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Material stability analysis of rock joints

Jérôme Duriez, Félix Darve and Frédéric-Victor Donzé and François Nicot

Résumé

In order to predict rockfalls, the failure of rock joints is studied. Consi-
dering these failures as constitutive instabilities, the second order work
criterion is used, since it explains all divergence instabilities (flutter insta-
bilites are excluded). The bifurcation domain and the loading directions
of instabilities, which fulfil the criterion, are determined for any piecewise
linear constitutive relation. The instability of rock joints appears to be ru-
led by coupling features of the behaviour (e.g., dilatancy). Depending on
the loading parameters, instabilities can lead to failure, even before the
plastic limit criterion. Results for two given constitutive relations illus-
trate the approach. Some given loading paths are especially considered.
Constant volume (undrained) shear and τ -constant paths are stable or
not depending on the link between the deviatoric stress and strain along
undrained paths, as found for soils. Some unstable loading paths are illus-
trated. Along these paths, failure before plastic limit criterion is possible.
The corresponding failure rules are determined.

Rock slopes present different types of defects at all scale. We call rock joints

the discontinuities (e.g., in mechanical properties) at macroscopic scale and we
assume that rock joints have the greatest influence on the stabilities of rock
slopes. This is why geomechanical stability analyses need to represent accura-
tely rock joints’ failures. We thus focus on the mechanical behaviour of such
joints and, in the framework of a 2D assumption, only four scalar variables will
be used to describe the corresponding mechanical state. Two stress components
are considered : one normal, denoted σ (considered positive in compression),
and one tangential, denoted τ . On the other hand, relative displacements oc-
curing along the joint are considered, with a normal component u (positive in
compression) and a tangential component γ.

We define here, as in the general plasticity theory that failure is obtained
when relative displacements along the joint (that we can call “deformation”,
from a general point of view) go on under a constant loading, by the existence
of limit stress states. Failure of rock joint is obtained for example during constant
normal load (CNL) shearings, defined by a constant value of σ, once τ reaches
a peak or a plateau [1, 2, 3, 4] : under these conditions γ increases continuously
while stresses are constant. This situation in a rock slope would trigger rockfalls.
Such analysis of failure introduces directly the concept of limit stress states,
for which stresses do not vary anymore : ~dσ “ pdτ, dσq “ ~0, while relative

displacements still evolve : ~dl “ pdγ, duq ‰ ~0.
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As in the previous example for τ peak during CNL shearing, limit stress
states occur first of all (but not exclusively) on the plastic limit criterion –
the frontier, in the stress space, of all admissible stress states, e.g. the Mohr-
Coulomb criterion. For this reason failures of materials in general (not only
rock joints) were first considered through limit analyses (by Drucker [5]), also
denoted as limit equilibrium methods in the framework of geomechanics. The
corresponding static limit theorem focuses on stress states corresponding to
plastic limit criterion, generally within the assumption that such stress states
are reached for the entire body. Such analyses were applied to rock joints and
rock slopes stability by several authors [6, 7, 8, 9].

Alternatively, the use of a constitutive relation linking ~dσ to ~dl allows also to
analyse these limit stress states. If a rate-independent behaviour is assumed for
the rock joint, such constitutive relation can be expressed through a constitutive
matrix Mh that depends on the hardening parameter h, and on the loading
direction ~d “ ~dl{||~dl||. This matrix links ~dσ to ~dl (more details about these
results can be found for example in [10]) :

~dσ “ Mhp~dq ~dl (1)

We now introduce (after Darve [11]) tensorial zones, defined as parts of the
pdu, dγq space in which matrix Mh is constant for the corresponding set of

vectors ~d. Then, if a given tensorial zone is assumed, limit stress states are
equivalent to cancellation of the determinant of matrix Mh :

~dσ “ Mh
~dl “ ~0 , with ~dl ‰ ~0 ô detpMhq “ 0 (2)

Having described failure of a rock joint, stability of a rock slope can finally be
assessed using such constitutive relation, since, with an appropriate numerical
method, mechanical states of all rock joints can be determined precisely during
a given loading history.

Compared to previous limit analyses, such stress-strain analyses are fun-
damentally different. Besides a plastic limit criterion, a constitutive relation is
required, but sharper descriptions of failures can be obtained. On one hand, for
example, with limit analyses the failure mechanisms (the directions of displace-
ment fields at failure) can be determined, using – associated, generally – flow
rules, only when corresponding stress states reach their yield surfaces (which are
here equivalent to plastic limit criterion since no hardening is considered). On
the other hand, with stress-strain analyses, the displacements are fully determi-
ned in any cases, and not only on failure. Finally, compared to limit analyses,
the second approach presents several advantages. First, the mechanical history
is completely determined, which has an influence for hardening behaviours. Se-
cond, the stress states can be computed, and do not require to be assumed.
Thus critical rock joints with stress states obeying to plastic limit criterion can
be determined in rock slopes. Finally, and we will discuss it later, failures of
geomaterials can occur before the plastic limit criterion is reached, and such
failures can thus not be explained by the limit analyses.
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A comparison between the two approaches was presented by Adhikary and
Dyskin [9]. In their work, results of the limit analysis overestimated the fai-
lure level by at least 70%, compared to experimental results, whereas results
obtained by the stress-strain analysis approached the experimental ones with a
maximal error of 15%. For the authors, the differences were caused by the as-
sumption of an homogeneous stress field (which obeys the plastic limit criterion
everywhere) in the limit analysis and not in the stress-strain analysis.

The framework of this work is thus the assessment of rock slope stability
using stress-strain analysis. To do so, we will analyse in this paper the rock
joints failure, using corresponding constitutive matrices, and focusing on the
limit stress states evocated before. For nonassociated materials (like rock joints
[12, 13]), we also have to take into account the generalized limit states that can
occur before the plastic limit criterion. Contrary to classical limit stress states,
these generalized limit states do not only involve the stress values (displacements
also have to be taken into account), and they depend on the loading path. They
were discussed for example by Darve et al. [14]. Such states can also lead to
failures, thus before plastic limit criterion, depending on the loading parameters.
Undrained triaxial tests on loose sands provide a typical example. During such
tests, peaks of q 1 are classicaly observed before Mohr-Coulomb plastic limit
condition, and corresponding failures can develop if the test is stress-controlled,
rather than strain-controlled [15]. Another example can be observed along q-
constant loading paths. The generalized limit state corresponds in this case
to the maximum of volumic strain that can be measured before plastic limit
criterion, and failures are observed after a volumetric perturbation (e.g., after
an injection of a small amount of water) [16, 17].

We shall mention a second type of failures that can be encountered before the
plastic limit criterion is reached, when increasing plastic deformation localizes in
shear or compaction/dilation bands [18, 19, 20]. Such failures could be explained
by Rice’s criterion [21, 22], but they differ from the previous examples because
of their localized pattern, which did not appear in previous examples. Indeed,
the first kind of failures, before plastic limit criterion, that we mention, are
refered to as diffuse [23].

