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Abstract

In non-life insurance, business sustainability requires accurate and robust pre-

dictions of reserves related to unpaid claims. To this aim, two different approaches

have historically been developed: aggregated loss triangles and individual claim

reserving. The former has reached operational great success in the past decades,

whereas the use of the latter still remains very limited. Through two illustrative

examples and introducing a new tree-based algorithm, we show, not surprisingly,

that individual claim reserving is really promising in the context of long-term risks.

Keywords : reserving, long-tail, censoring, regression tree, disability.

1 Introduction

Given their greater complexity, is it worth using individual claims reserving techniques in

non-life insurance? In this paper, we show that adapting the very famous CART algorithm

to censored data is not a big deal, and enables to introduce a new tree-based algorithm

that shows good performance for individual claim reserving purposes.

Despite some recent advances1, insurance companies still seem to be reluctant to use

micro-level reserving as compared to very standard techniques using aggregated data, like

1See the report on non-life reserving practices by ASTIN Working Party (June 2016) at http://www.

actuaries.org/ASTIN/Documents/ASTIN_WP_NL_Reserving_Report1.0_2016-06-15.pdf
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Chain Ladder and its extensions (Mack [1993], Bornhuetter and Ferguson [1972], Quarg

and Mack [2008]). In such traditional methods, individual claims are summed and stored

into claim development triangles according to a two-dimensional scheme based on origin

and development periods. Of course, the success of these models lies in that they are

easily understandable, simple to use, and have worked very well in many circumstances in

the past. However, practitioners are clearly aware of their limitations2 and know that they

can lead to poor estimates, especially concerning the reserves for the latest development

periods. This mainly originates from the fact that these methods do not capture the

pattern of claim development, which is of primary importance in some cases.

Simultaneously, spectacular improvements to collect historical information and indi-

vidual characteristics on claims have been made in the insurance industry for more than

fifteen years, and companies have now access to very comprehensive datasets. Using these

data and regression models, actuaries can use sophisticated statistical procedures to es-

timate Incurred But Not yet Reported (IBNyR) and Reported But Not Settled (RBNS)

claims. RBNS claims correspond to situations where the insurer knows about the exis-

tence of the claim, has possibly started to pay for it, but does not know how much the

final charge will be. In such a context, taking into account individual features about

claims offers many advantages to approximate the reserve. First, it enables to cope with

heterogeneity issues that can arise when using aggregated data. Indeed, storing all claims

into aggregate run-off triangles makes it impossible to consider changes related to claims

management, reinsurance programs, legal context and product mix. It also prevents from

integrating key claim characteristics and thus crucial risk factors explaining the final

amount to pay. Second, it allows to separate RBNS and IBNyR claims to perform an

advanced risk assessment and monitoring. Moreover, the specific development pattern of

claims can be considered, which means that the full information about the history of the

claim (occurrence, reporting, payments, and closure) are now inputs of the model. And

last but not least, these techniques provide individual claims reserves which could be very

usefull from both a risk management and a claims management perspective (for instance

in order to improve claims management policies).

One could then wonder why such techniques have not been widely applied yet. Ex-

cept that it is harder to implement, the reason seems quite obvious: past contributions on

2Several well-known issues concern propagation of errors through the development factors, instability

in ultimate claims for recent arrival periods, necessary previous treatment of outliers, need to integrate tail

factors (see for instance Halliwell [2007]). Assumptions underlying such models are also often discussed,

as well as corresponding statistical tests (see Harnau [2017]).
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individual claim reserving were mainly focused on parametric models and likelihood max-

imisation (Antonio and Plat [2014], Pigeon et al. [2013], Zhao et al. [2009], Larsen [2007],

Haastrup and Arjas [1993]). Due to RBNS claims, deriving the likelihood associated with

observed claims is not straightforward, because of truncation and censoring phenomenons.

Besides, the parametric relationship existing between claim amounts and risk factors un-

der study can be tricky to specify. As a result, these approaches did not reveal neither

convincing nor very effective in practice. Moreover, according to most of actuaries and

under regulatory constraints (stating that ultimate reserve estimates should be regularly

updated, say each quarter), parametric individual claim reserving models have not really

been considered useful so far for one simple reason: quarterly gains/losses indicators (the

so-called boni-mali) were not improved, which means that the overall quality of prediction

of such models was not better than the Chain Ladder’s one (at least on the short-term,

showing that Chain Ladder remains somewhat effective in most of situations). Since the

main threat for the top management concerns potential urgent need for capital injections,

this statement diminishes the attractiveness of such techniques. Besides, mali can have

impacts on the Solvency Capital Requirement, as well as on future premiums. To the best

of our knowledge, this paper proposes a new way to anticipate, as soon as possible, the

ultimate global reserve by aggregating individual reserve predictions for RBNS claims.

We do not claim that our model is better than others, but simply show to which extent

individual claim reserving by nonparametric approaches could be beneficial to approx-

imate future payments. Although our application focuses here on claim reserving, it is

also important to be aware that many other actuarial applications could use the technique

presented in the sequel. Let us mention for instance the opportunity to decrease costs

related to experts involved in claim estimations, as well as improving the targeting of

specific claims causing atypical claim amounts.

