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Abstract We investigate the macroscopic mechanical

influence of the local liquid-solid contact angle that gov-

erns the fluid distribution in granular soils under un-

saturated conditions. To this end, a Discrete Element

Method (DEM) based implementation that accommo-

dates for any contact angle is proposed and applied to

an idealized granular material in the pendular regime.

The DEM model includes resultant capillary forces as

well as a comprehensive description of the capillary

bridges (volume, surface, orientation tensor) by solv-

ing the Laplace-Young equation in a general case, in-

stead of using any unnecessary phenomenological re-

lation. Macroscale mechanical simulations for different

constant contact angle values reveal that granular as-

semblies are less sensitive to unsaturated conditions for

higher contact angles, which is in line with the con-

tact angle influence at the microscopic capillary bridge
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scale. The contribution of the fluid mixture to the total

stresses of the wet soil, the so-called capillary stresses,

indeed decreases according to the contact angle. Thus,

the increase in apparent shear strength due to unsatu-

rated conditions is reduced for higher contact angles. As

such, the classical assumption of perfect wetting (zero

contact angle) appears to be non-conservative.

Keywords contact (wetting) angle ¨ capillary (suc-

tion) stresses ¨ Discrete Element Method (DEM) ¨

Laplace-Young equation ¨ capillary bridge

1 Introduction

Granular soils encountered in geotechnical engineering

often encompass several immiscible fluids within their

pore network such as in situations related to oil and gas

production, non-aqueous pollutant transport in ground-

water, frozen soils, or simply, classical unsaturated soil
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mechanics dealing with a mixture of air and water.

The presence of such fluid mixture is an important is-

sue since it greatly influences the soil’s mechanical be-

haviour, as illustrated by the classical example of sand-

castles that require wet sand to hold. Restricting our-

selves to ternary mixtures with one granular solid phase

and two fluid phases, one key parameter that controls

the various fluid distributions is the contact (or wet-

ting) angle θ describing the contact between the solid

phase and the wetting fluid phase along the so-called

contact lines where the three phases intersect. The con-

tact angle value is highly dependent on the particular

case of interest. For spherical particles, wet samples of

glass beads may show low contact angle values (ď 100)

[30,32], while the contact angle between steel balls and

water is around 500 [34]. As far as real sandy soils are

concerned, contact angle values reaching 500 and more

have been reported in [2,20]. Adding to complexity, the

contact angle is also dependent on the hydraulic loading

path; its value showing a hysteresis between extreme

limits that correspond to receding or advancing con-

tact lines. Such hysteresis has now be shown to affect

the fluid phase distribution [25].

Focusing on low degrees of saturation within the so-

called pendular regime, the fluid distribution is charac-

terized by isolated capillary bridges, i.e. menisci, con-

sisting of the wetting fluid (considered from now on to

be a liquid) and that form between solid particles pairs.

Several capillary bridge analyses have been proposed

that accommodate for any contact angle value, giving

the possibility to investigate the contact angle influence

at this microscopic scale [17,19,27,34,18]. From these

studies, the contact angle is known to affect the liquid

volume-capillary pressure relationship and the capillary

force magnitude, for instance. Such microscopic effects

necessarily also reflect into the macroscopic behaviour

of soil samples. However, a proper macroscopic analysis

of the contact angle influence seems to be at best lim-

ited in the literature. Straightforward experiments are

prevented by the major difficulties measuring contact

angle at a soil sample scale, compared with the ideal

case of droplets lying on a flat surface [2,9]. On the

other hand, only few macroscopic modelling approaches

include a contact angle analysis such as done in [8,9,

25]. Among these studies, the focus is mostly set on the

description of two-phase pore flow within a fixed pack-

ing [9,25]. Finally, the assumption of a zero contact an-

gle is still routinely adopted in most macroscopic-scale

numerical modelling of unsaturated soils in a mechani-

cal framework [13,31,33,24,39,35]. As such, the objec-

tive of the present paper is to assess through careful

modelling how contact angle influences the mechanical

behaviour of wet granular assemblies, in the pendular

regime.
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We herein consider an idealized granular material

with solid particles being spherical in shape. Such as-

sumption eases the menisci computation from the Laplace-

Young equation. Both the solid and liquid phases show

in the pendular regime a discrete microstructure, with

distinct solid grains and liquid bridges. In connection

with this discrete microstructure, it is convenient to

choose the Discrete Element Method (DEM) as a mod-

elling approach, as done in [13,31,33,24,39,35]. The

DEM describes any internal force using interaction forces

between the discrete elements that correspond to spher-

ical solid particles. As such, the wetting and non-wetting

(from now on, a gas) fluids are indirectly incorporated

in the model through the resultant capillary forces that

act on the particle pairs bonded by a capillary bridge.

Because the capillary force depends on the liquid

bridge geometry, we begin with Section 2 that gives de-

tails of a liquid bridge determination for various contact

angles that is inspired from previous works on mono-

sized particles pairs [17,19]. Next, the results of Section

2 are implemented in the open source DEM code Yade

[36] in line with Scholtès et al. [33] who restricted the

computations to zero contact angles. The DEM imple-

mentation leads to a macroscopic analysis of the contact

angle influence in Section 3. Finally, Section 4 analyzes

in depth the results of Section 3, focusing on the cap-

illary stresses that encompass the mechanical actions

existing in a wet assembly due to the fluid mixture.

