω i D(x i , y i ).
It is straightforward to verify that f satisfies A1-A5, that dom θ ∩ U = ∅, and that ∆ ∩ U = ∅.

When (66) is not guaranteed to have solutions, one can turn to the Bregman relaxations ( 38) and [START_REF] Pierra | Decomposition through formalization in a product space[END_REF]. Let us now explore these relaxed formulations and derive algorithms to solve them.

Left Bregman relaxation

Setting ϕ = θ and ψ = ι C in ( 8) yields (66). Accordingly, the left relaxation of (66) with respect to θ is derived from [START_REF] Pesquet | Wavelet synthesis by alternating projections[END_REF] 

ω i ←-env θ i over U
as a left relaxation of (68) under the assumption that the functions (θ i ) i∈I satisfy (19) (hence so does θ). The convenience of the product space setup of (72) becomes apparent in the following result.

Proposition 5.2 Let (x, y) ∈ U 2 . Then:

(i) ←env θ (y) = i∈I ω i ←env θ i (y i ).

(ii)

-→ P ∆ (x) = (z, . . . , z), where z = i∈I ω i x i .

(iii) ← -prox θ (y) = ← -prox θ i (y i ) i∈I .

(iv) Fix 

z ∈ Fix -→ P ∆ • ← -- prox θ ⇔ z = i∈I ω i ← -- prox θ i (z) ⇔ 0 = f (z) i∈I ω i z -← -- prox θ i (z) = i∈I ω i f (z) z -← -- prox θ i (z) ⇔ 0 = i∈I ω i ∇ ←-env θ i (z) = ∇ i∈I ω i ←-env θ i (z)
⇔ z solves (76).

(79)

Important conclusions can be drawn from the above proposition. First, item (i) asserts that Problem (76) in X is equivalent to (80) minimize ←env θ over ∆ ∩ U in X. This is a special case of (74) for which Algorithm (75) becomes (81) y 0 ∈ U and (∀n ∈ N) y n+1 = -→ P ∆ • ← -prox θ (y n ).

A direct application of Propositions 5.1 and 3.16 shows that (y n ) n∈N converges to a fixed point of -→ P ∆ • ← -prox θ , provided that such a point exists. In view of Proposition 5.2(ii)-(iv), we therefore obtain the following proposition.

We conclude with an application of this proposition to the right Bregman relaxation of ( 71 Then (x n ) n∈N converges to a point in G.

Connections with previous works

We conclude by providing links between the results of Sections 5.2 and 5.3 and previous works.

Remark 5.9

(i) When f = 1 2 • 2 , Algorithms (82) and (90) coincide with [39, Algorithm 3.1] (see also [START_REF] Mahey | Partial regularization of the sum of two maximal monotone operators[END_REF]).

(ii) When f = 1 2 • 2 , (83) and (91) reduce to the problem of minimizing a weighted sum of the squares of the distances to the sets whereas (84) and (92) reduce to the method of barycentric metric projections. This framework has been explored from different viewpoints in [START_REF] Bauschke | On the convergence of von Neumann's alternating projection algorithm for two sets[END_REF][START_REF] Combettes | Inconsistent signal feasibility problems: Least-squares solutions in a product space[END_REF][START_REF] De Pierro | A parallel projection method for finding a common point of a family of convex sets[END_REF].

(iii) Algorithm (84) has been studied at various levels of generality in [START_REF] Butnariu | Iterative averaging of entropic projections for solving stochastic convex feasibility problems[END_REF][START_REF] Butnariu | Iterative methods of solving stochastic convex feasibility problems and applications[END_REF][START_REF] Byrne | Proximity function minimization using multiple Bregman projections, with applications to split feasibility and Kullback-Leibler distance minimization[END_REF]. Proposition 5.4 is a particular case of the comparable results in [START_REF] Butnariu | Iterative methods of solving stochastic convex feasibility problems and applications[END_REF][START_REF] Butnariu | Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization[END_REF].

(iv) Algorithm (92) is discussed in [START_REF] Bauschke | Iterating Bregman retractions[END_REF][START_REF] Byrne | Proximity function minimization using multiple Bregman projections, with applications to entropy optimization and Kullback-Leibler distance minimization[END_REF].

