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Abstract

In non-life insurance, business sustainability requires accurate and robust pre-

dictions of reserves related to unpaid claims. To this aim, two different approaches

have historically been developed: aggregated loss triangles and individual claim

reserving. The former has reached operational great success in the past decades,

whereas the use of the latter still remains very limited. Through two illustrative

examples and introducing a new tree-based algorithm, we show, not surprisingly,

that individual claim reserving is really promising in the context of long-term risks.

Keywords : reserving, long-tail, censoring, regression tree, P&C insurance.

1 Introduction

Given their greater complexity, is it worth using individual claims reserving techniques in

non-life insurance? In this paper, we try to answer this question by illustrating in which

situations a real contribution of individual claim reserving techniques seems to appear.

Despite some recent advances1, insurance companies still seem to be reluctant to use

micro-level reserving as compared to very standard techniques using aggregated data, like

Chain Ladder and its extensions (Mack [1993], Bornhuetter and Ferguson [1972], Quarg

1See the report on non-life reserving practices by ASTIN Working Party (June 2016) at http://www.

actuaries.org/ASTIN/Documents/ASTIN_WP_NL_Reserving_Report1.0_2016-06-15.pdf
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and Mack [2008]). In such traditional methods, individual claims are summed and stored

into claim development triangles according to a two-dimensional scheme based on origin

and development periods. Of course, the success of these models lies in that they are

easily understandable, simple to use, and have worked very well in many circumstances in

the past. However, practitioners are clearly aware of their limitations2 and know that they

can lead to poor estimates, especially concerning the reserves for the latest development

periods. This mainly originates from the fact that these methods do not capture the

pattern of claim development, which is of primary importance in some cases.

Simultaneously, spectacular improvements to collect historical information and indi-

vidual characteristics on claims have been made in the insurance industry for more than

fifteen years, and companies have now access to very comprehensive datasets. Using these

data and regression models, actuaries can use sophisticated statistical procedures to es-

timate Incurred But Not yet Reported (IBNyR) and Reported But Not Settled (RBNS)

claims. RBNS claims correspond to situations where the insurer knows about the exis-

tence of the claim, has possibly started to pay for it, but does not know how much the

final charge will be. In such a context, taking into account individual features about

claims offers many advantages to approximate the reserve. First, it enables to cope with

heterogeneity issues that can arise when using aggregated data. Indeed, storing all claims

into aggregate run-off triangles makes it impossible to consider changes related to claims

management, reinsurance programs, legal context and product mix. It also prevents from

integrating key claim characteristics and thus crucial risk factors explaining the final

amount to pay. Second, it allows to separate RBNS and IBNyR claims to perform an

advanced risk assessment and monitoring. Moreover, the specific development pattern of

claims can be considered, which means that the full information about the history of the

claim (occurence, reporting, payments, and closure) are now inputs of the model. And

last but not least, these techniques provide individual claims reserves which could be very

usefull from both a risk management and a claims management perspective (for instance

in order to improve claims management policies).

One could then wonder why such techniques have not been widely applied yet. Ex-

cept that it is harder to implement, the reason seems quite obvious: past contributions on

individual claim reserving were mainly focused on parametric models and likelihood max-

2Several well-known issues concern propagation of errors through the development factors, instability

in ultimate claims for recent arrival periods, necessary previous treatment of outliers, need to integrate tail

factors (see for instance Halliwell [2007]). Assumptions underlying such models are also often discussed,

as well as corresponding statistical tests (see Harnau [2017]).
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imisation (Antonio and Plat [2014], Pigeon et al. [2013], Zhao et al. [2009], Larsen [2007],

Haastrup and Arjas [1993]). Due to RBNS claims, deriving the likelihood associated with

observed claims is not straightforward, because of truncation and censoring phenomenons.

