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ABSTRACT
Dynamic systems such as glaciers can be studied using Displacement Field Time Series (DFTS),
often derived from Satellite Image Time Series. Even if data mining patterns expressing interesting
displacement evolutions can be extracted from DFTS, confidence measures coming along with these
series have to be considered to focus on reliable evolutions. This paper introduces a new approach
for selecting displacement evolutions that are reliable, informative and complementary. Reported
experiments exhibit consistent displacement evolutions of Alpine glaciers and complete the current
knowledge of the area.

I. INTRODUCTION

Displacement Field Time Series (DFTS), usually calculated from Satellite Image Time Series
(SITS), can be analyzed using sequential pattern mining techniques, allowing to discover meaningful
displacement evolutions over time and space [1]. Besides handling space and time, DFTS analysis
techniques also have to consider the confidence measures associated with such series. These measures
can be, for example, computed by evaluating the spatial and/or temporal coherence of the displacement
vectors (e.g., [2]). One of the main difficulties is that they cannot be handled as a single global quality
measure of the DFTS, since, as for displacement data themselves, the confidence can change over space
and time. A pattern-based method has thus been recently introduced in [3] to extract displacement
evolutions having a confidence exceeding a given threshold. The approach has two limitations: it does
not handle the confidence during the ranking of the patterns and delivers a set of patterns that may
contain many redundant evolutions.

The main contributions of this paper are the following: (1) the definition of the information gain
obtained from the knowledge of the occurrences of a pattern according to the DFTS confidence measures,
(2) a heuristic for building a set of reliable and informative patterns that complement each other, and
(3) experiments on Alpine glaciers showing that the method can help end-users to complete the current
knowledge of the area.

II. DFTS AND RELIABLE GFS-PATTERNS

We consider a symbolic displacement field time series containing for each location (x, y) a dis-
placement evolution sequence seq(x, y) = 〈(t1, α1, ρ1), . . . , (tn, αn, ρn)〉, where αi and ρi ∈ [0, 1] (with
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i ∈ {1, . . . , n}) are respectively the symbol encoding the displacement magnitude and its confidence
value.

As explained in [1], the Grouped Frequent Sequential Patterns (GFS-patterns) originally designed
to analyze SITS [4] can be adapted to process such symbolic DFTS. A sequential pattern β is a
pattern of the form β1 → β2 → · · · → βm where β1, . . . , βm are m symbols. Let seq(x, y) =
〈(t1, α1, ρ1), . . . , (tn, αn, ρn)〉 be a displacement evolution sequence. Location (x, y) is covered by β
if there exist i1 < i2 < · · · < im so that β1 = αi1 , β2 = αi2 , . . . , βm = αim . In this case,
o = 〈(ti1 , ρi1), (ti2 , ρi2), . . . , (tim , ρim)〉 is called an occurrence of β in seq(x, y). In order to consider
core displacement evolutions, minimal occurrences, as defined in [5], are focused on. An occurrence o
of pattern β is called minimal occurrence if β does not occur in any proper subinterval of [ti1 , tim ]. The
GFS-patterns [4] are the sequential patterns that are frequent and grouped. The term frequent means that
a pattern covers at least σ locations (x, y) in the studied area (i.e., it covers at least a minimum surface).
A pattern β is said to occur in a grouped way if, on average, a location covered by β is surrounded by
at least κ other locations in its 8-neighborhood that are also covered by β.

In order to deal with confidence measures and extract meaningful patterns, a notion of pattern
reliability has been introduced in [3]. A pattern is said to be reliable if it is built on displacement
values whose corresponding confidence measures reach, on average, a minimum level of confidence
noted γ. The reader is referred to [3] for formal definitions.

III. PATTERN SET SELECTION

In this section, we propose an original method for finding a set of informative and complementary
patterns that takes into account the confidence measures. Let us consider a symbolic DFTS containing
|T | acquisition dates and covering Z locations. Its information content can be expressed as the entropy of
a set of |T |×Z random variables, noted V = {X1, X2, . . . , X|T |×Z}. Suppose that we only have a partial
knowledge of the series. The key intuition of the method is that if we are given the occurrences of a
pattern β, then this knowledge can provide additional information about the distributions of variables in
V and reduce the uncertainty we have about the series. The larger this reduction is, the more informative
the pattern is. In the following, this gain with respect to the current partial information we have about
the series is noted ∆(β).

Finding an optimal set of patterns with respect to an entropy criterion is in general NP-hard [6].
Inspired by the SeqKrimp algorithm [6], designed to find sets of patterns that compress datasets, we use
a greedy suboptimal algorithm, given as Algorithm 1, that chooses the most informative patterns in an
iterative way.

In Algorithm 1, line 2, the distributions of all variables in V are initialized to the uniform distribution
over domain I , since, at the beginning, the only known information is that the discretization has been
made using equal frequency bucketing. This state corresponds to a maximum of entropy.