The paper is organized as follows: Section 2 introduces our new method to estimate

individual reserves, with tools similar to Wüthrich [2018]. However, ultimate individual

reserves for RBNS claims are here estimated thanks to an adaptation of the CART al-

gorithm to censored data. Then, two applications are conducted in Section 3 to answer

the initial question. Results are compared to the Chain Ladder method, knowing that

its usual stochastic extensions (Mack [1993], England and Verrall [2002]) all provide the

same expected ultimate global reserve (the only difference lies in assessing its variance).
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2 Proposed individual claim reserving technique

Up to now, very few references exist on individual claims reserving with nonparametric

techniques (Wüthrich [2018], Baudry and Robert [2017]). In the case where the insurer can

access individual information about the claims, our approach consists in using an extension

of the CART algorithm to incomplete observations (Lopez et al. [2016]). This piecewise

tree-based estimator allows for nonlinearities in the dependence structure between claim

amounts and explanatory risk factors (Olbricht [2012]). We wish to estimate the ultimate

amounts of RBNS claims for individual policies, and then deduce individual predictions

of reserves.

2.1 A weighting procedure for duration analysis

The time development of a claim is crucial to predict its severity. Roughly speaking, a

claim which requires a lot of time to be settled is more likely to be associated with a large

amount. Therefore, if M denotes the claim amount, one must provide a model that takes

the impact on this variable of the time before settlement.

We are thus interested in a random vector (M,T,X), where X = (X(1), ..., X(d)) ∈
X ⊂ Rd denotes a set of random covariates that may have an impact on T and/or M ,

and (M,T ) ∈ R+2. In the following, T represents the time before a claim is fully settled,

and M the total corresponding amount (only known at the end of the claim settlement

process). As we are dealing with a duration T, this variable is subject to censoring, which

is a classical issue in survival analysis. This means that, in the database that we use to

calibrate the distribution of (M,T,X) (and hence to predict M), all of the claims are not

fully settled. To describe this phenomenon, let us introduce a censoring variable C ∈ R+,

which represents the time between the opening of the claim and the end of observation

for any other cause than its settlement. For example, retrocession of a claim leads to a

loss of information after some point of time. The observed variables are thus not directly

T and M, but Y = inf(T,C), δ = 1T≤C , and N = δM . The covariates X are considered

as always fully observed. The data is made up of i.i.d. replications (Ni, Yi, δi,Xi)1≤i≤n.

We also assume that C is independent of (M,T,X). This assumption implies that the

amounts M should be free from inflation, see the discussion in Lopez [2018].

It is important to notice that one should not calibrate a model for M only on the closed

claims, that is with δ = 1. Although the closed claims bring a complete information on

the variable, this information is biased: indeed, among closed claims, there is an excess
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of claims with small time of settlement. Since these claims are more likely to be of

small amount, this would lead to an underestimation of the typical values taken by M.

The alternative is to correct the bias caused by censoring using an appropriate weighting

scheme. For a comprehensive description of the algorithm used hereafter and related

properties, the reader is referred to Lopez et al. [2016]. This algorithm is inspired from

the well-known CART algorithm, where the problem of incomplete observations forces to

introduce the Kaplan-Meier (KM) weights. Those weights are defined by

ωi =
δi

n(1− Ĝ(Yi−))
,

with Ĝ the Kaplan-Meier estimator for the cdf of the censoring variable C, denoted by

G(t) = P(C ≤ t). The introduction of such weights is motivated by the fact that, for

all function (m, t,x) → φ(m, t,x) (with φ(m, t,x) = 0 for t s.t. G(t) = 1) with finite

expectation,

E

[
δφ(N, Y,X)

(1−G(Y−))
|X
]

= E[φ(M,T,X) |X],

under the assumption that (M,T,X) is independent from C. Hence, the weights ωi can

be seen as an approximation of some ”ideal” weights ω∗i = δin
−1[1 − G(Yi−)]−1, since

G is usually unknown, and has therefore to be estimated. These weights are hence a

convenient way to correct the bias caused by the censoring, since each quantity of the type

E[φ(M,T,X)] will be consistently estimated by the weighted mean
∑n

i=1 ω
∗
i φ(Ni, Yi,Xi).

Concretely, these KM weights equal 0 when the observation is censored ; otherwise, the

greater the fully observed lifetime the higher the weight. This enables to compensate for

the fact that very few individuals with high durations are fully observed.

2.2 Weighted regression tree algorithm

Regression trees are a convenient way to estimate a regression function without rely-

ing on a linear assumption. Suppose that one wants to estimate a function µ(x) =

E[φ(M,T ) |X = x]. We use the following modified CART algorithm introducing the pre-

vious weights that are computed once for all before launching the algorithm. At each

step of the algorithm, ”rules” x = (x(1), ..., x(d)) → Rj(x) to split the data, that is, for

each possible value of the covariates x, Rj(x) = 1 or 0 depending on whether some con-

ditions are satisfied by x or not, with Rj(x)Rj′(x) = 0 for j 6= j′ and
∑

j Rj(x) = 1. The

weighted-CART algorithm can be expressed as it follows.