In such cases, a new tool, different from the plastic limit criterion or Rice’s
criterion, is required to explain the failures. To reach this goal, Darve et al.

[24, 25, 26] reinterpreted these failures through the notions of bifurcation and
instablitity (as Rudnicki and Rice [21] did). In general any failure can be seen
as a bifurcation, since failure corresponds to a discontinuous transition from a
quasi-static regime of deformation, to a dynamic one, under continuous loading.
Regarding instability, the definition of Lyapunov [27] (see for example [14]) is
considered. In this sense, and roughly speaking, an unstable state is reached
when “small” loadings can result in “large” responses. It is the case for failures
at limit stress states : once the limit state reached, any additional infinitesimal

1. During such tests, two of the three principal stresses are equal, to σlat. Denoting the
third principal stress σax, it is defined as q “ σax ´ σlat.
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load will imply failure, and large deformations.
Within this framework, Hill’s necessary criterion of instability [28] gave the

starting point to define the second order work criterion [29] which explained
successfully the diffuse failures presented before [14, 24, 30]. First theoretical
explanations obtained by this approach have been confirmed experimentally
[31, 32]. The great advantage of the second order work criterion is its ability to
explain all kinds of failures by divergence instabilities : sudden monotonous and
unbounded increases of the strains, starting from some initial state, denoted as
unstable. Failures on plastic limit criterion, we first evocated, are indeed also
explained as a particular case in the framework of the second order work crite-
rion. Localized failures are also explained since Rice’s criterion can be seen as a
particular case according to linear algebra [33, 34]. Indeed failures always corres-
pond to instabilities, whereas the reciprocal is false, as explained by Daouadji
et al. [30] for example. And the second order work is the most general crite-
rion explaining all divergence instabilities [35], excluding the flutter instabilities
which correspond to suddenly cyclically increasing strains.

We will apply this criterion to rock joints constitutive relations to study
rock joints failure through a constitutive point of view and we will compare it
to previous results obtained for a soil body. Section 1 presents general results,
valid for any incremental piecewise-linear rock joints constitutive relations. Sec-
tion 2 focuses on two rock joint constitutive relations, proposed previously by
Duriez et al. [13] : a piecewise-linear one, the other incrementally nonlinear. The
corresponding results, as well as a parametric study are presented. In sections
3 and 4 the behaviour of rock joints along displacement and stress proportio-

nal loading paths will be considered. The purpose of such paths is to clearly
illustrate what happens when conditions of the second order work criterion are
fullfilled, and to compare to soil case, for which experimental evidences of ne-
gative second order work (and corresponding failures) were observed along such
paths. In the final section 5 failure rules [14] will be derived, which characterize
these failures occuring before plastic limit criterion, as flow rules characterize
the failures corresponding to plastic limit criterion.

1 Second order work criterion and joint stability

analysis

For 3D media, at a material point scale, infinitesimal variations of the me-
chanical state can be described by two vectors belonging to R

6 : ~dσ and ~dǫ,
derived from the two symmetric tensors dσ and dε. The second order work is
defined as : (see for example the synthetizing paper by Daouadji et al. [30])

d2w “ ~dσ. ~dǫ “ t~dσ ~dǫ (3)

For a part of a rock joint with an homogeneous mechanical state, and considering
only one tangential and one normal direction, two vectors ~dσ and ~dl belonging
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to R
2 are used, such that :

d2w “ ~dσ. ~dl “ t~dσ ~dl (4)

Due to the existence of a constitutive matrix Mh which depends on the loading
direction ~d, the sign of d2w depends only on direction ~d (for a given mechanical
state) :

d2w “ ~dl. ~dσ “ ~dl.Mhp~dq ~dl “ ||~dl||2 ~d.Mhp~dq ~d (5)

The second order work criterion focuses whether the sign of d2w is negative
or not. The first analysis of R. Hill [28] has been recently complemented by
establishing a link between negative values of second order work and bursts of
kinetic energy at an unstable state leading to failure [36, 37, 38]. These bursts
are a clear proof of an effective failure, validating the second order criterion
as a proper failure criterion. Here, the considered definition of (un)stability is
slightly different from the one of Lyapunov we stated previously. Nevertheless,
links between the two exist, as it was discussed by Darve et al. [14].

Due to the directional feature of second order work’s sign, it was defined :
- directions of instability, also denoted unstable directions, as the loading direc-
tions which trigger d2w ď 0
- a bifurcation domain, as the set of mechanical states for which at least one
direction of instability exists. Such states are denoted as unstable ones.

Failure occurs under the three following necessary and sufficient conditions :
the stress state belongs to the bifurcation domain, the loading direction is an
unstable one, and appropriate loading parameters are used [30]. As for the
example of undrained triaxial test on loose sand (as mentioned in introduc-
tion) the loading parameters have to involve both stress and strain increments,
so that failure occurs. Otherwise, the existing instability does not lead to failure.

Note that the first and second conditions are linked together since no direc-
tion of instability can be obtained if the stress state is not an unstable one, i.e.
if it is outside the bifurcation domain.

An alternative approach would be to apply the notion of controllability pro-
posed by Nova [39, 40] to our interface strains and stress variables. This would
provide the possibility determine the mechanical states and loading directions
for which the existence and uniqueness of the mechanical response may be lost
(depending on the loading parameters) [41]. This corresponds to the three condi-
tions of failure we stated previously. It has been demonstrated [36, 30] that the
notion of controllability proposed by Nova and the application of the second
order work criterion can be developed in a unique framework.

For the rest of section 1, we now consider any rock joint constitutive relation
with a finite number of tensorial zones. Since constitutive matrix depends on
loading directions ~d, recall that tensorial zones are defined as parts of loading
direction space (here the plane pdγ, duq) in which this matrix is constant. For
elastic models, one tensorial zone is assumed, whereas an infinity can be obtained
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with incrementally nonlinear (INL) formalisms [42, 43] (applied to rock joints
in [10, 13]).

General results about second order work are presented in this framework.

1.1 Bifurcation domain and directions of instability

If the direction of ~dl “ pdu, dγq belongs to the set of loading directions
defining a given tensorial zone, it is here possible to write :

ˆ

dτ

dσ

˙

“
ˆ

Gγ Gu

Nγ Nu

˙ ˆ

dγ

du

˙

“ M

ˆ

dγ

du

˙

(6)

In this case :

d2w “ dσ du` dτ dγ “ Nu du
2 ` pGu `Nγq du dγ `Gγ dγ

2 (7)

If dγ “ 0, which is the case for œdometric compressions, we get d2w “
Nu du

2. Since du ‰ 0 (otherwise ~dl “ ~0 which is not to be considered), we
have in this case d2w ď 0 ô Nu ď 0. Moduli Nu being a normal stiffness, this
may occur in high porosity, compacting rocks showing compaction bands [44].
This corresponds to instabilities leading to localized failures [45, 46]. However,
according to Mollema and Antonellini [44], restricting to rocks with porosity
lower than 20% dismisses this special case ; as an example, porosity for granite
and gneiss is around few percent. In this case no instability can occur during an
œdometric compression, as it could be figured out.