2 Liquid bridge determination

Considering a polydispersed idealized granular mate-

rial, capillary bridges form in between two dissimilar

spherical particles of radii R1, R2 with radius ratio

r “ R2{R1 ě 1. Three-dimensional axisymmetric con-

ditions hold when neglecting gravity g, i.e. for low Bond

numbers B “ pρl´ρgq g R2
2{γ with ρl, ρg being respec-

tively the liquid and gas densities, g the gravity and γ

the liquid-gas surface tension. It is thus convenient to

use 3D cylindrical coordinates pρ, φ, zq with z as the

axis of rotational symmetry defined by angle φ, such

that a function ζpzq defines the liquid bridge surface

tρ “ ζpzq;φ P r0; 2πs; z P r0; zf su where zf is the dis-

tance between the two three-phase contact lines. Fig. 1

illustrates such a liquid bridge between two spherical

particles: δ1 and δ2 refer to the half-filling angles, and

θ is the contact (wetting) angle.

R2
R1

θ

ρ=ζ(z)

θ

δ2δ1

z z=0 z=zf

Fig. 1 Liquid bridge geometry
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It is convenient to normalize all lengths through di-

vision by the largest radius R2 which serves as a length

scale so that normalized quantities are z˚ “ z{R2,

ρ˚ “ ρ{R2 and ζ˚pz˚q “ ζpR2 z
˚q{R2. Thus, the liquid

bridge surface is described in the dimensionless space

as tρ˚ “ ζ˚pz˚q;φ P r0; 2πs; z˚ P r0; z˚
f su.

Generally speaking, liquid-gas interfaces always obey

the Laplace-Young equation given as:

ug ´ ul “ uc “ γ divn (1)

with the normal n oriented towards the liquid, ug and

ul as the gas and liquid pressure respectively, and uc

the capillary pressure. Since adsorbed liquid layers are

negligible for granular soils, the capillary pressure uc

also corresponds to the matric suction.

The Laplace-Young equation serves as a partial dif-

ferential equation describing the liquid bridge configu-

ration. In order to obtain the latter, Eq. (1) is classically

rewritten in the following dimensionless form account-

ing for the 3D axisymmetric situation, and denoting ζ˚1

and ζ˚2 as the first and second derivatives of ζ˚pz˚q,

i.e.

ucR2

γ
“ u˚

c “ ζ˚2

`

1 ` ζ˚12
˘3{2

´ 1

ζ˚
`

1 ` ζ˚12
˘1{2

(2)

which introduces a dimensionless capillary pressure u˚
c .

Eq. (2) might be approximately solved using a toroidal

expression for ζ˚ from two constant principal radii with

the meridian liquid profile being simply a circular arc

[16,11]. However, this approximation leads to a non-

constant surface curvature locally as defined by divn,

which, strictly speaking, contradicts the Laplace-Young

equation (1) [17,19].

2.1 Numerical procedure

Similar to [19] which dealt with only monosized spher-

ical particles, the current numerical procedure to solve

Eq. (2) considers a particular half-filling angle δ1 on

the smallest particle and the dimensionless capillary

pressure u˚
c . Starting from the smaller particle on the

left with boundary condition ζ˚
0

“ sinpδ1q{r, the liquid

bridge profile ζ˚pz˚q is incrementally computed using

a second order Taylor series expansion:

ζ˚
`

z˚ “ pi ` 1q∆z˚
˘

“ ζ˚
i`1 “ζ˚

i ` ∆z˚ ζ˚1
i

` 1

2
∆z˚2 ζ˚2

i (3)

The first derivative ζ˚1
i is computed using a second

order finite difference approximation, Eq. (4), that is

suited to describe the evolving profile slope, contrary

to the always positive expression presented in [19]. The

initial value ζ˚1
0

is a distinct case and is obtained from

the wetting of the smallest solid particle along the left

contact line:

ζ˚1
i “

$

’

’

&

’

’

%

´1

tanpδ1 ` θq for i “ 0

ζ˚
i ´ ζ˚

i´1

∆z˚
` 1

2
∆z˚ ζ˚2

i´1
else

(4)
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Appearing in Eqs. (3) and (4), the second derivative

ζ˚2 is expressed in terms of ζ˚ and ζ˚1 from Laplace-

Young Eq. (2), i.e.

ζ˚2
i “ 1 ` ζ˚1

i
2

ζ˚
i

` u˚
c

´

1 ` ζ˚1
i

2
¯3{2

(5)

As such, the liquid bridge profile is obtained by ap-

plying successively Eqs. (4), (5) and (3) until the right

contact line, defined by ζ˚
f “ sinpδ2q, is reached for

z˚ “ z˚
f . Prior to that, the filling angle δ2 on the largest

particle is deduced by expressing Eq. (6) at both con-

tact lines and solving numerically for δ2:

ζ˚

`

1 ` ζ˚12
˘1{2

` u˚
c

2
ζ˚2 “ C “ cst (6)

The l.h.s. of Eq. (6) is the dimensionless expression

of the capillary force resulting from capillary pressure

and surface tension actions along any meniscus cross-

section, in particular the left or right wetted particles

surfaces. Obtained from making a variable substitution

in the Laplace-Young equation as given in [19], Eq. (6)

basically expresses meniscus force equilibrium.

Also, an increment∆z˚ is chosen to be small enough

(2 ˆ 10´6 typically) so as not to have any influence on

the numerical results. In particular, this ensures both

stability and accuracy of the explicit scheme related to

Eqs. (3)–(5).