Step 1: R1(x) = 1 for all x, and n1 = 1.
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Step k+1: Let (R1, ...Rnk
) denote the rules obtained at step k. For j = 1, ..., nk,

• if all observations such that δjRj(Xi) = 1 have the same characteristics (i.e. if there

exists a fixed value of x such that, for all i such that δjRj(Xi) = 1, Xi = x), then

keep rule j.

• else, rule j is replaced by two rules R′j1 and R′j2 determined in the following way:

define xl such that xl = arg minxml(Rj, x), with

ml(Rj, x) =
n∑
i=1

ωi(φ(Ni, Ti,Xi)− n̄l−(x,Rj))
21

X
(l)
i ≤x

Rj(x)

+
n∑
i=1

ωi(φ(Ni, Ti,Xi)− n̄l+(x,Rj))
21

X
(l)
i >x

Rj(x),

where

n̄l−(x,Rj) =

∑n
i=1 ωiφ(Ni, Ti,Xi)1X(l)

i ≤x
Rj(x)∑n

k=1 ωk1X(l)
k ≤x

Rj(x)
, n̄l+(x,Rj) =

∑n
i=1 ωiφ(Ni,Ti,Xi)1

X
(l)
i

>x
Rj(x)∑n

k=1 ωk1
X

(l)
k

>x
Rj(x)

.

Then, select l̂ = arg maxlml(Rj, xl), and defineR′j1(x) = Rj(x)1x(l)≤xl̂ , andR′j2(x) =

Rj(x)1x(l)>xl̂ .

• Let nk+1 denote the new number of rules.

Stopping rule: Stop if nk+1 = nk.

In this version of the CART algorithm, all covariates are continuous or {0, 1}−valued.

For qualitative variables with more than 2 modalities, they must be transformed into

binary variables, or the algorithm must be slightly modified so that the splitting step of

each Ri should be done by finding the best partition in two groups on the values of the

modalities that minimizes the loss function.

Compared to the classical CART algorithm of Breiman et al. [1984], the splitting

criterion (that is the quantity that is minimized at each step to decompose the population

into two classes) is a weighted quadratic loss (instead of a quadratic loss) in order to

compensate censoring, as explained in section 2.1. The path of the algorithm is a binary

tree, whose leaves represent the different rules. Each set of rules R = (R1, ..., RK) is

associated with an estimator of the regression function, that is µ̂R(x) =
∑K

j=1 µ̂jRj(x),

where

µ̂j =

∑n
i=1 ωiφ(Ni, Yi,Xi)Rj(Xi)∑n

i=1 ωiRj(Xi)
.
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Of course, this algorithm (called the growth step) does not provide a convenient estimate

of the regression function µ(x) (it simply interpolates the data). The final set of rule of

the growth step is called the ”maximal tree”. A pruning step must then be performed to

extract a subtree from this maximal tree, in order to achieve some compromise between

fit and complexity.

Let K(R) denote the number of leaves (i.e. of rules) of a subtree. The pruning

approach proposed by Breiman et al. [1984], adapted to our framework, consists of mini-

mizing
n∑
i=1

ωi(φ(Ni, Ti,Xi)− µ̂R(Xi))
2 +

αK(R)

n
,

where α > 0 is chosen through cross-validation or using a validation sample. Consistency

of this approach (that is the capacity of this penalization strategy to select the proper

subtree) has been shown by Lopez et al. [2016].

2.3 Our algorithm to estimate reserves in practice

We detail here the steps to implement our weighted CART algorithm in the context

of individual claim reserving. For the sake of simplicity but without loss of generality,

consider that the insurer has to pay 1 US$ each day the claim remains open, which

corresponds to the case M = T. Consider an open claim, that is δ = 0, and the

claim is opened since Y = k. We thus aim to estimate RBNS claims by the quantity

E[T | δ = 0, Y = k,X] = E[T |T ≥ k,X]. In this context, there is a direct link between

duration of the claim and final claim amount. In this illustration, our weighted-CART

algorithme can be expressed as it follows.

Step 0: Let’s denote ki the i-th right-censored observation.

Step 1: Estimate the Kaplan-Meier weights from the whole data.

Step i+ 1:

• Select claims (potentially censored) with higher lifetime than ki;

• Build the regression tree (T − ki) |X, T > ki ; based on weighted observations ;

• Prune appropriately the obtained tree (see Lopez et al. [2016]);
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• Estimate the residual lifetime : E[T − ki |T > ki,X] ;

• i = i+ 1 and go back to step i+ 1.

Let us note that the weight are computed from the whole data. Once the regression tree

is built, the final claim amount can be estimated for each open claim. The behavior of the

method is expected to be poorer for the claims with the largest settlement times, which is

essentially due to two facts: the lack of claims such that T > k ; and the erratic behavior

of the weights when T becomes too large, which is a classical issue when dealing with

the Kaplan-Meier estimator. Nevertheless, the question of extreme claims would require

a particular attention, which is not covered by regression trees.

Remark 2.1. In some situations, time-dependent covariates may be present. If the j−th

component of X is time dependent, the function t → X(j)(t) can be discretized by con-

sidering some grid of times (t1, ..., tk). This would not be an obstacle to compute CART

algorithms such as the one of section 2.2. However, if we want to predict the final amount

of a censored claim, the problem is that we do not have knowledge of the evolution of

X(j) after the censoring time. A possibility would be to develop a prediction model for the

evolution of X(j), and then plug the predicted evolution in the algorithm of section 2.3.