Besides, the parametric relationship existing between claim amounts and risk factors un-

der study can be tricky to specify. As a result, these approaches did not reveal neither

convincing nor very effective in practice. Moreover, according to most of actuaries and

under regulatory constraints (stating that ultimate reserve estimates should be regularly

updated, say each quarter), parametric individual claim reserving models have not really

been considered useful so far for one simple reason: quarterly gains/losses indicators (the

so-called boni-mali) were not improved, which means that the overall quality of prediction

of such models was not better than the Chain Ladder’s one (at least on the short-term,

showing that Chain Ladder remains somewhat effective in most of situations). Since the

main threat for the top management concerns potential urgent need for capital injections,

this statement diminishes the attractiveness of such techniques. Besides, mali can have

impacts on the Solvency Capital Requirement, as well as on future premiums. To the best

of our knowledge, this paper proposes a new way to anticipate, as soon as possible, the

ultimate global reserve by aggregating individual reserve predictions for RBNS claims.

We do not claim that our model is better than others, but simply show to which extent

individual claim reserving by nonparametric approaches could be beneficial to approx-

imate future payments. Although our application focuses here on claim reserving, it is

also important to be aware that many other actuarial applications could use the technique

presented in the sequel. Let us mention for instance the opportunity to decrease costs

related to experts involved in claim estimations, as well as improving the targeting of

specific claims causing atypical claim amounts.

The paper is organized as follows: Section 2 introduces our new method to estimate

individual reserves, with tools similar to Wüthrich [2018]. However, ultimate individual

reserves for RBNS claims are here estimated thanks to an adaptation of the CART al-

gorithm to censored data. Then, two applications are conducted in Section 3 to answer

the initial question. Results are compared to the Chain Ladder method, knowing that

its usual stochastic extensions (Mack [1993], England and Verrall [2002]) all provide the

same expected ultimate global reserve (the only difference lies in assessing its variance).
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2 Proposed individual claim reserving technique

Up to now, very few references exist on individual claims reserving with nonparametric

techniques (Wüthrich [2018], Baudry and Robert [2017]). In the case where the insurer

can access individual information about the claims, our approach consists in using an

extension of the CART algorithm to incomplete observations (Lopez et al. [2016]). This

piecewise tree-based estimator allows for nonlinearities in the dependence structure be-

tween claim amounts and explanatory risk factors (Olbricht [2012]). The aim is to estimate

the ultimate amounts of RBNS claims for individual policies, knowing that one has both

closed and still open claims in the dataset.

2.1 Idea of the Weighted CART for duration analysis

The time development of a claim is crucial to predict its severity. Roughly speaking, a

claim which requires a lot of time to be settled is more likely to be associated with a large

amount. Therefore, if M denotes the claim amount, one must provide a model that takes

the impact on this variable of the time before settlement.

We are thus interested in a random vector (M,T,X), where X ∈ X ⊂ Rd denotes a

set of random covariates that may have an impact on T and/or M , and (M,T ) ∈ R+2.

In the following, T represents the time before a claim is fully settled, and M the total

corresponding amount (only known at the end of the claim settlement process). As we

are dealing with a duration T, this variable is subject to censoring, which is a classical

issue in survival analysis. This means that, in the database that we use to calibrate

the distribution of (M,T,X) (and hence to predict M), all of the claims are not fully

settled. To describe this phenomenon, let us introduce a censoring variable C ∈ R+,

which represents the time between the opening of the claim and the end of observation

for any other cause than its settlement. For example, retrocession of a claim leads to a

loss of information after some point of time. The observed variables are thus not directly

T and M, but Y = inf(T,C), δ = 1T≤C , and N = δM . The covariates X are considered

as always fully observed. The data is made up of i.i.d. replications (Ni, Yi, δi,Xi)1≤i≤n.

We also assume that C is independent of (M,T,X). This assumption implies that the

amounts M should be free from inflation, see the discussion in Lopez [2018].

It is important to notice that one should not calibrate a model for M only on the closed

claims, that is with δ = 1. Although the closed claims bring a complete information on

the variable, this information is biased: indeed, among closed claims, there is an excess

4



of claims with small time of settlement. Since these claims are more likely to be of

small amount, this would lead to an underestimation of the typical values taken by M.