Determining the liquid bridge profile ζ˚pz˚q, z˚ P

r0; z˚
f s, following the above numerical procedure ulti-

mately leads to a comprehensive geometrical descrip-

tion of the liquid bridge and other characteristics. For

instance, the dimensionless interparticle distance d˚ “

d{R2 and liquid volume V ˚ “ Vl{R2
3 are readily com-

puted excluding the solid volumes:

d˚ “ z˚
f ´ 1

r
p1 ´ cos δ1q ´ p1 ´ cos δ2q (7)

and

V ˚ “
f
ř

i“1

π ζ˚
i
2
∆z˚ ´ π

3 r3
pcos3 δ1 ´ 3 cos δ1 ` 2q

´π

3
pcos3 δ2 ´ 3 cos δ2 ` 2q

(8)

Furthermore, the dimensionless capillary force is di-

rectly obtained by satisfying Eq. (6) along either con-

tact line of the liquid bridge:

F˚ “ F cap

2 π γ R2

“ C (9)

Finally, the liquid bridge description is completed by

the calculation of the dimensionless meniscus orienta-

tion tensor π˚:

π˚ “ 1

R2
2

ż

Sm

n b n dS (10)

that is obtained from the normal n, the local orienta-

tion tensor n b n, and a numerical integration along

the liquid bridge external surface Sm, see Appendix 1.

Such meniscus orientation tensor enters into the de-

scription of the internal surface tension forces within

the liquid bridge surface [6,7,15], and represents a per-

tinent tensorial quantity that was not provided by pre-

vious analyses [19,33]. In particular, the inclusion of
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π˚ facilitates the stress analysis in Section 4 without

using any assumption on the meniscus orientation. It

is worth noting that the expression of π˚ in the local

(meniscus) basis peρ, eφ, ezq is diagonal and axisym-

metric with π˚
ρρ “ π˚

φφ ‰ π˚
zz because of the meniscus

shape. Further insight is gained by considering the trace

of π˚ which turns out to be the dimensionless meniscus

surface S˚
m:

trpπ˚q “ 2 π˚
ρρ ` π˚

zz “ 1

R2
2

ż

Sm

||n||2 dS “ Sm

R2
2

“ S˚
m

(11)

In the end, the numerical procedures described in the

above lead to a schema in which, for given values of

normalized suction u˚
c , contact angle θ, and radius ra-

tio r, the complete set of liquid bridge configurational

parameters td˚, V ˚, F˚, δ1, δ2, π
˚
ρρ, π

˚
zzu is obtained by

sweeping through various filling angles δ1 P r00; 900 ´θs.

Values of δ1 greater than p900 ´ θq are not considered

since they would correspond to concave liquid bridges

(negative suctions). Also, numerical computations may

give configurations that present negative volume and/or

particles distance. Such non-physical solutions corre-

spond to impossible liquid bridges and are thus disre-

garded.

2.2 Liquid bridge stability

When analyzing granular assemblies, a key variable that

provides insights into the nature of the liquid bridge

solution is the inter-particle distance. As such, liquid

bridge configurations obtained in the previous sub-section

2.1 are depicted according to d˚ in Fig. 2, which shows

two possible bridge configurations for the same distance

and same tr; θ;u˚
c u parameters. These two solutions

both obey the force equilibrium condition expressed by

Laplace-Young equation and correspond to stable or

unstable distinct equilibrium states [28,19,22]. Several

free energy expressions have been proposed to assess the

stability of these different configurations [5,19]. How-

ever, these expressions rely on a constant liquid volume

assumption, whereas constant pressure conditions pre-

vail herein. As this disparity in state description affects

stability properties [22], we consider here the follow-

ing more suitable dimensionless free energy E˚ whose

derivation is given in Appendix 2:

E˚ “ E

γ R2
2

“ u˚
c V

˚ ` 2 π

«

f
ř

i“1

ζ˚
i

b

1 ` ζ˚1
i

2
∆z˚

´ cos θ

ˆ

1 ´ cos δ1
r2

` 1 ´ cos δ2

˙

ff

(12)

The highlights of the dimensionless free energy expressed

in Eq. (12) include surface energies for liquid-gas as well

as liquid-solid and solid-gas interfaces, considering con-

stant solid surfaces for the particles. Specific volume
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Fig. 2 Possible liquid bridge configurations according to the

particles distance; for r “ 2, θ “ 200 and different suctions

fluid energies are included, assuming that the global

volume pVl ` Vg ` Vsq is kept constant.

It is through the finding of the minimum values of

E˚ for a given distance, see Fig. 3, that we can re-

tain among the two solutions the configuration with the

largest liquid volume as the stable one, i.e. the “upper”

branches of the curves previously depicted in Fig. 2. As

such, the unstable configurations showing the smallest

liquid volumes are from now on disregarded.
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Fig. 3 Free energy of the different liquid bridge configura-

tions of Fig. 2 (r “ 2; θ “ 200 and different suctions)

2.3 Contact angle influence at the liquid bridge scale

The determination of capillary bridge configurations for

different contact angles offers first micromechanical in-

sights in the contact angle influence on wet granular

packings. At the microscopic scale, and for given di-

mensionless suction, interparticle distance, and relative

radii parameters, an increasing contact angle decreases
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the wetted surfaces, the meniscus volume and surface,

and the capillary force, see Fig. 4. Such decreases in liq-

uid volume and capillary forces with the contact angle

have also been described in [27,18].

2.4 Comparison with empirical relations

As an alternative to systematically solve Laplace-Young

equation, several empirical relations for the capillary

force have been proposed in the literature [7,31,41].

These are now compared with the results of the pre-

sented numerical procedure.

Pitois et al. [7] derived the following Eq. (13) for the

capillary force in the case of a mono-sized particle pair

and assuming a cylindrical (flat) liquid bridge profile.