3 Application

The goal of this section is to see whether individual claim reserving using our nonpara-

metric approach leads to improve significantly the initial assessment of the global reserve

corresponding to RBNS claims, as compared to Chain Ladder. In this view, we make

comparisons based on a very simple indicator: the boni-mali (see Section 1). Boni-mali

is useful to backtest the quality of predictions made for the expected global reserve.

Real-life claims are usually stored in a database where each record corresponds to

one unique claim, with all corresponding characteristics (in particular the dates of claim

occurrence and closure, if available). Then, reserves are regularly estimated using Chain

Ladder or the weighted CART algorithm, and thus updated at given dates. Hereafter,

reserves are estimated every quarter to remain as close as possible from practice. Indeed,

the french regulation states that quarterly reports on reserves must be provided by insur-

ers. This process enables to compute the boni-mali between each period. Implementing

the Chain Ladder method requires to appropriately aggregate the data (see Section 3.2),

whereas we need to define a grid of durations to be studied in the second case (see the
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parameter k in the algorithm of Section 2.3). This grid obviously depends on the data,

and further details are provided in Section 3.3.

3.1 Data description

When looking at aggregated loss triangles, practitioners usually consider that long-term

risks are characterized by more than ten developments periods. Here, liabilities (or guar-

antees) can last much longer. Indeed, short-term and long-term disability insurance exist

to protect the policyholders against the loss of some revenue, due to some accident or dis-

ease that prevent them from working. Those type of contracts, mostly sold in collective

insurance, can sometimes be assimilated into life annuities.

We focus here on short-term disability insurance. This kind of guarantee is based upon

French Social Security guarantees. It provides payments ro the policyholder for each day

in disability state, with a duration’s limitation of 3 years for a single claims. In local

GAAP, claims reserves have to be estimated, on an individual basis, using disability tables.

Moreover claims not yet reported are generally estimated through triangle techniques.

Nevertheless, for prudential purposes, best estimate calculations are expected. In the

following we only focus on IBNER.

To simplify, say that each day corresponds to a payment of 1 US$. The real-life

database we consider reports the claims of income protection guarantees over six years,

from 12/31/2005 to 12/31/2011. It consists of 103 048 claims, with the following informa-

tion for each claim: a policyholder ID, cause (89 461 sicknesses, 13 587 accidents), gender

(21 912 males, 81 136 females), socio-professional category (SPC): 3 747 managers, 98 577

employees and 724 miscellaneous), age at the claim date, duration in the disability state

(perhaps right-censored), commercial network (three kinds of brokers: 44 797 “Net-A”,

7 471 “Net-B” and 50 780 “Net-C ”). All insurance contracts considered have a common

deductible of 30 days, and the overall censoring rate equals 5.5% at 12/31/2011 (of course

this rate increases when considering the database at earlier observation dates, see Sec-

tion 3.2). There is strong dispersion among the observed durations (or claim lifetimes,

beyond the deductible), the standard deviation being 166 days. Some descriptive statistics

are given in Table 1, and additional information are provided in Appendix B. Our goal is

to predict the global capital to reserve, either by Chain Ladder or by our algorithm. In

the latter case, it consists in predicting the residual lifetime in the disability state for each

policyholder (given the individual features), knowing that this duration fully explains the

claim amount here, like in most of countries for this type of insurance contracts in Europe.
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Variable: Type Min. Median Mean Std. Max.

Occurrence date 01/01/2006 02/16/2009 01/21/2009 11/30/2011

Beginning of payments date 01/01/2006 03/18/2009 02/20/2009 12/30/2011

End of payments date 01/01/2006 07/08/2009 06/03/2009 12/31/2011

Age at claim continuous 18.05 41.55 40.43 9.4 55

Censored claim lifetime continuous 1 110 206.6 223.7 1 060

Uncensored claim lifetime continuous 1 40 96.5 160.2 1 095

Claim lifetime continuous 1 42 102.6 166.3 1 095

Table 1: Statistics on numerical variables and event dates, as of 12/31/2011.

3.2 Building the database, and implementing

Reserves are periodically estimated, say each quarter between 12/31/2009 and 12/31/2010.

Therefore, for every date, we look at the status of the claim (open, closed, new) since

policyholders’ health is likely to deteriorate, remain stable, or improve between two con-

secutive quarters. This process allows to regularly update the characteristics of claims,

in particular report the newly declared claims, those that become settled, and the re-

maining ones (RBNS) requiring an updated computation of the corresponding reserve for

coming periods. Table 2 illustrates, for three policyholders, how data are built through

the historical pattern of claims. Estimation of the global reserve is made within our two

frameworks, namely the Chain Ladder model and our weighted algorithm. Building the

data this way, it is straightforward to get classical loss triangles so as to implement Chain

Ladder technique given origin periods (quarters). Concerning individual claim reserv-

ing, it consists of using the algorithm described in Section 2.3 at the following dates:

12/31/2009, 03/31/2010, 06/30/2010, 09/30/2010, and 12/31/2010.