In order to find out conditions leading to d2w ď 0 we can now consider
dγ ‰ 0. Then :

d2w “ dγ2

˜

Nu

ˆ

du

dγ

˙2

` pGu `Nγq du
dγ

`Gγ

¸

(8)

Sign of d2w is hence the same as the one of second order polynom P , defined
by :

P pXq “ NuX
2 ` pGu `NγqX `Gγ (9)

We still considerNu ą 0, thus two conditions have to be fullfilled to get d2w ď 0.
The first condition concerns the discriminant which must be positive :

∆ “ pGu `Nγq2 ´ 4NuGγ ě 0 ô pGu `Nγq2 ě 4NuGγ (10)

This condition is the equation of the bifurcation domain, which gathers all
mechanical states obeying to Equation (10). It can be physically interpreted
as follow. Let consider Nu and Gγ as diagonal rigidities, because they link
together normal variables (dσ with du) or tangential variables (dτ with dγ), and
hence Gu and Nγ as nondiagonal ones. Equation (10) expresses that instability
can be obtained once the magnitude of nondiagonal rigidities becomes greater
than the one of the diagonal ones. Classical definition of failure, through limit
plasticity and cancellation of determinant of constitutive matrices, relies also on
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such comparison between diagonal and nondiagonal rigidities, as explained in a
previous work [13].

Once in the bifurcation domain, the second condition concerns direction of
~dl, i.e. ratio du{dγ. It must belong to the set delimited by the two roots which
now exist :

du{dγ P S “
«

´pGu `Nγq ´
?
∆

2Nu

;
´pGu `Nγq `

?
∆

2Nu

ff

(11)

This constitutes the set of directions of instability which exist once in the bi-
furcation domain. S being an interval, the set of corresponding ~dl forms a cone
in pdu, dγq plane. Two branches of the cone correspond to directions leading
to an exact nil value of d2w, whereas directions strictly inside the cone lead to
strictly negative values of d2w. For constitutive relations with more than one
tensorial zone, it must be verified if directions of instability of set S belong to
the expected tensorial zone.

Through the constitutive matrix, interval S of unstable displacement di-
rections becomes also a stress direction interval, gathering the unstable stress
directions. These unstable stress directions form also a cone in Mohr plane, as
mentioned in other studies, for soil case [47, 14, 48]. Note that in [14, 48] more
than one unstable cone could be found depending on the considered mechanical
state. This would also be the case for piecewise linear relations, if Equation (10)
is fullfilled for different matrices corresponding to different tensorial zones (and
if corresponding directions of instability belong to the right tensorial zone).

1.2 Orientation of the instability cones

Unstable stress directions cones found previously for soils [47, 14, 48] point
generally towards stress origin (the second type of cones of [14, 48] excepted).
To determine what happens for unstable stress cones for rock joints, we consider
dσk

u, k P t1; 2u, the components of the branchs of the unstable stress cone in
Mohr plane, see Figure 1. After calculations detailled in appendix, we deduce

τ

σ 

dσ 
u

1

dσ 
u

2

Figure 1 – Definition of dσk
u for the cones of instability in Mohr plane

links between signs of dσk
u and dγ, depending on the comparison between the

coupling moduli Nγ and Gu, see Table 1.
Table 1 is mathematically valid as soon as the stiffness Nu and determinant

detpMq are positive. The orientation of instability cones depends on the coupling
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dγ ă 0 dγ ą 0

Gu ą Nγ
Unstable stress cone
in half space dσ ą 0

Unstable stress cone
in half space dσ ă 0

Gu ă Nγ
Unstable stress cone
in half space dσ ă 0

Unstable stress cone
in half space dσ ą 0

Table 1 – Orientation in Mohr plane of the cones of instability when they exist

moduli of the rock joints behaviour : Nγ related to contractancy-dilatancy, and
Gu related to influence of compressions over τ . They point, for example in dσ ă 0
direction in two cases : if Gu ą Nγ and dγ ą 0, or if Gu ă Nγ and dγ ă 0.

1.3 Associativeness versus nonassociativeness

The second order work d2w corresponds to the quadratic form of the sym-
metric part, MS , of the constitutive matrix M , since

d2w “ ~dl.pM ~dlq “ ~dl.pMS ~dlq (12)

Through linear algebra a direct link between the sign of d2w and the one of
detpMSq appears (see also previous discussions by Nicot et al. [49, 50]). This
leads to two consequences.

First, the bifurcation domain can be determined focusing on detpMSq. From
Equation (12), we conclude that some ~dl directions of instability exist if and
only if detpMSq ď 0. This means that detpMSq ď 0 is the equation of the
bifurcation domain. This corresponds to previous Equation (10), since we have :

MS “

¨

˚

˝

Gγ

Gu `Nγ

2
Gu `Nγ

2
Nu

˛

‹

‚
(13)

Then :

detpMSq “ Gγ Nu ´
ˆ

Gu `Nγ

2

˙2

“ ´ pGu `Nγq2 ´ 4Gγ Nu

4
(14)

According to Equation (10)

detpMSq “ ´∆

4
(15)

The two conditions : ∆ ě 0 and detpMSq ď 0 are equivalent. Since stress states
are limited by the plastic limit criterion : detpMq “ 0, the bifurcation domain is
contained between detpMSq “ 0 and detpMq “ 0. This allows to distinguish as-
sociative cases, from nonassociative ones. As soils, associative rock joints present
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a symmetric constitutive matrix (see [13] for example) : M “ MS. In this case,
the both conditions detpMSq “ 0 and detpMq “ 0 are fulfilled simultaneously.
This leads to the impossibility of failure before plastic limit criterion for asso-
ciative rock joints, as it was proposed for soils by Darve & Laouafa [51].

Then, if a given mechanical state is now assumed, detpMSq depends on the
loading direction, since it is the case of constitutive matrix M . Hence, the link
between directions of instability (leading to d2w ď 0) and directions leading to
detpMSq ď 0 can also be studied.

As explained in section 1.1, directions of instability correspond to Equation
(11), which requires that the bifurcation domain is reached : ∆ ě 0. Equiva-
lence ∆ ě 0 ô detpMSq ď 0 just being proved, this means that the directions
of instability lead to detpMSq ď 0 : the set of directions of instability is included
inside the set of directions leading to detpMSq ď 0. This result was presented for
soils by Darve & Laouafa [51], and it is now also valid for rock joints. Neverthe-
less, the reciprocal is false. Indeed, directions leading to detpMSq ď 0 ô ∆ ě 0
do not belong necessarily to the interval of directions of instabilitity of Equation
(11). This will be illustrated in section 2.2.3.

2 Application to Quadri and INL2 constitutive

relations

Focus is now laid on two particular rock joint constitutive relations. They
are first presented, before studied in the framework of the second order work
criterion.