The following relation has been experimentally verified

for θ “ 100, i.e.

F˚ “ cos θ

¨

˚

˚

˝

1 ´ 1
c

1 ` 2V ˚

π d˚2

˛

‹

‹

‚

(13)

For such a mono-sized particle pair, a fairly good agree-

ment is found between our solution and Eq. (13) for a

wide range of contact angles as illustrated in Figs. 5(a)

and 5(b). Consistent with other experimental compar-

isons presented in [7], the agreement between the so-

lution of Laplace-Young equation and Eq. (13) is most

satisfactory for small liquid volumes (Fig. 5(a)) for which

the flat profile assumption is the most relevant. How-

ever, Fig. 5(c) illustrates the obvious inadequacy of
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Eq. (13) in the polydisperse case for which the flat pro-

file assumption never holds.

In order to account for polydispersity, Richefeu et

al. [31] proposed Eq. (14) for macroscopic DEM simu-

lations purposes, i.e.

F˚ “ cos θ?
r

exp

˜

´ r

0.9
a

V ˚p1 ` rq{2
d˚

¸

(14)

However, for the cases herein considered, the compari-

son between Eq. (14) and our numerical solutions shows

a poorer agreement for the polydisperse cases than for

the monodisperse ones, see Fig. 6.

A last comparison is made with the relation pro-

posed by Willett et al. [41], detailed in Appendix 3 due

to its complexity, that has been used for DEM simu-

lations in [24]. Among the cases here tested, there is

a very good agreement for only contacting particles,

irrespective of the volume and radius ratio. Then, devi-

ations increase according to the interparticle distance,

see Fig. 7.

In summary, this brief review and comparison exer-

cise discussed in the above are intended to show the dif-

ficulties in obtaining empirical relations that are valid in

any configuration, and thus the need of an efficient nu-

merical solution of Laplace-Young equation. Moreover,

it is noted that the numerical solution not only gives

the capillary force, but also furnishes other pertinent
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liquid phase information such as liquid bridge volume

and surface, filling angles and orientation tensor.

3 Contact angle influence at the macro-scale

3.1 DEM model description

To pass from pair-wise particle interaction to a network

of particles at the macro-scale and appreciate the im-

plications of contact angle on the mechanical strength

of a polydispersed assembly of wet granular material,

DEMmodelling is pursued by invoking the liquid bridge

computations expounded in Section 2 within a numer-

ical framework similar to the one used in [33] for zero

contact angles.

First, a comprehensive data set of liquid bridge con-

figurations is built for a wide set of contact angles θ,

radius ratios r, and dimensionless capillary pressures

u˚
c values. For a given numerical sample, eight r values

are considered between 1 and the Dmax{Dmin ratio.

Regarding the capillary pressure, values of u˚
c are cho-

sen between 0 and an arbitrary maximum value u˚
c max

using 350 equal intervals. This maximum suction value

u˚
c max is defined as the one leading to a mean filling an-

gle lower than 10 for contacting particles. Such suction

cut-off disregards liquid bridges that would show negli-

gible liquid volume and capillary forces. Thus, approxi-

mating unsaturated conditions beyond u˚
c max with dry

conditions introduces a negligible error in the DEM

model.

Simulations of suction-controlled loading paths are

thereafter carried out by interpolating during the DEM

workflow from the above generated data set to deter-

mine all possible liquid bridges between the individual

particles according to the ratio of their radius and sepa-

ration distance, given the constant suction and contact

angle values. The suction-controlled nature of the load-

ing paths is consistent with drained conditions, while

the prescribed suction at the macro-scale translates into

constant capillary pressure conditions at the micro-scale

where liquid bridges are computed from Section 2. Thus,

the corresponding liquid distribution conforms with uni-

form capillary pressure conditions that are specific to

thermodynamic equilibrium and also considered by [33,

39]. On the other hand, contrary to [13,26], the model

does not include any pore flow computations. Thus,

some phenomena known to affect the fluid distribution

in unsaturated conditions, such as the ink-bottle effect,

are not included in the model. Also, the consideration

of a constant uniform contact angle value for each sim-

ulation disregards the possibility for contact angle hys-

teresis that is also known to impact the fluid distribu-

tion [25]. However, the liquid phase distribution that re-

sults from such numerical modelling paradigm has been

favourably compared with experiments in terms of Soil-
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Water Characteristic Curves in a previous paper [37].

Capillary bridges, with their associated capillary forces,

are thus defined for all contacting and separated parti-

cles for which a solution of the Laplace-Young equation

can be found. As such, contrary to many other DEM

studies [31,24,35,26], the capillary force is not obtained

from any phenomenological relations such as the ones

discussed in section 2.4.

The standard DEM calculations then carry on with

classical frictional contact forces being applied between

contacting particles in addition to the above-mentioned

capillary forces. In other words, along the normal di-

rection, repulsive contact forces evolve with a fictitious

overlap according to linear elasticity. It is to be under-

stood that the numerical overlap corresponds in reality

to slight changes in shape when the contact force in-

creases between two actual spherical particles. By de-

sign, such deformations in DEM calculations are re-

stricted to small values, and these are thus not ac-

counted for during capillary force determination in the

contact regime. In addition to the normal component of

the contact force, a tangential component is expressed

from the tangential relative displacements using a lin-

ear elastic-plastic relation. As usual, the contact law

only requires three parameters: Y and P that govern

the normal and tangential stiffnesses, and a contact

friction angle ϕ. However, the particle size distribution

of the sample (Fig. 8) becomes another parameter in

the model since capillary force computations are size-

dependent, and hence a characteristic length scale is

introduced. All parameter values are given in Table 1,

and we refer to a previous work [37] for more details

concerning Y , P , ϕ. The considered surface tension is

the one developing between air and water at ambient

temperature. Note finally that there is a total number of

20,000 particles making up the numerical sample, which

is high enough to have no influence on the results.
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Fig. 8 Particle size distribution of the DEM sample