The alternative is to correct the bias caused by censoring using an appropriate weighting

scheme. For a comprehensive description of the algorithm used hereafter and related

properties, the reader is referred to Lopez et al. [2016]. This algorithm is inspired from

the well-known CART algorithm, where the problem of incomplete observations forces to

introduce the Kaplan-Meier (KM) weights. Those weights are defined by

ωi =
δi

n(1− Ĝ(Yi−))
,

with Ĝ the Kaplan-Meier estimator for the cdf of the censoring variable C. Thanks to

their nice properties, KM weights ensure that the conditional expectation of interest,

i.e. E[M |T,X], is consistently estimated in the presence of censoring. Concretely, the

KM weight equals 0 when the observation is censored ; otherwise, the greater the fully

observed lifetime the higher the weight. This enables to compensate for the fact that very

few individuals with high durations are fully observed.

2.2 Our algorithm to estimate reserves in practice

We detail here the steps to implement our weighted CART algorithm in the context

of individual claim reserving. For the sake of simplicity but without loss of generality,

consider that the insurer has to pay 1 US$ each day the claim remains open, which

corresponds to the case M = T. Consider an open claim, that is δ = 0, and the claim

is opened since Y = k. We thus aim to estimate RBNS claims by the quantity E[T | δ =

0, Y = k,X] = E[T |T ≥ k,X]. In this context, there is a direct link between duration of

the claim and final claim amount. For each reached lifetime k,

1. Select claims (potentially censored) with higher lifetime than k ;

2. Estimate the Kaplan-Meier weights from the whole data ;

3. Build the regression tree (T − k) |X, T > k ; based on weighted observations ;

4. Prune appropriately the obtained tree (see Lopez et al. [2016]);

5. Estimate the residual lifetime : E[T − k |T > k,X] ;

6. Increase k and go back to step 1.

Let us note that the weight are computed from the whole data. Once the regression tree

is built, the final claim amount can be estimated for each open claim. The behavior of the
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method is expected to be poorer for the claims with the largest settlement times, which is

essentially due to two facts: the lack of claims such that T > k ; and the erratic behavior

of the weights when T becomes too large, which is a classical issue when dealing with

the Kaplan-Meier estimator. Nevertheless, the question of extreme claims would require

a particular attention, which is not covered by regression trees.

3 Application

The goal of this section is to see whether individual claim reserving using our nonpara-

metric approach leads to improve significantly the initial assessment of the global reserve

corresponding to RBNS claims, as compared to Chain Ladder. In this view, we make

comparisons based on a very simple indicator: the boni-mali (see Section 1). Boni-mali

is useful to backtest the quality of predictions made for the expected global reserve.

In practice, real-life claims are stored in a database where each record corresponds

to one unique claim, with all corresponding characteristics (in particular the dates of

claim occurence and closure, if available). Then, reserves are regularly estimated using

Chain Ladder or the weighted CART algorithm, and thus updated at given dates, say

each quarter for instance. This process enables to compute the boni-mali between each

period. Implementing the Chain Ladder method requires to appropriately aggregate the

data (see Section 3.2), whereas we need to define a grid of durations to be studied in the

second case (see the parameter k in the algorithm of Section 2.2). This grid obviously

depends on the data, and further details are provided in Section 3.3.

3.1 Data description

When looking at aggregated loss triangles, practitioners usually consider that long-term

risks are characterized by more than ten developments periods. Here, liabilities (or guar-

antees) can last much longer. Indeed, short-term and long-term disability insurance exist

to protect the policyholders against the loss of some revenue, due to some accident or dis-

ease that prevent them from working. Those type of contracts, mostly sold in collective

insurance, can sometimes be assimilated into life annuities.