Let us now comment the different examples given in Table 2. All the three em-

ployees are women who suffered from sickness, other policyholders’ s characteristics are

reported. The first employee declared the sickness on 2008/18/01, and payments started

on 2008/17/02. The insured’s absence lasted 57 days, terminating on 2008/14/04.

When looking at the situation on 2009/31/12, this observation is thus not censored

(this can be seen from the boolean 2009-12-31.NonCensure, set to ’true’). In this case,

there is nothing to reserve since the claim was settled and all payments were made (57$).

That is why this observation is never censored and prediction from the weighting CART

algorithm is useless, whatever the quarter under consideration.
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The second policyholder, with a total sickness lifetime of 419 days, is an interesting

example since it will typically enable us to backtest our future predictions. Indeed, the

censorship indicator changes as time flies. The global censorship indicator indicates that

this observation is fully observed in 12/31/2011 (the claim was settled on 07/29/2010).

However, this is not the case when looking for instance on 12/31/2009. At that time,

this employee is considered a censored observation: 209 days were already paid, but

the claim is not closed. Backtesting shows that there are still 210$ to pay for, whereas

weighted CART algorithm predicts that nearly 240$ should be reserved. One quarter

later, i.e. on 03/30/2010, updates are made: actual payments were increased by 90$

(three months), and CART prediction equals 226$ for this individual reserve. Six months

later (09/30/2010), the observation gets uncensored for the first time. There is thus no

further prediction to provide, but this information is used by our algorithm (updating the

KM weights given to other uncensored observations to perform the estimation).

Finally, the third example remains censored from the beginning to the end of the period

where reserves are calculated (quarters from 12/31/2009 to 12/31/2010). Moreover, the

claim is still open on 12/31/2011, and total payments exceed 950$ (990$ exactly). In

this case, which seems to correspond to an extreme observation (recall the mean duration

equals 100 days, and that the maximum equals 1095), notice that the weighted CART

algorithm anticipates that there are still about 200$ to reserve, knowing that 625$ have

already been paid. This statement reveals that our algorithm somewhat captured this

extreme situation, which is all the more interesting that most expensive claims are often

the longest ones in practice.

PH Payments Reporting date and updated information:

features and dates 09/31/12 10/31/03 10/30/06 10/09/30 10/31/12

52 y.o. beg: 2008/17/02 Censored claim? No No No No No

Employee end: 2008/14/04 Currently paid (in $): 57 57 57 57 57

Network A finally paid: 57$ Still to pay (wCART) NA NA NA NA NA

43 y.o. beg: 2009/05/06 Censored claim? Yes Yes Yes No No

Employee end: 2010/29/07 Currently paid (in $): 209 299 390 419 419

Network C finally paid: 419$ Still to pay (wCART) 239.7 226.4 234.7 NA NA

50 y.o. beg: 2009/15/04 Censored claim? Yes Yes Yes Yes Yes

Employee end: 2011/31/12 Currently paid (in $): 260 350 441 533 625

Network C finally paid: 990$ Still to pay (wCART) 234.5 232.2 225.1 215.9 200.5

Table 2: Three claims with their pattern of payments, showing how we build the database.
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3.3 Results on Boni-Mali and discussion

How to compute individual reserves has been explained in Sections 2.3 and 3.2. The

aggregation of such reserves leads to approximate the expectation of the total reserve

over the whole portfolio, at some given dates. This prediction can be compared to the

Chain Ladder one for RBNS claims, for our five dates of interest (12/31/2009, 03/31/2010,

06/30/2010, 09/30/2010, and 12/31/2010). Figures ?? and 1 show the evolution of the

different estimations (see also the aggregated data stored in triangle for Chain Ladder

estimates in Appendix A), and several interesting remarks can be formulated.

First, the estimation of the ultimate cost of claims over the entire portfolio looks con-

sistent, whatever the technique used (compare each bar to the last one, named “Ultime”).

This is not surprising since the censoring rate is not so high (recall that it roughly equals

7%), which limits the interest of our method. Indeed, given that we focus here on RBNS

claims to estimate the corresponding reserve, Chain Ladder can access almost the full

information. However, it seems that long-tailed risks associated to a higher censoring

rate would significantly increase its bias, leading to poor estimates of the ultimate costs

and thus the global reserve.

Second, how to reach the ultimate cost is very different, depending on the technique un-

der consideration. When using Chain Ladder, the global reserve provided at 12/31/2009

is clearly underestimated as compared to the one given by the weighted CART algo-

rithm (compare the orange hatched area for Chain Ladder versus the green dotted one

for weighted CART). People with high lifetimes were not overweighted with the standard

Chain Ladder approach, since the pattern of individual claims is not taken into account.

The global reserve is, by consequence, largely underestimated. On the contrary, weighted

CART predictions lead to anticipate higher reserves from the beginning, which is inter-

esting since potential future liquidity needs are then decreased. Looking at boni-mali

indicators between each period confirms this, are summarized in Table 3. Clearly, the

weighted CART algorithm is powerful on such a criterion, and capital injection needs

would be impressively decreased (almost 150 000 US$ would be saved in this case on an

annual basis). Notice that this statement is not true for the last quarter under study,

which was expected since the censored part of the lifetimes decreases little by little.