(

  ii) The function g admits an affine minorant. Proof. (i): [40, Theorem 25.5]. (ii): [40, Corollary 12.1.2]. Lemma 2.2 [40, Corollary 14.2.2] Let g ∈ Γ 0 (X). Then g is coercive if and only if 0 ∈ int dom g * . Lemma 2.3 Let C be an open convex subset of X and let g ∈ Γ 0 (X) be such that C ∩ dom g = ∅. Then inf g(C) = inf g(C).

Proof. (i): [ 5 ,Example 2 . 5 [ 9 ,

 5259 Theorem 3.7.(iv)]. (ii): [5, Theorem 3.7.(iii)]. (iii): [5, Theorem 3.8.(i)]. Example 2.16] Assumptions A1-A5 hold in the following cases, where x = (ξ j ) 1≤j≤J and y = (η j ) 1≤j≤J are two generic points in R J .

Lemma 2 . 11 [ 9 ,

 2119 Lemma 2.20] or[START_REF] Bauschke | Bregman monotone optimization algorithms[END_REF] Section 4.1] Suppose that ∅ = C ⊂ U and (y n ) n∈N is a sequence in U which is Bregman monotone with respect to C, i.e.,

  ran f ⊂ int dom (f + θ) * . (ii) If any of the conditions (a), (b), or (d) holds, then

  (d) ⇒ (21): Letting y → +∞, we obtain (23) θ(y) + D(x, y) ≥ α + y D(x, y) y -z * → +∞.

Proposition 3 . 5 Remark 3 . 6

 3536 Let θ ∈ Γ 0 (X) such that dom θ ∩ U = ∅. (i) Suppose that y ∈ U and that θ(•) + D(•, y) is coercive. Then there exists a unique point z ∈ U such that ←env θ (y) = θ(z) + D(z, y). (ii) Suppose that x ∈ U and that θ(•) + D(x, •) is coercive. Then there exists a unique point z ∈ U such that -→ env θ (x) = θ(z) + D(x, z). Proof. (i): Apply [6, Proposition 3.21.(ii)], [6, Proposition 3.23.(v)(b)], and [6, Proposition 3.22.(ii)(d)]. (ii): Set µ = -→ env θ (x). By Lemma 2.13, µ ∈ R. Take (z n ) n∈N in U such that θ(z n ) + D(x, z n ) → µ. Then by Lemma 2.10, (z n ) n∈N has a cluster point in U , say z kn → z ∈ U . However, by Lemma 2.6, θ(•) + D(x, •) is lower semicontinuous at z and therefore µ ≤ θ(z) + D(x, z) ≤ lim(θ(z kn ) + D(x, z kn )) = µ. Furthermore, A4 implies that θ(•) + D(x, •) is strictly convex, which secures the uniqueness of z. Suppose that U = X (as happens for the two entropies in Example 2.5) and set C = cl(U ) in Example 3.3. Now pick z ∈ bdry U and (z n

Proposition 3 .Definition 3 . 7

 337 5 allows us to define the following operators on U . Let θ ∈ Γ 0 (X) be such that dom θ ∩ U = ∅. If (19) holds, then the left proximity operator associated with θ is (28) ← -prox θ : U → U : y → argmin x∈X θ(x) + D(x, y). If (21) holds, then the right proximity operator associated with θ is (29) --→ prox θ : U → U : x → argmin y∈X θ(y) + D(x, y).

  and t ∈ ]0, +∞[ such that y + th ∈ U . For the sake of brevity, set P = ← -prox θ . Using Lemma 2.6 twice, we estimate D(y, y + th) + f (y + th) -f (y), y -P (y + th) = D(P (y + th), y + th) -D(P (y + th), y) = θ(P (y + th)) + D(P (y + th), y + th) -θ(P (y + th)) -D(P (y + th), y) ≤ θ(P (y + th)) + D(P (y + th), y + th) -θ(P (y)) -D(P (y), y) = ←env θ (y + th) -←env θ (y) ≤ θ(P (y)) + D(P (y), y + th) -θ(P (y)) -D(P (y), y) = D(P (y), y + th) -D(P (y), y) = D(y, y + th) + f (y + th) -f (y), y -P (y) .