For a pattern β, the gain ∆(β), used line 4, is defined as follows. Let ∆occ(o) denote the gain for an
occurrence o of β. It is based on the occurrence quality and is defined hereafter. In a sequence seq(x, y)
covered by β, we consider that it is the best occurrence of β that will be output to the user. This best
occurrence is simply defined as the one leading to the highest gain. Thus, for the user, the gain coming
from β in seq(x, y) is ∆(seq(x, y), β) = maxo∈O{∆occ(o)}, where O is the set of occurrences of β in
seq(x, y).

Then, the measure of the gain ∆(β), which assesses the interest of this pattern over all sequences it
covers, is defined as:

∆(β) =

∑
(x,y)∈cov(β) ∆(seq(x, y), β)

|cov(β)|
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Algorithm 1 Selection of k informative and complementary patterns
Input: k the number of patterns to select, P the set of reliable GFS-patterns, and their occurrences

extracted from the symbolic DFTS
Output: Φ a set of informative and complementary patterns

1: Φ← ∅
2: ∀X ∈ V , set distribution of X to the uniform distribution
3: while (|Φ| < k and |P | > 0) do
4: β∗ ← argmaxβ∈P (∆(β)), i.e., the pattern maximizing gain w.r.t. the current distributions known

for the variables in V
5: Φ← Φ ∪ {β∗}
6: P ← P \ {β∗}
7: ∀X ∈ V , update distribution of X
8: end while
9: return Φ

It should be noticed that the measure is divided by |cov(β)|, with cov(β) the set of locations that
are covered by β. The intuition for this normalization is that a pattern covering many locations with
occurrences of poor quality is likely to be less desirable than a pattern covering a smaller area but
relying on data points having higher confidences.

To define ∆occ(o), the gain for an occurrence o of pattern β, we interpret the DFTS as a probabilistic
database. In this context, an element (t, α, ρ) in a sequence of the DTFS denotes that symbol α appears
at timestamp t with probability 1 ρ. An occurrence o then simply reveals for some of the data points
the symbols and their associated probabilities. The information gain provided by o is the advantage we
obtain by knowing the symbols and their probabilities (as given by o), when compared to someone that
has less knowledge about the distributions of the symbols over the DFTS.

For example, let us consider a sequence seq in a DFTS over a domain I containing three symbols: 1,
2 and 3. Let us suppose that seq contains five elements from timestamp t1 to t5, each timestamp being
associated to a random variable Xt1 to Xt5 . At the beginning, for instance for variable Xt3 , since no
other information is available, a distribution p having the highest entropy is retained for this variable.
This distribution p is simply the uniform distribution over {1, 2, 3}.

Let us now suppose that for a pattern β = 1 → 3 → 2 we are given the occurrence o =
〈(t1, 0.9), (t3, 0.9), (t5, 0.7)〉. This adds to our knowledge of the true distribution of Xt3 , since it means
that the second element of the pattern, the symbol 3, occurs at timestamp t3 with probability 0.9. The
updated distribution q for Xt3 is then such that Pr(Xt3 = 3) = 0.9. Since we have no information about
the other symbols, their probabilities are chosen so as to obtain the minimum information gain, i.e., their
values must lead to the highest entropy. We thus obtain Pr(Xt3 = 1) = Pr(Xt3 = 2) = 0.1/2 = 0.05.
Using the occurrence o, similar refinements can be made for the distributions of the variables Xt1 and
Xt5 .

More complex constraints on the distributions can also be implied, depending on the kind of
occurrences. A more general approach is thus adopted and briefly introduced as follows. Consider
one of the random variable Xt and its current known distribution p. To determine ∆occ(o), the gain for
an occurrence o, we derive the set η of constraints implied by o on the real (but unknown) distribution
of Xt. The problem is then to find a distribution q for Xt that is the closest to p (i.e., adding the smallest

1Depending on the meaning of confidence ρ, the probability can be ρ itself or a value derived from ρ.
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amount of information) but satisfying the set of constraints η (that must hold for the real distribution).
To this aim we use the Kullback-Leibler divergence, defined as follows:

D(q||p) =
∑
α∈I

q(α) log2

(
q(α)

p(α)

)
where p(α) (resp. q(α)) is Pr(Xt = α) in distribution p (resp. q). D(q||p) quantifies the information
gained if the distribution p is replaced by the real distribution q [7]. The distribution q we are looking
for is then a distribution satisfying the constraints η and minimizing D(q||p), so as to be as close as
possible to p (from an information content perspective). It is obtained by a constraint-based optimization
scheme.

The value of ∆occ(o) is then the sum of the minimized Kullback-Leibler divergences, over all the
pairs (p, q) for the random variables in V that are involved in the constraints derived from occurrence
o.

As defined previously, ∆occ(o) for all occurrences of β is used to determine ∆(β) that is maximized
(line 4 in Algorithm 1). Then, the current sets of patterns Φ and P are updated (lines 5 and 6), and
finally, line 7, the distributions of the random variables are modified according to the occurrences of
the selected pattern β∗. The computation of the new distributions follows the same procedure as the
determination of q from p given above, by minimization of the Kullback-Leibler divergence under the
constraints implied by the occurrences of β∗.