Another way to illustrate errors from both models is given in Figure 2. We compare

prediction errors on both ultimate claims amount (solid line) and reserves (dotted line).

Our method appears to be dominent, especially for the first estimations. This result is

quite interesting since, beyond being able to predict individual reserves, their aggregation

12



Figure 1: Evolution of reserves estimated by both Chain Ladder and the weighted CART

algorithm (’N’ refers to the year 2010). For each bar, the filled area is the amount already

paid, whereas the hatched one is the estimated reserve.

leads to better apprehend the overall need of reserves.

4 Concluding remarks and on-going research

In this paper, we proposed a simple algorithm based on nonparametric techniques to es-

timate RBNS claims in non-life insurance. Such techniques have a lot of advantages,

the greatest one being that they allow to integrate the history of claims in the final es-

timation without specifying a parametric relationship. Our estimator is more responsive

to any changes in the development patterns of claims, which makes it naturally adapted

to long-tailed claim developments (e.g. in Third Party Liability insurance). Practically

speaking, this is extremely important since experts know that the final claim amount is

highly dependent on the final development time. However, using our algorithm requires

Boni (+) / Mali (-) T1 T2 T3 T4 Annual

Chain-Ladder -196 814 -80 173 -51 209 -14 394 -342 591

Weighted CART -58 515 -65 743 -51 989 -21 801 -198 047

Table 3: Boni-mali indicators: mali require capital injections.
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Figure 2: Errors (in %) of Chain Ladder method (lines with square marks) and weighted

CART algorithm (lines with cross marks), at different dates of estimation. Solid lines

correspond to the ultimate claim amounts, and dotted lines concerns the reserves.

a comprehensive database which is not always available in reserving departments, and

has to be built by gathering information from different services. When working with very

short-term and well-known risks, Chain Ladder and its extensions still seem to be a bet-

ter trade-off to estimate the total reserve. Of course, our technique could be improved

in several ways. We first think about the extension to the assessment of risk measures,

and uncertainty of predictions. Such tasks would require to change the loss function used

into the building process of the tree, going from standard Mean Squared Error (MSE) to

Mean Absolute Error (MAE) or likelihood maximization (ML) for instance.
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A Triangles for RBNS claims

We here give the (non cumulated) triangles corresponding to RBNS claims at the five

considered dates for the estimations (some figures have been slightly approximated to

print it). Recall that there cannot be more than twelve quarters for development since

the insured risk is short-term disability (capped at three years).
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We first present the aggregated data at 12/31/2009, leading to a Chain Ladder reserve

of 812 862$.

dev1 dev2 dev3 dev4 dev5 dev6 dev7 dev8 dev9 dev10 dev11 dev12 dev13

01/01/2006 173034 68439 41810 31000 22771 17819 14420 11649 8458 6355 4221 1730 0

04/01/2006 171994 66507 40492 29561 21654 16433 12638 9937 8356 6818 4732 2001 0

07/01/2006 154731 64126 38448 28495 21676 17139 12784 9940 8217 6212 4381 2347 0

10/01/2006 212830 86313 51881 39540 29456 22104 18492 14560 10618 7923 5814 2496 0

01/01/2007 189416 75222 45239 32859 23653 19099 15653 12397 9647 7509 5375 1528

04/01/2007 182655 72237 42465 30751 22770 17245 13304 10731 8187 6359 3012

07/01/2007 176286 73766 44724 34764 26256 19879 15757 12931 10080 3951

10/01/2007 236100 96089 57422 42463 31755 25174 20616 16368 6798

01/01/2008 204179 82000 52283 37630 27601 21640 17243 7422

04/01/2008 207794 83240 53037 39657 30581 24099 9706

07/01/2008 185298 79989 46343 35209 28109 11371

10/01/2008 244596 101740 64641 48016 19574

01/01/2009 207585 84078 51955 19631

04/01/2009 217428 90243 31482

07/01/2009 193560 45537

10/01/2009 155370

Then at 03/31/2010, leading to Chain Ladder reserve of 816 783$:

dev1 dev2 dev3 dev4 dev5 dev6 dev7 dev8 dev9 dev10 dev11 dev12 dev13

01/01/2006 173034 68439 41810 31000 22771 17819 14420 11649 8458 6355 4221 1730 0

04/01/2006 171994 66507 40492 29561 21654 16433 12638 9937 8356 6818 4732 2001 0

07/01/2006 154731 64126 38448 28495 21676 17139 12784 9940 8217 6212 4381 2347 0

10/01/2006 212830 86313 51881 39540 29456 22104 18492 14560 10618 7923 5814 2496 0

01/01/2007 189416 75222 45239 32859 23653 19099 15653 12397 9647 7509 5375 2374 0

04/01/2007 182655 72237 42465 30751 22770 17245 13304 10731 8187 6359 5096 1614

07/01/2007 176286 73766 44724 34764 26256 19879 15757 12931 10080 7186 2530

10/01/2007 236100 96089 57422 42463 31755 25174 20616 16368 12583 4423

01/01/2008 204179 82000 52283 37630 27601 21640 17243 13723 6115

04/01/2008 207794 83240 53037 39657 30581 24099 18545 7680

07/01/2008 185298 79989 46343 35209 28109 21040 7884

10/01/2008 244596 101740 64641 48016 34920 14810

01/01/2009 207585 84078 51955 36238 13595

04/01/2009 217428 90243 55996 21611

07/01/2009 193560 78175 26029

10/01/2009 253249 58351

01/01/2010 130111

Then at 06/30/2010, leading to Chain Ladder reserve of 835 609$:
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dev1 dev2 dev3 dev4 dev5 dev6 dev7 dev8 dev9 dev10 dev11 dev12 dev13