2.1 The Quadri and INL2 relations

Constitutive relations can be distinguished depending on the number of ten-
sorial zones they provide. Relations with only one tensorial zone describe only
elastic behaviours. A greater number of tensorial zones allows to describe more
efficiently the mechanical behaviour of geomaterials. We will then use the Qua-

dri and INL2 constitutive relations presented in a previous work [13] because
they have four and an infinity of tensorial zones respectively. They are both of
interpolation type, and partly defined outside classical elastoplastic formalism :
they do not rely on a decomposition of strain between elastic and plastic parts.
Their expressions rely on two calibration paths. First, a constant normal dis-
placement (CND) path, with pdu “ 0, dγ “ cstq is considered. It provides four
moduli, corresponding to the slopes of the resulting curves τpγq and σpγq in
loading (dγ ą 0), or unloading (dγ ă 0) :

G`
γ “ Bτ

Bγ u,dγą0

G´
γ “ Bτ

Bγ u,dγă0

N`
γ “ Bσ

Bγ u,dγą0

N´
γ “ Bσ

Bγ u,dγă0

(16)
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Second, a constant tangential displacement (CTD) path, with pdu “ cst, dγ “ 0q
is used. Four other moduli are defined from the resulting curves τpuq and σpuq,
considering both loading (du ą 0) or unloading (du ă 0) :

G`
u “ Bτ

Buγ,duą0

G´
u “ Bτ

Buγ,duă0

N`
u “ Bσ

Bu γ,duą0

N´
u “ Bσ

Bu γ,duă0

(17)

These moduli are identical for both relations and determine completely the
behaviour along the two calibration paths. Both relations are thus identical along
such paths. The behaviours along any other loading paths are defined from the
behaviours along calibration paths through two different interpolations. Finally
a quadrilinear formalism expresses the response of the joint according to Quadri
relation :

ˆ

dτ

dσ

˙

“ 1

2

`

P` ` P´
˘

ˆ

dγ

du

˙

` 1

2

`

P` ´ P´
˘

ˆ

|dγ|
|du|

˙

(18)

With matrices P` and P´ depending on the eight previous moduli such as :

P` “
ˆ

G`
γ G`

u

N`
γ N`

u

˙

P´ “
ˆ

G´
γ G´

u

N´
γ N´

u

˙

(19)

Whereas, for INL2 relation, the formalism is incrementally non linear of
second order :

ˆ

dτ

dσ

˙

“ 1

2

`

P` ` P´
˘

ˆ

dγ

du

˙

` 1

2
a

du2 ` dγ2

`

P` ´ P´
˘

ˆ

dγ2

du2

˙

(20)

Detailed expressions for the moduli were proposed in [13]. They involve some
parameters which are listed in Table 2, with their values calibrated in [13] for
infilled rock joints. In this Table, the parameters are grouped according to their

Moduli Nγ Nγ , Gγ Nu Nu, Gu Gu Nu, Gu

Parameter N0

γ N`
γ dil

G0

γ N0

u Nf
u GP

u Nd

Reference -2.4 3.0 3.6 20 8.0 2.4 2
value (GPa/m)

Parameter σ0 ϕ ϕc

Reference 1.0 29 12
value (MPa) (0)

Table 2 – Default values of Quadri or INL2 relations parameters [13]

corresponding moduli (moduli 2`2 and 2´2 are here not distinguished). Some
parameters correspond to different moduli because some links between moduli
were introduced here in order to obey Equation (2). Following section 2.3 gives
some details.
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These two relations correspond to the INL and octolinear constitutive re-
lations developped by Darve for soils [42, 43]. Quadri and INL2 relations were
compared in [13] and, as it is the case for the soils relations, they predict close
behaviours and present same general properties. Thanks to expressions of mo-
duli proposed in [13] both respect a plastic limit criterion : the stress states they
predict can not exceed a Coulomb like criterion : τ “ σ tanpϕq. Both are also
nonassociated (their flow rules were determined in [13]). This motivates the use
of the second order work criterion.

2.2 Bifurcation domains and directions of instability for

Quadri and INL2 relations

2.2.1 Bifurcation domains

For Quadri case, equation of bifurcation domain, Equation (10), can be di-
rectly computed, for each matrix of each tensorial zone. After this step, and
after having verified that directions of instability belong to the right tensorial
zone, a bifurcation domain for (dγ ą 0, du ă 0) tensorial zone is found. Its limits
are plotted in Mohr-plane in Figure 2.

0 5 10 15 20
0

2

4

6

8

10

12

σ (MPa)

τ 
(M

P
a

)

 

 

Quadri

INL2

M−C

Figure 2 – Bifurcation domains of Quadri and INL2 constitutive relations

Figure 2 also represents the limit for INL2 constitutive relation. In this case,
no analytical development can be done. To detect the mechanical states be-
longing to the bifurcation domain of INL2 relation, a “directionnal analysis” is
performed, as in [52] or [24] for example. For a sufficient number of mechanical

states (discretizing the Mohr plane), different incremental loadings ~dl are consi-

dered, with different directions θdl (see Figure 3). Corresponding response ~dσ
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du

dl

θdl

dγ

Figure 3 – Definition of incremental displacement direction, θdl

and resulting second order work d2w are computed. If d2w ď 0 for some direc-
tions θdl, the mechanical state belongs to the bifurcation domain. This domain
is thus identified, and its limits can be plotted, see Figure 2.

Both bifurcation domains concern sheared states of the joint, more or less
close to Mohr-Coulomb criterion. Shearing rock joint appears to be as a catalyst
of instability. From Equation (10), this can be understood because during the
shearing deformation diagonal rigidities decrease [1] whereas nondiagonal ones,
as moduli Gu [10, 13], increase. Differences between bifurcation domains and
plastic limit criterion increase with σ. Influence of σ on the mechanical behaviour
of rock joint is also well known regarding the normal stiffness of the joint [1, 2, 4].
When comparing INL2 with Quadri cases, the bifurcation domain is greater in
case of the Quadri constitutive relation. This was already observed for soils
framework, using octolinear and INL relations [48].

2.2.2 Instability cones

Figure 4 presents directions of instability for the Quadri case, for different
τ{σ “ tanpφmobq ratios, which correspond to different states in shearing of the
joint. In the displacement plane, directions of instability imply shear loading
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Figure 4 – Unstable directions in Quadri case : influence of shearing. Under
σ=10 MPa, for different τ values (τ “ σ tanpφmobq)

(dγ ą 0), associated with a slight dilatancy (du ă 0). This result was also

12



obtained for a contact between two particles of a granular material, by Nicot and
Darve [25], from a micro-mechanical point of view. Regarding stresses, directions
of instability correspond to decreases for both stresses : dτ and dσ are negative.
According to the discussion developed in paragraph 1.2 this is becauseG´

u ă N`
γ

at these mechanical states.
For different shearing states, inside the bifurcation domain and before rea-

ching plastic limit criterion, cones are more open if φmob increases, either in dis-
placement or stress planes. Such results were already obtained for soils relations
in 2D (axisymmetric) [14] or 3D conditions [48], and using a micro-mechanical
approach or direct numerical simulations [47] with a discrete element method.
Once the stress state is on the plastic limit criterion, two remarks can be made.