We focus here on short-term disability, meaning that the greatest potential duration

of payments equals 1095 days (insurance coverage is based upon French Social Security

guarantees). To simplify, say that each day corresponds to a payment of 1 US$. The

real-life database we consider reports the claims of income protection guarantees over six
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years, from 12/31/2005 to 12/31/2011. It consists of 65 670 claims, with the following

information for each claim: a policyholder ID, cause (57 131 sicknesses, and 8 539 acci-

dents), gender (14 455 males, 51 215 females), socio-professional category (SPC: 2 406

managers, 62 799 employees and 465 miscellaneous), age at the claim date, duration in

the disability state (perhaps right-censored), commercial network (three kinds of brokers:

28 662 “Net-A”, 4 890 “Net-B” and 32 118 “Net-C”). All insurance contracts consid-

ered have a common deductible of 30 days, and the overall censoring rate equals 7.2%

at 12/31/2011. The mean observed duration in the disability state is about 100 days

(beyond the deductible of 30 days), with a median of 42 days. There is strong dispersion

among the observed durations, the standard deviation being 162 days. Our goal is to

predict the global capital to reserve, either by Chain Ladder or by our algorithm. In the

latter case, it consists in predicting the residual lifetime in the disability state for each

policyholder (given the individual features), knowing that this duration fully explains the

claim amount here, like in most of countries for this type of insurance contracts in Europe.

3.2 Building the database, and implementing

Reserves are periodically estimated, say each quarter between 12/31/2009 and 12/31/2010.

Therefore, for every date, we look at the status of the claim (open, closed, new) since

policyholders’ health is likely to deteriorate, remain stable, or improve between two con-

secutive quarters. This process allows to regularly update the characteristics of claims,

in particular report the newly declared claims, those that become settled, and the re-

maining ones (RBNS) requiring an updated computation of the corresponding reserve for

coming periods. Figure 1 illustrates, for three policyholders, how data are built through

the historical pattern of claims. Estimation of the global reserve is made within our two

frameworks, namely the Chain Ladder model and our weighted algorithm. Building the

data this way, it is straightforward to get classical loss triangles so as to implement Chain

Ladder technique given origin periods (quarters). Concerning individual claim reserv-

ing, it consists of using the algorithm described in Section 2.2 at the following dates:

12/31/2009, 03/31/2010, 06/30/2010, 09/30/2010, and 12/31/2010.

Let us now comment the different examples given in Figure 1. The first employee is

a woman that suffered from sickness on 01/18/2008. Payments started on 02/17/2008.

The insured’s absence lasted 57 days, terminating on 04/14/2008. When looking at the

situation on 12/31/2009, this observation is thus not censored (this can be seen from the

boolean 2009-12-31.NonCensure, set to ’true’). In this case, there is nothing to reserve
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Figure 1: Three claims with their pattern of payments, showing how we build the database.

since the claim was settled and all payments were made (57$). That is why this observation

is never censored and prediction from the weighting CART algorithm is useless, whatever

the quarter under consideration.

The second policyholder, with a total sickness lifetime of 419 days, is an interesting

example since it will typically enable us to backtest our future predictions. Indeed, the

censorship indicator changes as time flies. The global censorship indicator indicates that

this observation is fully observed in 12/31/2011 (the claim was settled on 07/29/2010).

However, this is not the case when looking for instance on 12/31/2009. At that time,

this employee is considered a censored observation: 209 days were already paid, but

the claim is not closed. Backtesting shows that there are still 210$ to pay for, whereas

weighted CART algorithm predicts that nearly 240$ should be reserved. One quarter

later, i.e. on 03/30/2010, updates are made: actual payments were increased by 90$

(three months), and CART prediction equals 226$ for this individual reserve. Six months

later (09/30/2010), the observation gets uncensored for the first time. There is thus no

further prediction to provide, but this information is used by our algorithm (updating the

KM weights given to other uncensored observations to perform the estimation).

Finally, the third example remains censored from the beginning to the end of the period

where reserves are calculated (quarters from 12/31/2009 to 12/31/2010). Moreover, the

claim is still open on 12/31/2011, and total payments exceed 950$ (990$ exactly). In

this case, which seems to correspond to an extreme observation (recall the mean duration

equals 100 days, and that the maximum equals 1095), notice that the weighted CART

algorithm anticipates that there are still about 200$ to reserve, knowing that 625$ have

already been paid. This statement reveals that our algorithm somewhat captured this

extreme situation, which is all the more interesting that most expensive claims are often

the longest ones in practice.
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3.3 Results on Boni-Mali and discussion

How to compute individual reserves has been explained in Sections 2.2 and 3.2. The

aggregation of such reserves leads to approximate the expectation of the total reserve

over the whole portfolio, at some given dates. This prediction can be compared to the

Chain Ladder one for RBNS claims, for our five dates of interest (12/31/2009, 03/31/2010,

06/30/2010, 09/30/2010, and 12/31/2010). Figures 2 and 3 show the evolution of the

different estimations, and several interesting remarks can be formulated.