01/01/2006 173034 68439 41810 31000 22771 17819 14420 11649 8458 6355 4221 1730 0

04/01/2006 171994 66507 40492 29561 21654 16433 12638 9937 8356 6818 4732 2001 0

07/01/2006 154731 64126 38448 28495 21676 17139 12784 9940 8217 6212 4381 2347 0

10/01/2006 212830 86313 51881 39540 29456 22104 18492 14560 10618 7923 5814 2496 0

01/01/2007 189416 75222 45239 32859 23653 19099 15653 12397 9647 7509 5375 2374 0

04/01/2007 182655 72237 42465 30751 22770 17245 13304 10731 8187 6359 5096 2329 0

07/01/2007 176286 73766 44724 34764 26256 19879 15757 12931 10080 7186 4964 1524

10/01/2007 236100 96089 57422 42463 31755 25174 20616 16368 12583 8743 2650

01/01/2008 204179 82000 52283 37630 27601 21640 17243 13723 11275 4909

04/01/2008 207794 83240 53037 39657 30581 24099 18545 14289 5765

07/01/2008 185298 79989 46343 35209 28109 21040 15540 6261

10/01/2008 244596 101740 64641 48016 34920 27019 11479

01/01/2009 207585 84078 51955 36238 25454 9949

04/01/2009 217428 90243 55996 40366 16139

07/01/2009 193560 78175 48053 18823

10/01/2009 253249 102356 33678

01/01/2010 225533 49007

04/01/2010 141390

Then at 09/30/2010, leading to Chain Ladder reserve of 821 319$:

dev1 dev2 dev3 dev4 dev5 dev6 dev7 dev8 dev9 dev10 dev11 dev12 dev13

01/01/2006 173034 68439 41810 31000 22771 17819 14420 11649 8458 6355 4221 1730 0

04/01/2006 171994 66507 40492 29561 21654 16433 12638 9937 8356 6818 4732 2001 0

07/01/2006 154731 64126 38448 28495 21676 17139 12784 9940 8217 6212 4381 2347 0

10/01/2006 212830 86313 51881 39540 29456 22104 18492 14560 10618 7923 5814 2496 0

01/01/2007 189416 75222 45239 32859 23653 19099 15653 12397 9647 7509 5375 2374 0

04/01/2007 182655 72237 42465 30751 22770 17245 13304 10731 8187 6359 5096 2329 0

07/01/2007 176286 73766 44724 34764 26256 19879 15757 12931 10080 7186 4964 2363 0

10/01/2007 236100 96089 57422 42463 31755 25174 20616 16368 12583 8743 5461 1570

01/01/2008 204179 82000 52283 37630 27601 21640 17243 13723 11275 9056 4033

04/01/2008 207794 83240 53037 39657 30581 24099 18545 14289 10436 4196

07/01/2008 185298 79989 46343 35209 28109 21040 15540 12430 4923

10/01/2008 244596 101740 64641 48016 34920 27019 21061 8936

01/01/2009 207585 84078 51955 36238 25454 19159 7834

04/01/2009 217428 90243 55996 40366 30478 12894

07/01/2009 193560 78175 48053 36059 14168

10/01/2009 253249 102356 62087 24756

01/01/2010 225533 93119 28943

04/01/2010 227286 53866

07/01/2010 122136

Then at 12/31/2010, leading to Chain Ladder reserve of 862 316$:
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dev1 dev2 dev3 dev4 dev5 dev6 dev7 dev8 dev9 dev10 dev11 dev12 dev13

01/01/2006 173034 68439 41810 31000 22771 17819 14420 11649 8458 6355 4221 1730 0

04/01/2006 171994 66507 40492 29561 21654 16433 12638 9937 8356 6818 4732 2001 0

07/01/2006 154731 64126 38448 28495 21676 17139 12784 9940 8217 6212 4381 2347 0

10/01/2006 212830 86313 51881 39540 29456 22104 18492 14560 10618 7923 5814 2496 0

01/01/2007 189416 75222 45239 32859 23653 19099 15653 12397 9647 7509 5375 2374 0

04/01/2007 182655 72237 42465 30751 22770 17245 13304 10731 8187 6359 5096 2329 0

07/01/2007 176286 73766 44724 34764 26256 19879 15757 12931 10080 7186 4964 2363 0

10/01/2007 236100 96089 57422 42463 31755 25174 20616 16368 12583 8743 5461 2572 0