Table 1 Model parameters

Y P ϕ
Dmax

Dmin

D50 γ θ

(MPa) (-) (0) (-) (mm) (N/m) (0)

50 0.5 30 3 0.058 0.073 P r0; 60s
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3.2 Contact angle influence on SWCC

The computation of all liquid bridge volumes in the

DEM calculations provides the possibility of obtain-

ing the macroscale Soil-Water Characteristic Curves

(SWCCs) for uniform suction conditions. Being depen-

dent on the chosen particle size distribution, the SWCCs

are generated for different contact angles under an isotropic

stress of p “ 10 kPa — this value has little influence

on the final result — and imposing different suction

values to the numerical sample. For each contact an-

gle, two distinct SWCCs are determined by computing

menisci either between contacting particles only, or be-

tween both contacting and separated particles. As wa-

ter vapour condensates into liquid primarily over con-

tacting solid surfaces, the consideration of menisci at

contacts only may be related to a pseudo primary wet-

ting path. On the other hand, considering menisci for

admissible particle distances, i.e. as long as a solution

to the Laplace-Young equation can be found, is pre-

sented as a pseudo primary drying path. However, it is

reminded that there is no simulation of the poral flow of

the two fluids, which leads the model to neglect some

mechanisms such as the ink-bottle effect that are re-

sponsible for hysteresis during physical hydraulic paths.

As such, a limited hysteresis is obtained between the

pseudo-wetting and pseudo-drying SWCCs, see Fig. 9.
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Fig. 9 Pseudo-wetting and pseudo-drying SWCCs for differ-

ent contact angles

It is noted that the contact angle inevitably in-

fluences the SWCC since it is directly connected to

the volumetric-suction V ˚pu˚
c q relationship at the liq-

uid bridge scale. As seen in Fig. 9, there is a signifi-

cant difference in SWCC for contact angles greater than

θ “ 200. Indeed, an increasing contact angle reduces

the suction for a given degree of saturation with the

two being interchangeable. This result further suggests

that soils are less sensitive to unsaturated conditions for

higher contact angles, as the next sections will demon-

strate in detail.

3.3 Contact angle influence on strength

The association between the contact angle value and

the mechanical consequences of unsaturated conditions

is investigated into more details considering the appar-

ent shear strength of wet samples. For each contact an-
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gle value, and different applied suctions, two triaxial i.e.

axisymmetric compressions, with 10 and 20 kPa confin-

ing pressure, are carried out in order to determine the

corresponding apparent shear strength as interpreted

using a Mohr-Coulomb criterion. As has been observed

experimentally [29,30], the macroscopic friction angle

φ is unaffected by unsaturated conditions and corre-

sponds to the friction angle developed in dry conditions:

all φ values are equal to 30.1˘0.30. The correspondence

between φ, that has been measured for dry conditions

in previous works [10,37], with the local friction angle

between two discrete elements, ϕ, is purely coinciden-

tal. Disregarding the constant friction angle, the shear

strength is then quantified through the apparent cohe-

sion c (Fig. 10). We recall first that the cohesion values

depend on the chosen particle size distribution: greater

cohesions would be obtained for another distribution

involving smaller particles.

Also, in line with the differences in the SWCCs pre-

viously shown in Fig. 9, the apparent cohesion of the un-

saturated samples significantly decreases with the con-

tact angle, independent of the suction or degree of sat-

uration as depicted in Fig. 10. Such a decrease in the

apparent cohesion is attributed to the lower attractive

capillary forces that were observed for higher contact

angles back in Section 2.3 (Fig. 4).
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Fig. 10 Apparent cohesion for different contact angles

We notice that the strength as expressed in terms

of the apparent cohesion globally increases with the de-

gree of saturation, i.e. decreasing suction, for a given

contact angle. This trend is typical of granular materi-

als with low degrees of saturation, as has been observed

experimentally [29,30]. The explanation resides in the

underlying microscopic mechanism where the capillary

force associated with a liquid bridge decreases in the

range of high capillary pressures, see Fig. 11. This is

equivalent to increases in capillary forces with water

content at the low end of water contents within the

pendular regime.
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Fig. 11 Dimensionless capillary force according to dimen-

sionless suction for different distances and r “ 2.5; θ “ 200.

See also [27] for r “ 1

The case of a liquid bridge between two contact-

ing particles is nonetheless different, displaying a mono-

tonic increase of the capillary force with decreased liq-

uid saturation, i.e. an increase in suction. It turns out

that this difference in mechanical behaviour confers a

significant role to liquid bridges between distant parti-

cles that have been previously argued to not contribute

to the stress transmission inside an unsaturated gran-

ular soil [30], and thereafter neglected in DEM models

similar to the one here considered [38].