First, one of the branchs of the displacement cone corresponds to the flow rule
of the material, which is also plotted in Figure 4(a). Using our relations, which do
not distinguish elastic and plastic parts of strains (relative displacement here),
the flow rule is defined as the direction of the relative displacements leading
to ~dσ “ ~0, on the plastic limit criterion [13] (or see [53] for comparable soil
relations). It corresponds to the eigenvector of eigenvalue 0, of the constitutive
matrix on plastic limit criterion since its determinant vanishes for this criterion.
Such couple (~dl ‰ ~0 given by flow rule, ~dσ “ ~0) leads to d2w “ ~dl. ~dσ “ 0.

Second remark concerns unstable stress directions. Figure 4(b) shows that,
on plastic criterion, the unstable stress direction cone reduces finally in an half-
line, parallel to Mohr-Coulomb criterion (dτ{dσ “ tanpϕq “ tanp290q here). The
unstable stress direction linked with flow rule is indeed not defined ( ~dσ “ ~0),
and all other unstable displacement directions correspond to this descending
branch of Mohr-Coulomb criterion, as it was shown in [13]. Note that other
stress directions which would point outward the Mohr-Coulomb criterion are
constitutively not admissible, since that through the constitutive relation they
do not correspond to any displacement direction [13]. Consequently, such stress
directions are not considered here.

Influence of σ, for a given shearing state, on Quadri-case directions of insta-
bility can be observed in Figure 5. As it was the case for increasing shearing,
cones get also more open for increasing σ values.

Unstable directions for INL2 relation are presented, and compared to those
of Quadri relation in Figure 6. Both types of cones are comparable, belonging
to the same quadrants of displacement and Mohr planes : (dγ ą 0, du ă 0)
and (dτ ă 0, dσ ă 0) (Figure 6 zooms on these quadrants). INL2 cones extend
nevertheless less than Quadri ones.

2.2.3 Loss of definite positiveness of the symmetric part of consti-

tutive matrix

In the previous section 1.3 it was explained why the set of directions of in-
stability is included inside the set of directions which let MS having a negative
determinant, for constitutive relations with several tensorial zones. This result
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is now illustrated for our Quadri and INL2 relations. Note that detpMSq varies
among four values for Quadri case, or in a continuous manner for INL2 case.

For a given mechanical state belonging to the bifurcation domain, the sym-
metric parts of the two constitutive matrices corresponding to Quadri and INL2
relations are computed according to the loading direction, and their determi-
nants are plotted in Figure 7 according to θdl (which expresses the loading
direction, see previous Figure 3). On Figure 7(a) cartesian representations are
adopted. The piecewise constant, discontinuous, values for detpMSq appear in
Quadri case, whereas the variations are continuous for INL2 case. Nevertheless,
the values are comparable between the two cases. For Quadri case, detpMSq is
negative only for θdl P r2700; 3600s, i.e. in (dγ ą 0, du ă 0) tensorial zone, where
the directions of instability were indeed found : for θdl P r3380; 3520s.

For INL2 case, considering Figure 7(b) is more convenient. On this Figure
a circular representation is adopted, i.e. a polar representation of dMs “
A ` detpMSq, with A chosen such that dMs remains stricly positive, even if
detpMSq P r´20; 50s (MPa/mm)2. Negative values of detpMSq can be observed
on this Figure, where the corresponding curve passes inside the reference circle
dMs “ A ô detpMSq “ 0. Here again, the directions of instability belong to the
set of directions leading to detpMSq ď 0, as it can be observed if the instability
cone is plotted on the same Figure 7(b).
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2.3 Quadri case : sensitivity analysis of the bifurcation

domain

Expressions of moduli of Quadri and INL2 relations, hence their bifurcation
domains, depend on the parameters which were listed in Table 2. Following
paragraphs illustrate the sensitivity of the bifurcation domain depending on
some of these parameters.

Doing so, we also show how bifurcation domains can be modified for different
rock joints with different normal rigidities (different moduli Nu), tangential rigi-
dities (Gγ), or dilatant feature (Nγ), etc... Since bifurcation domains of Quadri
and INL2 relations are close, only the Quadri one will be considered. Recall that
Equation (10) is the equation of this domain.

2.3.1 Moduli Nu : parameters N0

u and Nf
u

Moduli N
`{´
u correspond to normal stiffnesses, in loading or unloading, of

the joint along CTD (dγ “ 0) paths. The formulation (expressed in details in
[13]) involves two parameters : N0

u and Nf
u which rule the values of the normal

stifnesses. These stiffnesses increase with σ, proportionaly to N0
u for nonsheared

states (τ “ 0), or to Nf
u for completely sheared states (τ “ σ tanpϕq), or to

intermediate values between N0

u and Nf
u for intermediate shearing states. Thus,

moduliN
`{´
u are increasing whileN0

u and/orNf
u increase. Considering Equation

(10), increase in normal rigidity tends to reduce the size of the bifurcation
domain. However, parameter Nf

u is also used as a multiplying parameter in
expression of moduli G´

u and higher moduli G´
u should increase the size of the

bifurcation domain. Because of these two contradictory effects, the influence
of parameter Nf

u is not easily predictable using Equation (10). This approach
is now detailled, considering both parameters apart first, before considering
changes in the two parameters at the same time.

– N0

u Decrease in N0

u value corresponds to rock joints with lower normal stiff-
nesses (along CTD paths), under non- (or few-) sheared states. Thus, decreasing
values of N0

u increase the bifurcation domain, see Figure 8.

– Nf
u For higher values of Nf

u (limited by N0

u “ 20 GPa{m), the normal
stiffnesses of the joint Nu less decreases during shearing, which tends to reduce
the bifurcation domain. But, a link exists between Nf

u and the final value of
G´

u (on the Mohr-Coulomb criterion) and higher values of Nf
u also increase G´

u

moduli. Hence, the consequences on the bifurcation domain limit are difficult to
predict using only Equation (10).

However, considering the ratio Gu{Nγ is useful. This ratio is equal to one
for symmetric matrices which correspond to associated behaviours, hence, the
bifurcation domain strictly equal to the plastic limit. For the reference case
(Nf

u=8 GPa/m), under σ=10 MPa and τ “ σ tanp200q, we have G´
u {N`

γ « 40.

This ratio is actually proportionnal to Nf
u , thus higher values of N

f
u increase it,
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away from the value of 1, e.g. around 100 for Nf
u=20 GPa/m under the same

stress state. The nonassociativity of the behaviour is more marked, leading to a
wider bifurcation domain. This is confirmed by Figure 9 : for the tested values,
the bifurcation domain grows with Nf

u .

– N0

u, N
f
u Finally, changes in both N0

u and Nf
u are considered. We just derived

that increases of these two parameters have opposite influences on the bifurca-
tion domain. The Figure 10 presents the case for tested values of N “ pN0

u;N
f
u q,

compared to the reference value Nr “ pN0
u “ 20 GPa/m;Nf

u “ 8 GPa/mq. The
influence of parameter Nf

u appears to be preponderant : for the range of tested
values, we observe that the bifurcation domain increases depending onN values.