IV. EXPERIMENTS

The proposed approach has been applied to explore displacement evolutions of Alpine glaciers in the
Mont Blanc massif. The DFTS is built from 26 TerraSAR-X images and is composed of two distinct
periods, one in 2009 from May 31 to October 21 and another in 2011 from May 5 to September
25. Each period contains 13 images, with one image every 11 days. Synthetic Aperture Radar (SAR)
images contain amplitude and phase information. The former is used to compute displacement fields,
with the amplitude cross-correlation method implemented in the EFIDIR Tools2. 25 displacement fields,
expressed in m/day, are obtained. Following the works of [2], the confidence measure is intended to
reflect the temporal directional coherence of the 2D displacement vectors. For each sequence seq(x, y),
and for each timestamp t, the confidence measure of the displacement ρdisp is defined as:

ρdisp(x, y, t) = max
(

cos ( ̂~vx,y,t, ūx,y), 0
)

where ~vx,y,t is the displacement vector and ūx,y =
∑n

t=1
~vx,y,t
|~vx,y,t| . The larger is the angle, the smaller is

the confidence.
In order to get robust estimates, the original size of the 25 displacement fields containing the values

~v(x, y, t) is reduced using a low-pass filtering and sub-sampling. Let Ωi,j,t be the list of the values
of ‖~v(x, y, t)‖ contained in a 3x3 tiling window wi,j,t, and Ωi,j be the concatenation of the lists
Ωi,j,1,Ωi,j,2, . . . ,Ωi,j,25 (i.e., all values over time in windows of indices (i, j)). Let MADi,j denotes
the Median Absolute Deviation at location (i, j). Then, the values describing the displacement fields
are the median differential speeds available for each timestamp t and obtained for each window by:

mds(i, j, t) =
median(Ωi,j,t)−median(Ωi,j)

MADi,j

2http://efidir.poleterresolide.fr/index.php/effidir-tools
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(a) Beginning of occurrences. (b) Date of the 3rd occurrence of symbol 3.

(c) End of occurrences. (d) Temporal color scale: from red/May 2009 to
green/Oct. 2009, from blue/May 2011 to magenta/Sept.
2011.

Fig. 1: Maps of pattern 3→ 3→ 2→ 1→ 1→ 1→ 1→ 3→ 2→ 2→ 2 showing in synthetic colors
where and when the pattern occurs according to the temporal color scale. The background is a RGB
composite projected in radar geometry.

The symbolic series is then built from the values of mds(i, j, t) by quantization, using an equal
frequency bucketing and symbols 1, 2 and 3 (denoting respectively low, medium and high values). For
the confidence, the measure ρ(i, j, t) is obtained from the median of the confidence ρdisp over the window
wi,j,t. According to the method given in [3], the extraction parameters of the reliable GFS-patterns were
set to σ = 440500, κ = 5 and γ = 0.22.

Then, the selection of the top 20 informative and complementary patterns was performed and different
evolutions over the velocity sequences were obtained. One is 3 → 3 → 2 → 1 → 1 → 1 → 1 → 3 →
2→ 2→ 2 which exhibits two slowdowns over time: one from level 3 to level 1 and then from level 3
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to level 2. The locations where this pattern occurs (in space) are depicted by colored dots in Figure 1.
Using the temporal color scale shown in Figure 1d, the timestamps (from 1 to 25) corresponding to
the beginning (resp. to the end) of the occurrences are given in Figure 1a (resp. Figure 1c). The first
slowdown captured by the pattern, i.e., the 3→ 3→ 2→ 1→ 1→ 1→ 1 part, begins in early summer
2009 (timestamps shown in Figure 1a). The second slowdown, i.e., the → 3 → 2 → 2 → 2 part,
starts in 2011 according to the timestamps of this symbol 3 depicted in Figure 1b. Such slowdowns are
known glaciological processes for temperate glaciers (e.g., [8]). In the Mont Blanc massif, they have
been reported by [9] along three transects for the year 2009. Here, the pattern shows that the slowdown
has been repeated in 2011, and beyond a transect-based analysis, it underlines the 2D spatial extent of
the phenomenon.

The whole process takes about 36 hours to obtain the 20 best ranked evolution patterns using an Intel
Xeon 3.5 GHz (16 cores) running Linux (Ubuntu).

V. CONCLUSION
The quality of displacement field time series computed from SAR images can be reflected by the

confidence measure associated to each data point. In this paper, we show that this measure can be
exploited to select informative and complementary displacement evolution patterns. To this end, each
data point is assumed to be a random variable whose discrete probability distribution is refined by
combining the information about the confidence of pattern occurrences. The corresponding information
gain is quantified using the Kullback-Leibler divergence. Finally, a greedy algorithm is proposed so as
to select informative patterns that complement each other. Experiments on Alpine glaciers show that
meaningful patterns can be captured.
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7