01/01/2008 204179 82000 52283 37630 27601 21640 17243 13723 11275 9056 7152 2680

04/01/2008 207794 83240 53037 39657 30581 24099 18545 14289 10436 7771 3125

07/01/2008 185298 79989 46343 35209 28109 21040 15540 12430 9482 3887

10/01/2008 244596 101740 64641 48016 34920 27019 21061 16001 6332

01/01/2009 207585 84078 51955 36238 25454 19159 14618 5528

04/01/2009 217428 90243 55996 40366 30478 23651 10269

07/01/2009 193560 78175 48053 36059 26884 10615

10/01/2009 253249 102356 62087 44650 17932

01/01/2010 225533 93119 55235 20466

04/01/2010 227286 90589 32462

07/01/2010 200568 47162

10/01/2010 166502

B Boxplots and histograms of our data

B.1 Boxplots

We focus here on the distribution of numerical variables in our database. The boxplots

(where the size of each box is proportional to the size of the corresponding population) re-

port the following information: minimum (‘whisker’ at the bottom), first quartile (‘hinge’

at the bottom), median, third quartile (‘hinge’ at the top), and maximum (‘whisker’

at the top). It enables to easily figure out the dispersion of the variable under study.

Here, for each categorical explanatory variables, we study the difference between claim

lifetimes depending on the category under study, whatever the status of the claim (still

open or closed). Moreover, we also show that these statistics can significantly vary when

considering only censored claims, or only uncensored claims.
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B.2 Histograms

We now give some details about the distribution of numerical variables, as well as some

information about their association through the V-cramer measure. Notice that the claim

lifetime (variable denoted by ’EndAncIndW’) is mainly associated with the policyholder’s

age (variable ’BegAgeW’).

Distribution of occurrence dates

Fr
eq
ue
nc
y

0e
+0
0

2e
-0
4

4e
-0
4

2005-12-31 2007-06-30 2008-12-31 2010-06-30 2011-12-31

Dates of beginning of payments

Fr
eq
ue
nc
y

0e
+0
0

2e
-0
4

4e
-0
4

2005-12-31 2007-09-30 2009-06-30 2011-03-31

Dates of end of payments

Fr
eq
ue
nc
y

0e
+0
0

2e
-0
4

4e
-0
4

2005-12-31 2007-09-30 2009-06-30 2011-03-31

Distribution of ages at occurrence of claims

Fr
eq
ue
nc
y

20 30 40 50

0
20
00

40
00

60
00

80
00

Distribution of observed claim lifetimes

Fr
eq
ue
nc
y

0 200 400 600 800 1000

0
10
00
0

30
00
0

50
00
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
ex

C
au
se

C
om
N
et

B
eg
A
ge
W

E
nd
A
nc
In
dW

N
on
C
en
su
re

S
P
C

Sex

Cause

ComNet

BegAgeW

EndAncIndW

NonCensure

SPC

1

0.13

0.14

0.37

0.11

0

0.11

1

0.04

0.37

0.13

0.01

0.04

1

0.36

0.11

0.01

0.08

1

0.34

0.35

0.34

1

0.27

0.11

1

0.01 1

References

K. Antonio and R. Plat. Micro-level stochastic loss reserving for general insurance. Scan-

dinavian Actuarial Journal, 2014(7):649–669, 2014.

M. Baudry and C.Y. Robert. Non parametric individual claim reserving in insurance.

Working Paper, 2017.

R Bornhuetter and R E Ferguson. The actuary and IBNR. Casualty Actuarial Society,

59:181–195, 1972.

L Breiman, J Friedman, R A Olshen, and C J Stone. Classification and Regression Trees.

Chapman and Hall, 1984.

19



P.D. England and R.J. Verrall. Stochastic claims reserving in general insurance (with

discussion). British Actuarial Journal, 8(3):443–544, 2002.

S. Haastrup and E. Arjas. Claims reserving in continuous time: a nonparametric bayesian

approach. ASTIN Bulletin, 2:139–164, 1993.

L.J. Halliwell. Chain-ladder bias: Its reason and meaning. Variance, 1(2):214–247, 2007.

doi: 10.1080/03461238.2018.1428681.

Jonas Harnau. Misspecification Tests for Chain-Ladder Models. Technical Report 840,

Discussion Paper Series, Department of Economics, University of Oxford, 2017.

C. Larsen. An individual claims reserving model. ASTIN Bulletin, 37(1):113–132, 2007.

Olivier Lopez. A censored copula model for micro-level claim reserving. working paper or

preprint, February 2018. URL https://hal.archives-ouvertes.fr/hal-01706935.

Olivier Lopez, Xavier Milhaud, and Pierre-Emmanuel Therond. Tree-based censored

regression with applications in insurance. Electronic Journal of Statistics, 10:2685–

2716, 2016. URL dx.doi.org/10.1214/16-EJS1189.

T Mack. Distribution-free calculation of the standard error of chain-ladder reserve esti-

mates. ASTIN Bulletin, 23:213–225, 1993.

Walter Olbricht. Tree-based methods: a useful tool for life insurance. European Actuarial

Journal, 2(1):129–147, 2012. doi: 10.1007/s13385-012-0045-5.

M. Pigeon, K. Antonio, and M. Denuit. Individual loss reserving with the multivariate

skew normal framework. ASTIN Bulletin, 43(3):399–428, 2013.

G Quarg and T Mack. Munich Chain Ladder: A Reserving Method that Reduces the

Gap between IBNR Projections Based on Paid Losses and IBNR Projections Based on

Incurred Losses. Variance, 2(2):266–299, 2008.
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