First, the estimation of the ultimate cost of claims over the entire portfolio looks con-

sistent, whatever the technique used (compare each bar to the last one, named “Ultime”).

This is not surprising since the censoring rate is not so high (recall that it roughly equals

7%), which limits the interest of our method. Indeed, given that we focus here on RBNS

claims to estimate the corresponding reserve, Chain Ladder can access almost the full

information. However, it seems that long-tailed risks associated to a higher censoring

rate would significantly increase its bias, leading to poor estimates of the ultimate costs

and thus the global reserve.

Second, how to reach the ultimate cost is very different, depending on the technique un-

der consideration. When using Chain Ladder, the global reserve provided at 12/31/2009

is clearly underestimated as compared to the one given by the weighted CART algo-

rithm (compare the orange hatched area for Chain Ladder versus the green dotted one

Figure 2: Barplot of the evolution of reserves estimated by Chain Ladder (’N’ refers to the

year 2010). For each bar, the filled area is the amount already paid, whereas the hatched

one is the estimated reserve.
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Figure 3: Evolution of reserves estimated by the weighted CART algorithm (’N’=2010).

See the legend of Figure 2 for further details.

for weighted CART). People with high lifetimes were not overweighted with the standard

Chain Ladder approach, since the pattern of individual claims is not taken into account.

The global reserve is, by consequence, largely underestimated. On the contrary, weighted

CART predictions lead to anticipate higher reserves from the beginning, which is inter-

esting since potential future liquidity needs are then decreased. Looking at boni-mali

indicators between each period confirms this, are summarized in Table 1. Clearly, the

weighted CART algorithm is powerful on such a criterion, and capital injection needs

would be impressively decreased (almost 150 000 US$ would be saved in this case on an

annual basis). Notice that this statement is not true for the last quarter under study,

which was expected since the censored part of the lifetimes decreases little by little.

Another way to illustrate errors from both models is given in Figure 4. We compare

prediction errors on both ultimate claims amount (solid line) and reserves (dotted line).

Our method appears to be dominent, especially for the first estimations. This result is

quite interesting since, beyond being able to predict individual reserves, their aggregation

leads to better apprehend the overall need of reserves.

Boni (+) / Mali (-) T1 T2 T3 T4 Annual

Chain-Ladder -196 814 -80 173 -51 209 -14 394 -342 591

Weighted CART -58 515 -65 743 -51 989 -21 801 -198 047

Table 1: Boni-mali indicators: mali require capital injections.
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Figure 4: Errors (in %) of Chain Ladder method (lines with square marks) and weighted

CART algorithm (lines with cross marks), at different dates of estimation. Solid lines

correspond to the ultimate claim amounts, and dotted lines concerns the reserves.

4 Concluding remarks and on-going research

In this paper, we proposed a new simple algorithm based on nonparametric techniques to

estimate RBNS claims in non-life insurance. Such techniques have a lot of advantages,

the greatest one being that they allow to integrate the history of claims in the final

estimation without specifying a parametric relationship. Our estimator is more responsive

to any changes in the development patterns of claims, which makes it naturally adapted

to long-tailed claim developments (e.g. in Third Party Liability insurance). Practically

speaking, this is extremely important since experts know that the final claim amount is

highly dependent on the final development time. However, using our algorithm requires

a comprehensive database which is not always available in reserving departments, and

has to be built by gathering information from different services. When working with

very short-term and well-known risks, Chain Ladder and its extensions still seem to be a

better trade-off to estimate the total reserve. Of course, our technique could be improved

in several ways. We first think about the extension to the assessment of risk measures,

and uncertainty of predictions.
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