In the present paper, it is chosen to simulate me-

chanical loadings from an initial state including menisci

at contacts only, and thereafter consider menisci even

if contact is lost, but ensuring Laplace-Young equation

can be solved. This includes the instance when initially

contacting spheres start separating, while new menisci

also form at new contacts. For the purpose of emphasiz-

ing the role of stretched menisci between separated par-

ticles, apparent cohesions are also measured with a sim-

plified version of the model that discards menisci and

capillary forces as soon as initially contacting spheres

separate. As expected, lower cohesions are measured

with the simplified model due to a lower number of liq-

uid bridges and attractive forces inside the sample, see

Fig. 12. More importantly, the cohesion trends with wa-

ter content are also affected with the simplified model

showing a monotonic decrease with water content that

contradicts experimental evidence [29,30] or other nu-

merical models [26]. Fig. 12 considers the case of θ “ 00

but the exact same trends have been measured for other

contact angle values. It is for the above reason that we
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Fig. 12 Apparent cohesion for θ “ 00 accounting for menisci

between distant particles (“cont. + dist.” data set), or not

(“cont. only” data set)

conclude stretched menisci should not be disregarded
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in the DEM modelling as long as they are admissible,

i.e. a solution of Laplace-Young equation.

3.4 Contact angle influence on constitutive behaviour

Finally, we examine the constitutive behaviour during

suction-controlled triaxial loading paths under 20 kPa

confining pressure and 20 or 300 kPa suction, for dif-

ferent contact angles. Table 2 gives the corresponding

initial degrees of saturation.

Contact angle θ

00 200 400 600

uc 20 3.76 3.03 1.59 0.44

(kPa) 300 0.046 0.040 0.025 0.009

Table 2 Initial degree of saturation (%) of considered triaxial

loadings (with 20 kPa confining pressure)

Apart from the previously discussed strength changes,

the contact angle has negligible influence on the overall

constitutive behaviour, see Fig. 13 and 14. It is clear

that virtually the same residual states and strain be-

haviour are observed for a given suction, irrespective of

the contact angle. Initial stiffnesses are also found to be

unaffected.
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Fig. 13 Contact angle influence during triaxial loadings with

20 kPa suction

4 Micro-mechanical interpretation from

capillary stresses

In order to get further insights in the role played by the

contact angle in wet conditions e.g., on the apparent

shear strength, attention is now focused on the nature

of the stress state of an unsaturated soil.

4.1 Stress state of wet soils

As a starting point, the various stress contributions to

the total stress σ in an unsaturated soil are briefly pre-

sented. Alluding to the various internal forces that exist
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Fig. 14 Contact angle influence during triaxial loadings with

300 kPa suction

within a wet granular material, these contributions nec-

essarily implicate contact forces between solid particles

as well as fluid pressures and surface tension forces.

The contact stress tensor σcont accounting for the

contact forces is given by the celebrated Love-Weber

formula [21,40]:

σcont “ 1

V

ÿ

c. 1,2

f2 b l12 (15)

Eq. (15) considers all contacting particles pairs 1-2 in

the REV V , with f2 the contact force as sustained by

2, and l12 the branch vector connecting the center of 1

to that of 2.

Whereas the contact stress tensor equals to the total

net stresses in dry conditions, a capillary stress tensor

σcap arises in unsaturated conditions, accounting for

the stress contributions from the fluid phases and the

existing interactions between the various phases:

σcap “ σ ´ ug δ ´ σcont (16)

Note that the capillary stress terminology, used also by

Scholtès et al. [33], corresponds to the suction stress as

coined by Lu & Likos [23]. From micromechanics, and

under quasi-static conditions, the expression for σcap is

obtained from the different mechanical actions related

to fluid pressures and surface tension forces [6,7]:

σcap “ ´ucχ ´ γ ξ (17)

χ “ 1

V

˜

Vl δ `
ÿ

p

Rp

ż

Sl
p

n b n dS

¸

ξ “ 1

V

˜

ż

Slg

pδ ´ n b nq dS `
ÿ

p

Rp

ż

Γp

e b n dl

¸

n

Sp
l

Sm

Γp

e

n

Fig. 15 Liquid bridge characteristics associated with Eq. (17)
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Fig. (15) shows the various characteristics of a liquid

bridge between two particles that appear in the capil-

lary stress expression (17). The latter encompasses all

internal forces within the fluid volumes in terms of an

isotropic capillary pressure term ´uc Vl{V δ, as well as

the internal forces within the so-called contractile skin

[12] formed of all liquid-gas interfaces Slg “
ř

Sm in

terms of surface tension forces oriented along the sur-

face projection tensor pδ ´ n b nq [6,7,15]. Eq. (17)

also includes interactions terms between the different

phases: first, the non-isotropic fluids action on the solid

through the capillary pressure uc acting along the wet-

ted surfaces Sl
p of the solid particles p showing radii Rp;

and second, surface tension forces γ e dl as sustained

by solid particles along the contact lines Γp from the

contractile skin. The vector n is the outward external

normal to the solid particles in the last term of (17).

Previous DEM modelling approaches customarily

use an alternate expression for σcap that is based on

resultant capillary forces only [30,33,39,35]. Interest-

ingly, the comprehensive description of the solid and

fluid microstructure by the DEM model enables one to

compute the capillary stresses from Eq. (17) as well. Be-

cause the internal forces within an actual wet granular

material differ in nature from point forces, the choice is

made here to only consider Eq. (17) that reflects the dis-

tributed nature of e.g. liquid pressure, instead of rely-

ing on resultant point forces. The discussion here is not

trivial because internal stresses and resultant forces are

not interchangeable, as any medium sustaining stresses

while in equilibrium — under zero resultant force —

illustrates it. However, this issue is outside the scope

of this paper and other publications by the authors

present further details and explanations [37].

From the capillary stresses expression (17), it is note-

worthy that the capillary stresses systematically include

in the general case a deviatoric part depending on the

distribution of fluids implicating Sl
p, Slg, Γp and inter-

face orientations, which extends the classical Bishop’s

theory [4]. Such deviatoric stress contribution from the

fluids has previously been investigated for a zero con-

tact angle, e.g. by the authors using a slightly different

expression for σcap [38,10,37]. Because the contact an-

gle governs the whole fluid distribution — for instance

the contact line orientation and the
ş

Γp
e b n dl term

— it is natural to expect that the contact angle affects

the capillary stresses.