2.3.2 Moduli Gγ : parameter G0
γ

Tangential rigidity Gγ (G`
γ for loading, G´

γ for unloading) is now considered.
Values of G`

γ decrease during shearing from an initial value G0
γ (for τ “ 0) to a

final value Gf
γ (for τ “ σ tanpϕq). Considering an elastic unloading, the initial

value G0

γ also serves as constant value for G´
γ . G

f
γ value depends on parameter

N`
γ dil

which will be considered in next section. Thereby, only changes in G0
γ are

considered, see Figure 11. All values are chosen to be greater than the final value
Gf

γ “ N`
γ dil

tanpϕq « 1.66 GPa{m. Decreasing values of G0
γ increase the size

of the bifurcation domain, as expected from Equation (10) ; but the influence is
much less important than for other parameters.
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2.3.3 Moduli Nγ : parameter N`
γ dil

In order to reproduce a behaviour which is first contractant before being
dilatant, two parameters are used : N0

γ ă 0 and N`
γ dil

ą 0. Modulus N`
γ is first

equal to parameter N0

γ (whose influence is not considered here), and second
reaches N`

γ dil
value. Figure 12 considers different values for parameter N`

γ dil
,

which first corresponds to the dilatant feature of the joint. Hence, increasing
N`

γ dil
should let increase the bifurcation domain. This parameter also controls

the values of tangential rigidity for sheared state, and, increasing tangential
rigidity decreases the bifurcation domain. Figure 12 shows that the influence
of tangential rigidity is preponderant : the bifurcation domain increases while
N`

γ dil
decreases.

Again, considering the ratio G´
u {N`

γ explains the influence. This ratio is
actually proportionnal to 1{N`

γ dil
. For example, for the reference case with

σ=10 MPa and τ “ σ tanp200q, G´
u {N`

γ « 40. Whereas G´
u {N`

γ « 80 for
N`

γ dil
=1.5 GPa/m. Hence, decreasing N`

γ dil
moves away the value of the ratio

from one, leading to a wider bifurcation domain.

2.4 A convenient set of parameters

In the following sections 3 and 4 the rock joint behaviour is studied when
the second order work criterion is fulfilled. To perform this task, a new set of
parameters is considered, different from the one of Table 2 which corresponds
to Quadri and INL2 relations presented in [13]. These new values of parameters
are presented in Table 3. Parameter Nf

u is the only one to be modified, and is
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(GPa/m) (MPa) (0)
N0

γ N`
γ dil

G0

γ N0

u Nf
u

GP
u Nd σ0 ϕ ϕc

-2.4 3.0 3.6 20 15.0 2.4 2 1.0 29 12

Table 3 – Set of parameters “SetU”, corresponding to a wider bifurcation
domain
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considered equal to 15.0 GPa/m, instead of 8.0 GPa/m previously. This cor-
responds to two features of the joint : the corresponding rock joint presents a
less important decrease in normal rigidity with shearing stresses ; and moduli
G´

u can reach greater values, during shearing. A more important bifurcation
domain is obtained. The frontier of the domain corresponds to τ{σ « tanp18.40q
for σ=15 MPa (see Figure 9), instead of τ{σ « tanp25.20q previously (see Figure
2). Cones of directions of instability are also wider (Figure 13 compared with
4).
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Figure 13 – Unstable directions for set of parameters “SetU”, under σ=10 MPa

A plastic limit criterion (Mohr-Coulomb, with c=0 Pa, and ϕ “ 290) is
still obtained : this feature does not depend on the parameters values of our
relations [13]. To justify the use of the second order work criterion with these new
parameter values, it has to be checked that the behaviour is still nonassociated.
In a previous work [13], a dilatancy angle ψ was defined to control the flow rule,

which expresses the direction of relative displacements ~dl
p “ pdup, dγpq occuring

once stresses do not evolve on plastic limit criterion, with tanpψq “ dup{dγp.
Values of ψ for Quadri and INL2 relations were computed for the reference
parameters presented in Table 2 in [13] : they were close and different from ϕ

for both relations. For the new set of parameter of Table 3, ψ values (for Quadri
relation) are presented in Figure 14 : they are still different from ϕ “ 290 (and
decreasing according to σ) : the behaviour is still nonassociated.

3 Displacement proportional loading paths

Sections 3 and 4 illustrate conditions for which d2w ď 0, and compare the
rock joint behaviour to soil behaviour, for which experimental evidences of ne-
gative second order work (and corresponding failures) were observed. In order
to study conditions for which d2w ď 0, it is convenient to consider proportional
loading paths. In soil case, in axisymmetric conditions, we define strain propor-
tional loading paths as given by : dε1 ` 2Rdε3 “ 0, with R fixed for one test
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path. The undrained (i.e. isochoric) triaxial test with R “ 1 is an example.
For rock joints, displacement proportional loading paths are controled by

du` k dγ “ 0, with k constant. For k positive, a dilatant behaviour is imposed,
for k negative it is a contractant one. Along such paths note that :

d2w “ dσ du` dτ dγ “ pdu ` k dγq dσ ` pdτ ´ k dσq dγ “ pdτ ´ k dσq dγ (21)

Equation (21) shows that the second control variable for such paths, in
addition to du ` k dγ “ 0, can be either dpτ ´ k σq “ cst, or dγ “ cst, since
these two variables appear to be conjuguated with respect to energy. Complete
control parameters of such paths are resumed in Equation (22).

"

du` k dγ “ 0
dγ “ cst or dτ ´ k dσ “ cst

(22)

Moreover Equation (21) shows that, along such paths :

d2w “ 0 ô
"

dpτ ´ k σq “ 0 if dγ is imposed
or dγ “ 0 if dpτ ´ k σq is imposed

(23)

For the case where dγ is imposed, instability is obtained when τ ´ k σ passes
through a maximum and decreases. In three dimensions, Darve et al. [14] derived
a similar condition :

d2w “ 0 ô dpσ1 ´ σ3{Rq “ 0 (24)

These results are now applied to various paths, with given values of k, consi-
dering first the constant volume shear case (k “ 0).

3.1 Constant volume shear : CND path

For soils, constant volume shear occurs during undrained triaxial experi-
ments. For experiments involving loose sand a peak of q is obtained before
Mohr-Coulomb criterion. This peak is unstable and could lead to failures that
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can be explained only using the second order work [14, 15]. For rock joints a
constant volume shear implies du “ 0, which corresponds to CND paths and
to a vanishing value of control parameter k in Equation (22). The instability
cones previously presented in Figures 4(a), for some values of parameters, did
not show this loading direction (du “ 0, dγ) as an unstable one. Let us now
consider any Quadri or INL2 relations along such paths, theoretically and then
numerically. For these loading conditions there is no difference between the two
relations.