  ,y * )∈X×X ϕ * (x * ) + ψ * (y * ) + D * (-x * , -y * ). This is precisely the standard Fenchel dual of the optimization problem (4) -the minus sign is simply added to ensure that the optimal values of the two problems coincide. Now (3) implies the standard constraint qualification which in the present setting states that int dom D f = U × U and dom (x, y) → ϕ(x) + ψ(y) = dom ϕ × dom ψ possess common points. Consequently, by [40, Corollary 6.3.2 and Theorem 31.1], the minimum in (63) is always attained. More information can be obtained when (4) has solutions: Proposition 4.13 Suppose that S = ∅. Then the minimum in (63) is attained at a unique point (x * , y * ) and, for every (x, y) ∈ S, (x * , y

[ 40 ,

 40 Theorem 31.1] and the Fenchel-Young inequality, we obtain 0 = ϕ(x) + ψ(y) + D(x, y) + ϕ * (x * ) + ψ * (y * ) + D * (-x * , -y * ) ≥ x * , x + y * , y + D(x, y) + D * (-x * , -y * ) x, y) + D * (-x * , -y * ) = (-x * , -y * ), (x, y) and thus, with the help of (42), we obtain (65) (-x * , -y * ) = ∇D(x, y) = f (x) -f (y), f (y)(y -x) .

  -→ P ∆ • ← -prox θ = (z, • • • , z) : z solves (76) . Proof. (i): By definition, ←env θ (y) = inf x∈X θ(x) + D(x, y) = inf x∈X i∈Iω i θ i (y i ) + D(x i , y i ) = i∈I ω i inf x i ∈X θ i (y i ) + D(x i , y i ) = i∈I ω i ←env θ i (y i ). (77) (ii): See [7, Example 3.16(ii)]. (iii): It follows from Proposition 3.10(i) thatx = ← -prox θ (y) ⇔ 0 ∈ ∂θ(x) + f (x) -f (y) = ω i ∂θ i (x i ) i∈I + ω i f (x i ) -ω i f (y i ) i∈I ⇔ (∀i ∈ I) 0 ∈ ∂θ i (x i ) + f (x i ) -f (y i ) ⇔ (∀i ∈ I) x i = ← -prox θ i (y i ). (78) (iv): Since Fix -→ P ∆ • ← -prox θ ⊂ ∆ ∩ U, let us fix z ∈ ∆ ∩ U, say z = (z, • • • , z), where z ∈ U . Then it follows from (ii), (iii), A1, A2, and (34) that

Proposition 5 . 8

 58 Suppose that the solution set G of (91) is nonempty and let (x n ) n∈N be a sequence generated by (92)x 0 ∈ U and(∀n ∈ N) x n+1 = ∇f * i∈I ω i ∇f -→ P S i (x n ) .

  by (b) and Lemma 2.3. Then we arrive at the contradiction +∞ > sup n∈N θ(x

n ) + D(x n , y) ≥ µ + sup n∈N D(x n , y) = +∞

since, by Lemma 2.4(ii), D(•, y) is coercive. (19) ⇔ (20): Using Lemma 2.2, we deduce that (19) ⇔ (∀y

  Then -→ env θ is convex and continuous on U . If, in addition,[START_REF] Cheney | Proximity maps for convex sets[END_REF] holds, i.e., (∀x ∈ U ) θ(•) + D(x, •) is coercive, then -→ env θ is proper.Proof. (i) and (ii) follow at once from Definition 3.1 and (2). (iii): A3 asserts that the function (y, z) → θ(z) + D(z, y) is convex. Hence, it follows from [41, Proposition 2.22.(a)] that the marginal function ←env θ is also convex. The continuity of ←env θ on U then follows from (i) and the fact that every convex function on X is continuous on the interior of its domain[START_REF] Rockafellar | Convex Analysis[END_REF] Theorem 10.1]. It is clear from (i) that ←env θ ≡ +∞. On the other hand it follows from[START_REF] Censor | Parallel Optimization: Theory, Algorithms, and Applications[END_REF] and Lemma 2.13 that