4.2 Capillary stresses during hydraulic loading

Capillary stresses are first measured along a pseudo-

primary drying path simulated under constant isotropic

(total) stresses p “ 10 kPa. At this stage, the sam-

ple is isotropic, and the liquid distribution including

menisci between contacting and separated particles is
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also isotropic. As such, σcap is spherical and is com-

pletely characterized by its mean pressure pcap. We have

namely:

pcap “ trpσcapq
3

“ pχ ` pγ

pχ “ ´ uc

3V

˜

3Vl ` ř

p

Rp S
l
p

¸

pγ “ ´ γ

3V

˜

2Slg ` ř

p

Rp Γp sin θ

¸

(18)

Irrespective of the degree of saturation, an increas-

ing contact angle leads to a decrease (in absolute value)

of the capillary stress pcap due to the two-fluid mixture,

see Fig. 16. The decline in pcap with θ follows a decreas-

ing (in absolute value) pχ that is not counterbalanced

by an increasing pγ . As for pχ, higher contact angles in-

duce lower suctions for a given water content (Fig. 9),

then lower pχ. As for pγ , its direct dependence on the

contact angle with sin θ appearing Eq. (18) leads pγ to

increase with θ.

For a given contact angle, changing the degree of

saturation, i.e. suction, has a minor influence on the

capillary stress pcap because of the opposite trends of

pχpSrq and pγpSrq. Note finally that apart from very

low water contents, with negligible interface surfaces

and wetted contours, a significant amount of the cap-

illary stresses is due to pγ that accounts for surface

tension forces.
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Fig. 16 Capillary stresses during the hydraulic loading of an

isotropic sample (Sr “ 0 as well as pχ “ 0 are both never

reached limits)
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4.3 Capillary stresses during mechanical loading

Capillary stresses are next computed during the triax-

ial loading paths presented back in Section 3.4 (Table

2). Contrary to the previous isotropic example, induced

anisotropy here takes place in the initially isotropic

sample upon the deviatoric mechanical loading. As menisci

form along new contacts following induced anisotropy

in the granular packing, an anisotropic liquid bridge

distribution develops which gives way to deviatoric cap-

illary stresses qcap [38,10,37].

Turning to the influence of contact angle, it is found

that higher values of θ decrease the intensity of capil-

lary stresses with regards to both pcap and qcap for all

suction values, see Fig. 17 and 18. Also, the deviatoric

nature of σcap — as measured by ηcap “ |qcap{pcap| —

slightly increases with the contact angle for low suc-

tions, Fig. 17(c). On the other hand, for high suction,

the deviatoric nature of σcap does not depend anymore

on the contact angle, as evidenced in Fig. 18(c). Such

high suction prevents menisci to exist between sepa-

rated particles, and there is in this case equivalence be-

tween the liquid bridge and the contact distributions,

hence between the deviatoric nature of σcap and the

contact anisotropy. Contrary to the stress state, the

straining of the packing can be considered as insensitive

to the contact angle, as suggested previously in Fig. 13
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Fig. 17 Capillary stresses during triaxial loadings with 20

kPa suction
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Fig. 18 Capillary stresses during triaxial loadings with 300

kPa suction

and 14. This explains why ηcap does not depend on the

contact angle for uc “ 300 kPa. Note that the apparent

ultimate value for ηcap is related to an existing critical

state for the contact anisotropy [3,42].

4.4 Failure description from capillary stresses

The distinct limit stress states as a function on wetta-

bility that we alluded to back in Section 3.3, are directly

related to the corresponding capillary stresses observed

in section 4.3. However, a unified failure description is

still possible, irrespective of the contact angle values.

Such unified failure description is only obtained when

the stress limit states (maxima of η “ q{p) are ex-

pressed in terms of the contact stress tensor σcont “

σ ´σcap (neglecting ug), instead of the total stresses σ

that are necessarily affected by the fluid mixture and

the contact angle. Shear strength data from triaxial

compressions under 10 and 20 kPa confining pressures

and several degrees of saturation in r0.01%; 10%s illus-

trate clearly that the consideration of σcont leads to a

unique plastic limit criterion, for all contact angles and

degrees of saturation, see Fig. 19.

This interesting result illustrates the validity of the

single effective stress concept to describe the failure of

granular materials in both dry and unsaturated condi-

tions as discussed e.g. by Alonso et al. [1]. However,

we do not address here the more complex issue of a
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Fig. 19 Failure description during triaxial compressions

comprehensive stress-strain behaviour. Also, this study

confirms previous numerical results pertaining to the

pendular regime with θ “ 00 [33,10,37], as well as ex-

perimental works [23,1].

5 Conclusion

The contact angle θ affects the mixture of fluids in mul-

tiphasic granular soils, which, in turn, impacts on the

mechanical behaviour of the soil. In order to assess this

contact angle mechanical influence, we proposed a DEM

model allowing a macroscopic mechanical analysis for

any θ value. The DEM model relies on a systematic

numerical solution of Laplace-Young equation, so that

capillary bridges are precisely described in terms of cap-

illary force, volume, surface and orientation tensor.