3.1.1 Theoretical discussion

For both relations, with du “ 0 :

d2w “ dσ du` dτ dγ “ dτ dγ (25)

Either dτ or dγ is the second loading parameter (see previous Equation (22) ).
Both are directly linked by moduli Gγ , by definition along this calibration path.
For such path, instability occurs when the following condition is met :

d2w ď 0 ô G`{´
γ ď 0 (26)

According to the calibration data [10], strictly positive values for G
`{´
γ are used.

In this case, failure of rock joints before plastic limit condition during constant
volume (or undrained) conditions does not occur. It would for negative values

of G
`{´
γ : decreases in τ according to γ along CND paths. This corresponds

directly to soils’ case, where instability is also obtained when the deviatoric
part of the stress (9 q) decreases depending on the deviatoric strains (9 ε1 for
undrained tests).

3.1.2 Numerical results

In order to illustrate the previous analytical developments, CND paths are
performed with INL2 or Quadri relations. Increments (du “ 0 , dγ= cst) are
imposed, and stress responses can be determined either with Equation (20) or
(18) (recall that the results are here identical). For each loading increment,
the second order work is computed, and its evolution during the loading is
considered. The value of dγ must be small enough to have no influence on the
results (see Figures 15(a) and 15(b)). Even if differences on stress values vanish,
magnitude of computed second order work values still depend highly on dγ

value : see Figure 15(c) for dγ=0.05 mm and 0.001 mm cases, for which stress
path are equal. This can be avoided with the use of a normalised second order
work d2wN , such as :

d2wN “ d2w

|| ~dσ|| ||~dl||
“ dσ du` dτ dγ?

dσ2 ` dτ2
a

du2 ` dγ2
(27)

Signs of d2wN and d2w are the same, and Figure 15(d) shows that comparable
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values are obtained, which do not evolve anymore once dγ is small enough.
However, because of numerical precision issues, too small values of dγ could
introduce noise in the data : cases dγ=0.05 mm and 0.001 mm present same
d2wN values in average, but with some noise for dγ=0.001 mm.

Let us now follow the evolution of d2wN during loading. Initially positive,
a decrease in normalized second order work is observed (Figure 15(d)), but not
enough to reach nil or negative values in this case. A plateau for d2wN is reached.

Comparison between these results with a second CND path (from a different
initial normal stress σ0) is presented in Figure 16. In Figure 16(b), the normali-
zed second order work is plotted according to τ{σ (whose values are limited by
tanpϕq), rather than γ. Decreases are still observed. Sharp decreases occur for
τ{σ “ tanpϕcq « 0.21 when the N`

γ moduli changes in a discontinuous manner.

Plateau of d2wN does not appear anymore in Figure 16(b), which means that
the plateau in Figure 15(d) corresponds to the one of τ{σ which is reached along
such paths : an asympotic point, rather than an asymptotic line, exists in Figure
16(b).
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Figure 16 – Two different DNC paths performed with Quadri relation (=INL2
here)

3.2 Other displacement proportional loading paths

Other k values are now considered, which especially correspond to direc-
tions of instability. From Figure 13, we can deduce that, for example, du{dγ «
´ tanp150q is a direction of instability for σ “10 MPa. Four different displa-
cement proportional loading paths are performed with Quadri relation, with
k ‰ 0 around tanp150q. Increment dγ is used as the second loading parameter.
The resulting stress paths appear in Figure 17(a) : for all tests, the stress state
reaches the plastic limit criterion, where it evolves before reaching a final point
(both τ and σ reach a constant value). As explained in details in a previous
work [13], these evolutions and the final state depend on the imposed dilation
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Figure 17 – Different displacement proportional loading paths
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rate (through parameter k) compared to the material dilation rate of the joint
on the plastic limit criterion given by its flow rule (which was presented in Fi-
gure 14 for this set of parameters). For k “ tanp50q for example, the stress state
evolves along the plastic limit criterion until a σ-value such that ψpσq “ 50 :
σ « 2 MPa, which corresponds to the results of Figure 14.

Values of τ ´ k σ, that have to pass through a maximum in order to get
instability, are monitored and plotted in Figure 17(b) according to the ratio
τ{σ. Note that this ratio increases monotonously for all tests, until maximum
value of tanpϕq.

Evolutions of second order work are finally considered, according to γ (Figure
17(c)) or ratio τ{σ (Figure 17(d)). Consideration of ratio τ{σ makes the curve
easier to analyze. As in Figure 16(b), some sharp variations can be observed
around τ{σ “ tanpϕcq, for loadings close to the CND one (k close to 0). This
being excepted, all curves decrease according to τ{σ. Negative values are reached
for k P rtanp50q; tanp280qs. Instability is obtained for lowest shearing (lowest
ratio τ{σ) for k “ tanp100q. Indeed Figure 13 showed that the instability cones
open around this value. Loading path k “ tanp280q is included within the cones
where their openings are maximal : instability is obtained just before the plastic
limit criterion. Whereas, for k “ tanp450q, negative values of d2wN cannot be
reached. For all unstable cases, vanishing of d2wN corresponds exactly, as it was
theoretically expected, to maximum values of τ´k σ (see Figure 17(b) compared
with 17(d)).

No failure occurs during these numerical tests since they are fully displace-
ment controlled : with du ` k dγ “ 0 and dγ “ cst. This instability (negative
values of d2w) triggers failure for mixed loading parameters. Figure 17 shows
clearly that those failures would occur before plastic limit criterion : peaks of
τ ´ k σ occur before maximum value of τ{σ.

4 τ - constant loading paths

For rock joints stress proportional loading paths are governed by :

"

dτ ´ k dσ “ 0
dσ “ cst or du` k dγ “ cst

(28)

Using Equation (21), as in section 3.2, we show that, along such paths :

d2w “ 0 ô dpu`k γq “ 0 if σ is imposed, or dσ “ 0 if u`k γ is imposed (29)

Depending on the control mode, instability is obtained for decreases, after rea-
ching a maximum, either of u` k γ in case of full stress-controls (dpτ ´ k σq and
dσ imposed), or decreases of σ in case of mixed control(dpτ´k σq and dpu`k γq
imposed).

We focus now to the case k “ 0, that is τ -constant loading paths.
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4.1 Theoretical discussion

This loading path corresponds to the case of Equation (28), for a vanishing
k. It would appear for example for water-saturated rock joints, in which changes
in the water pressure modifies the value of σ, but not τ .

In three dimensions, monitored increases in water pore pressure lead to q
constant drained paths. There are some experimental evidences of diffuse fai-
lure before Mohr-Coulomb criterion along such paths, for loose sands [16, 17, 54].
Theoretically, this type of paths were discussed in [14] for example, using the se-
cond order work criterion. This section presents what happens when rock joints
are considered.