-∞ / ∈ ←env θ (X). (iv): Similar to (iii).

  are known, see e.g.[START_REF] Bauschke | Bregman monotone optimization algorithms[END_REF] Section 3.4]. Since f is Legendre by A1, it is essentially strictly convex and so is f + θ. By[START_REF] Rockafellar | Convex Analysis[END_REF] Theorem 26.3], (f + θ) * is essentially smooth. Now Lemma 2.1(i) implies that ∇(f + θ) * is continuous on int dom (f + θ) * and that f is continuous on U . Therefore,
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Proof. (i): In view of (3) and Proposition 3.4(iii)&(iv), E and F are convex, as sets of minimizers of convex functions. For the remainder of the proof, we fix (x, y) ∈ U × U . (ii): Since [START_REF] Teboulle | Entropic proximal mappings with applications to nonlinear programming[END_REF] ∇D(x, y) = f (x) -f (y), f (y)(y -x) ,

we obtain by standard convex calculus and by invoking items (i)(b) and (ii)(b) of Proposition 3.10 the chain of equivalences (x, y) ∈ S ⇔ (0, 0) ∈ ∂Λ(x, y) = ∂ϕ(x) + f (x) -f (y), ∂ψ(y) + f (y)(y -x)

⇔ 0 ∈ ∂ϕ(x) + f (x) -f (y) and 0 ∈ ∂ψ(y) + f (y)(y -x) [START_REF] Vese | Modeling textures with total variation minimization and oscillating patterns in image processing[END_REF] ⇔ x = ← -prox ϕ (y) and y = --→ prox ψ (x).

(iii): It follows from Proposition 3.12(ii) and Proposition 3.10(i) that

Likewise, it follows from Proposition 3.12(i) and Proposition 3.10(ii) that

(iv) follows at once from (ii) and (iii).

Alternating left and right proximity operators

Recall that the standing assumptions on our problem (4) are described by [START_REF] Bauschke | On the convergence of von Neumann's alternating projection algorithm for two sets[END_REF], that its solution set S and its optimal value p are defined in [START_REF] Bauschke | Legendre functions and the method of random Bregman projections[END_REF].

In [START_REF] Butnariu | Iterative methods of solving stochastic convex feasibility problems and applications[END_REF], we proposed the following algorithm to solve (4).

(46) fix x 0 ∈ U and set (∀n ∈ N)

In view of (3) and Definition 3.7, the sequences (x n ) n∈N and (y n ) n∈N are well-defined. We now study the asymptotic behavior of this algorithm, starting with two key monotonicity properties.

Proposition 4.1 Let (x n , y n ) n∈N be generated by (46). Then:

Proof. This is a direct consequence of Definition 3.7 and (46). Proposition 4.2 Let (x n , y n ) n∈N be generated by (46) and take {x, y} ⊂ U . Then:

Proof. Fix n ∈ N. If x ∈ dom ϕ or y ∈ dom ψ, then (48) is clear. Otherwise, it follows from Lemma 2.8, Lemma 2.6, Proposition 3.10 that

Hence

Corollary 4.3 Let (x n , y n ) n∈N be generated by (46) and suppose that p in (5) is finite. Then

Proof. In view of Proposition 4.1, let λ = lim Λ(x n , y n ) = lim Λ(x n+1 , y n ). Clearly, λ ∈ [p, +∞[. Let us assume that λ > p and we shall obtain a contradiction. Take {x, y} ⊂ U and ε ∈ ]0, +∞[ such that λ = Λ(x, y) + ε. Then Proposition 4.2 yields

Our main convergence result can now be stated and proved.

Theorem 4.4 Let (x n , y n ) n∈N be a sequence generated by algorithm (46) and suppose that S is nonempty (and hence p in (5) is finite). Then

Moreover, (x n , y n ) n∈N converges to a point in S.

Proof. Take (x, y) ∈ S. It follows from (48) that

Therefore, (53) holds. Moreover, (54) and Proposition 3.16 imply that (55) (x n ) n∈N is Bregman monotone with respect to E ⊂ U.