In line with the microscopic contact angle influ-

ence at the capillary bridge scale, macroscale mechan-

ical simulations performed with the DEM model show

that the stress state of macroscopic soil samples is less

sensitive to unsaturated conditions for higher contact

angles. As a matter of fact, higher θ values reduce the

suction i.e. capillary pressure as well as the apparent

shear strength increase classically associated with un-

saturated conditions. Such contact angle influence arises

from a decrease in the capillary stresses according to θ.

As such, the classical zero contact angle assumption is

shown to be non-conservative for the mechanical anal-

ysis of wet granular soils.
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Appendix 1: Liquid bridge orientation tensor

Considering a meniscus-related orientation basis peρ, eφ, ezq

(Fig. 1), the liquid bridge external normal n and the lo-

cal orientation tensor n b n are:

n “ 1
a

1 ` ζ˚12

¨

˚

˚

˚

˚

˚

˚

˝

1

0

´ζ˚1

˛

‹

‹

‹

‹

‹

‹

‚

(19)

n b n “ 1

1 ` ζ˚12

¨

˚

˚

˚

˚

˚

˚

˝

1 0 ´ζ˚1

0 0 0

´ζ˚1 0 ζ˚12

˛

‹

‹

‹

‹

‹

‹

‚

(20)

From the discrete description of the liquid bride profile

pz˚
i , ζ

˚
i q and a numerical integration along the profile —

z˚
i P r0; z˚

f s — the dimensionless meniscus orientation

tensor π˚ is obtained as:

π˚ “
ż

S˚
m

nbn dS˚ “ π ∆z˚
f

ÿ

i“1

ζ˚
i

b

1 ` ζ˚1
i

2

¨

˚

˚

˚

˚

˚

˚

˝

1 0 0

0 1 0

0 0 2 ζ˚1
i

2

˛

‹

‹

‹

‹

‹

‹

‚

(21)

Appendix 2: Free energy of liquid bridge config-

urations

The capillary bridge depicted in Fig. 1 include free en-

ergy of different types:

– surface free energy Eint is present along the in-

terfaces between liquid and gas, liquid and solid,

and solid and gas [28,5]. We denote A, Als and

Asg the respective areas; and γ, γls and γsg the re-

spective surface tensions. Using Young’s equation

γ cos θ “ γsg ´ γls, and the area decomposition

As “ Als ` Asg, it transpires directly that:

Eint “ γ A ` γls Als ` γsg Asg

“ γ pA ´ Als cos θq ` γsg As

(22)

The wetted area Als is:

Als “ 2 π
`

R1
2 p1 ´ cos δ1q ` R2

2 p1 ´ cos δ2q
˘

(23)

Through classical differential geometry, the profile

ζ˚pz˚q gives the axisymmetric meniscus area:

A “ 2 π R2
2

z˚

f
ż

0

ζ˚pz˚q
b

1 ` ζ˚1pz˚q2 dz˚

« 2 π R2
2

f
ÿ

i“1

ζ˚
i

b

1 ` ζ˚1
i

2
∆z˚ (24)

– liquid and gaseous fluid volumes include the free

energy Ef “ ´uf Vf (f “ l, g). We consider the

capillary bridge forming in a constant surrounding

volume V “ Vs ` Vl ` Vg, such that:

Ef “ ´ug Vg ´ ul Vl “ ´ug pV ´ Vsq ` uc Vl (25)

– no energy is associated with the rigid spheres. The

same assumption leads to consider As as constant

in Eq. (22).

Omitting the constant terms γsg As and ug pV ´ Vsq,

the expression of Eint ` Ef in a dimensionless form —

E˚ “ pEint ` Ef q{pγ R2
2q — gives Eq. (12).
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Appendix 3: Comparison with Willett’s model

With respect to our notations, the capillary force ex-

pression proposed by Willett [41] applies to a dimen-

sionless force equal to F˚ p1` rq{2. In [41], the relation

is expressed according to a dimensionless distance S`

that corresponds, here, to d˚
a

2{pV ˚p1 ` rqq. Namely,

the equation proposed by Willett finally reads:

F˚ “ 2

1 ` r
exp

`

f1 ´ f2 exp
`

f3 lnS
` ` f4 ln

2 S`
˘˘

(26)

The coefficients fi depend on the contact angle and a

dimensionless volume that corresponds here, with re-

spect to our notations, to V ˚p1 ` rq3{8. Their exact

expressions can be found in the Appendices of [41] or

[14].
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soils. Géotechnique 60, 913–925(12) (2010). DOI

10.1680/geot.8.P.002

2. Bachmann, J., Horton, R., van der Ploeg, R.R., Woche,

S.: Modified sessile drop method for assessing initial soil-

water contact angle of sandy soil. Soil Science Society of

America Journal 64(2), 564–567 (2000). DOI 10.2136/

sssaj2000.642564x

3. Bathurst, R.J., Rothenburg, L.: Observations on stress-

force-fabric relationships in idealized granular materials.

Mechanics of materials 9(1), 65–80 (1990)

4. Bishop, A.W., Blight, G.E.: Some aspects of effec-

tive stress in saturated and partly saturated soils.
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34. Soulié, F., Cherblanc, F., El Youssoufi, M., Saix, C.: In-

fluence of liquid bridges on the mechanical behaviour of

polydisperse granular materials. International Journal

for Numerical and Analytical Methods in Geomechanics

30(3), 213–228 (2006). DOI 10.1002/nag.476

35. Than, V., Khamseh, S., Tang, A., Pereira, J.M., F., F.C.,

Roux, J.N.: Basic mechanical properties of wet granular

materials: A DEM study. Journal of Engineering Me-

chanics 0(0), C4016,001 (0). DOI 10.1061/(ASCE)EM.

1943-7889.0001043
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