In view of Lemma 2.10 (with θ = 0) and A5, the sequence (x n ) n∈N is bounded and all its cluster points lie in U . Let us consider a convergent subsequence, say (56) Hence ( x, y) ∈ S and thus x ∈ E by Proposition 3.16(ii)&(iii). Therefore, every cluster point of (x n ) n∈N belongs to E. Consequently, utilizing (55) and Lemma 2.11, we conclude that (x n ) n∈N converges a point in E, say x. Set ȳ = --→ prox ψ (x). Proposition 3.16(iv) shows that (x, ȳ) ∈ S. On the other hand, Proposition 3.10 implies that

Let us illustrate Theorem 4.4 by presenting some immediate applications; further examples will be provided in Section 5. converges to a point in S.

Proof. This is a consequence of Example 3.9 and Theorem 4.4.

Remark 4.8 Corollary 4.7 corresponds to Csiszár and Tusnády's classical alternating minimization procedure (see their seminal work [START_REF] Csiszár | Information geometry and alternating minimization procedures[END_REF]) which, in turn, covers the expectation-maximization method for a specific Poisson model [START_REF] Iusem | A short convergence proof of the EM algorithm for a specific Poisson model[END_REF]. For an alternative proof of Corollary 4.7 when A ∩ B = ∅, see [7, Application 5.5].

Corollary 4.9 Take θ ∈ Γ 0 (X) and suppose that its set M of minimizers over U is nonempty. Remark 4.10 Item (i) in Corollary 4.9 goes back to [START_REF] Censor | Proximal minimization algorithm with D-functions[END_REF]. A special case of item (ii) in the context of the Kullback-Leibler divergence appears in [START_REF] Eggermont | Multiplicative iterative algorithms for convex programming[END_REF], see also [START_REF] Eggermont | On EM-like algorithms for minimum distance estimation[END_REF]Remark 2.18]. If f = 1 2 • 2 , then items (i) and (ii) reduce to a classical result of Martinet [START_REF] Martinet | Détermination approchée d'un point fixe d'une application Cas de l'application prox[END_REF].

The next two statements concern the invariance of the solution set S. Proof. Consider the iteration (46) with starting point x 0 = x. Using Proposition 3.16, we see that x n ≡ x and y n ≡ y. Hence (53) yields D D f (x, y), ( x, y) = 0. Proposition 5.3 Suppose that the solution set G of (76) is nonempty and let (y n ) n∈N be a sequence generated by

Then (y n ) n∈N converges to a point in G.

The above result can be applied to the problem of finding relaxed solutions to the inequality problem (70) by choosing (θ i ) i∈I as in (69). This approach is of special interest when (70) has no solution since the standard subgradient projection techniques that are available to solve this problem [START_REF] Bauschke | On projection algorithms for solving convex feasibility problems[END_REF][START_REF] Combettes | Convex set theoretic image recovery by extrapolated iterations of parallel subgradient projections[END_REF][START_REF] Kiwiel | Surrogate projection methods for finding fixed points of firmly nonexpansive mappings[END_REF] all fail in this situation. In the particular case of the convex feasibility problem (71), the relaxed problem ( 76 Then (y n ) n∈N converges to a point in G.

Right Bregman relaxation

The left relaxation techniques developed in Section 5.2 have natural right counterparts. Since the resulting statements have largely similar proofs, we shall only highlight the main aspects of this approach.

The right relaxation of (66) with respect θ is obtained by setting ϕ = ι C and ψ = θ in (39), which yields (85) minimize -→ env θ over C ∩ U.

We derive at once from Theorem 4.4 and Proposition 3.16 the following result.

Proposition 5.5 Suppose that (21) holds and that the solution set E of (85) is nonempty. Then the sequence (x n ) n∈N generated by

converges to a point in E.

Now assume that the functions (θ i ) i∈I in (67) satisfy ( 21) (hence so does θ). Then a right relaxation of ( 68) is (87) minimize

The next two results are the right counterparts of Propositions 5.2 and 5.3.

Proposition 5.6 Let (x, y) ∈ U 2 . Then: Then (x n ) n∈N converges to a point in G.