Under the constraint of dτ “ 0, we have :

d2w “ dσ du` dτ dγ “ dσ du “ pNγ dγ `Nu duq du (30)

If the case du “ 0 (corresponding to a CND loading and handled in section
3.1.1) is excluded we can write :

d2w “ du2 pNu `Nγ

dγ

du
q (31)

Since dτ “ Gγ dγ `Gu du “ 0, the ratio dγ{du is determined, and :

d2w “ du2 pNu ´Nγ

Gu

Gγ

q “ du2

Gγ

pNuGγ ´Nγ Guq (32)

The determinant of the constitutive matrix appears : NuGγ ´Nγ Gu “ detpMq ;
finally :

d2w “ du2

Gγ

detpMq (33)

As for CND paths in section 3.1.1, instability depends on the link between
deviatoric parts of stresses and strains : the sign of Gγ . For rock joints along
τ constant paths, if Gγ ą 0 failures are only possible on the plasticity limit
criterion :

For Gγ ą 0, d2w “ 0 while τ “ cst ô detpMq “ 0 (34)

4.2 Numerical results

Now that τ constant paths have been discussed analytically for the Quadri
case, we consider them numerically for the INL2 case. Six τ constant paths are
simulated with the INL2 relation (Equation (20)). Three different initial states
are considered, all with the same value of σ : σ “ 10 MPa, but with three
different values of τ : τ P r0.3 τmax; 0.7 τmax; 0.9 τmaxs, with τmax “ σ tanpϕq.
For σ “ 10 MPa, τ -values greater than 0.6 τmax should correspond to the
bifurcation domain of the rock joint constitutive relation (see Figure 9).

For each stress state, τ constant paths are performed for dσ “ cst ą 0 and
dσ “ ´cst ă 0. Value cst “ |dσ| “ 10 kPa was used, which is small enough to
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have no influence on the results. Such paths being completely stress-controlled,
Equation (20) has to be inverted in order to determine ~dl which corresponds

to the imposed stress variation ~dσ “ pdτ “ 0, dσ “ `{ ´ cstq. This inversion
becomes impossible when the plastic limit criterion is reached for dσ ă 0. On
the plastic limit criterion, there is no ~dl leading to pdτ “ 0, dσ ă 0q : otherwise,
the further stress state would not obey the limit criterion. We have shown in
[13] that the INL2 constitutive relation obeys to a Mohr-Coulomb type plastic
limit criterion, close to the one of the Quadri relation, but with a slightly greater
friction angle value : ϕINL2 “ 30.50 ˘ 0.50 p« ϕ “ 290q.

This plastic limit criterion appears in Figure 18(a), where the imposed stress
paths are plotted. They all lie below the straight line τ “ σ tanpϕINL2q.
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Figure 18 – Behaviour of the joint along τ constant paths

In Figure 18(b) the resulting displacements are presented : dilatancy (du ă
0) occurs for imposed dσ ă 0, and values of relative displacements are greater
for unloading mode (dσ ă 0), and as the plastic limit criterion is close (for
greater τ values, for example).

According to Figure 18(c) we verify that no negative or nil value of d2wN
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is obtained through these paths with the INL2 relation, as it was deduced from
the analytical considerations of paragraph 4.1. Since these paths never go along
the plasticity limit criterion (following a τ constant path on the plastic limit
criterion would require dσ “ dτ “ 0), no nil value is also obtained on this
criterion.

Figure 18(d) also illustrates that the (normalised) second order work de-
creases again with respect to τ{σ ratio.

5 Failure rules

Failures occuring on plastic limit criterion do not occur with any mechanism.
Indeed the direction of the resulting displacements is determined (unlike their
values) because of the existence of the flow rule. Darve et al. (Equation (28) of
[14]) derived similar failure rules for soils under axisymmetric conditions, when
the second order work is vanishing.

For failures before plastic limit criterion, these authors showed that links
between increments of stresses and strains (dε1 and dσ3 in [14]) still exist, as for
the different components of displacements (or strains) during failures on plastic
limit criterion. Such failure rules for rock joints is here derived.

As in [14], the starting point is to write the constitutive relation, paying
attention to the relevant loading variables : du`k dγ and dτ ´k dσ, considering
the framework of sections 3 or 4. This is always possible, since pdτ´k dσ, dγq and
pdu` k dγ, dσq are conjuguated variables with respect to energy : pτ ´ k σq γ `
pu` k γqσ “ τ γ`σ u. For piecewise linear relations (6), we rewrite them, after
few calculations, under following form :

ˆ

dτ ´ k dσ

du` k dγ

˙

“

¨

˚

˚

˚

˝

detpMq
Nu

Gu

Nu

´ k

k ´ Nγ

Nu

1

Nu

˛

‹

‹

‹

‚

ˆ

dγ

dσ

˙

“ M 1

ˆ

dγ

dσ

˙

(35)

Under either stress or displacement proportionnal loading conditions, one of
the two terms of the vector pdu` k dσ, dτ ´ k dσq vanishes. Failure corresponds
to a cancellation of the second term, while pdγ, dσq ‰ ~0.

This first implies a bifurcation criterion [14] :

detpM 1q “ 0 (36)

Which is linked to cancellation of second order work. With P the polynom of
Equation (9), we get :

detpM 1q “ P p´kq
Nu

“ P pdu{dγq
Nu

“ d2wp~dlq
Nu

(37)
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Then, we can now derive the failure rule using the set of solutions (dγ, dσ)
which now exist :

ˆ

k ´ Nγ

Nu

˙

dγ ` dσ

Nu

“ 0 (38)

As explained in [14], from the generalized limit stress state : pdτ ´ k dσ “
0, du ` k dγ “ 0q, response increments are unknow : an infinity of solutions
exist, but they all obey to Equation (38). Note that k appears in Equation (38),
as R in Equation (28) of [14].

6 Conclusion

In this paper we have studied the mechanical stability of rock joints, restric-
ting to the case of positive normal stiffnesses. The second order work criterion,
already used for soils, was applied to rock joints which are seen as interface
media. Related to this stability criterion, the bifurcation domain and directions
of instability for a given rock joint were determined. As for soils, in case of
nonassociativeness, failure before the plastic limit criterion can occur, for some
loading directions forming cones of instability. Coupling features of the joint
(e.g., dilatancy) appear to have a key role for the stability of the joint. Indeed,
instability is obtained depending on the magnitude of the corresponding moduli,
compared between each other, and with the diagonal rigidities. The instability
patterns are also different depending on this moduli comparison (dσ with same
sign than dγ, or not).

We applied the theoretical study to two given rock joint constitutive rela-
tions : the Quadri and INL2 ones [13]. The bifurcation domains and instability
cones were illustrated in these cases, with some sensitivity analyses. With these
relations (after having modified some values of parameters), attention was par-
ticularly paid to two loading paths : constant normal displacement (du “ 0), or
constant tangential stress (dτ “ 0). No failure was obtained here before plas-
tic limit criterion, but this would occur along these two paths if the deviatoric
stress τ decreases with the deviatoric ”strain” γ along undrained paths, exactly
as found for loose soils. We also illustrated that such failures happen for loa-
ding directions belonging to instability cones (which implies that the mechanical
state belongs to the bifurcation domain), and if appropriate loading parameters
are used (necessarily mixed ones). The failure rules were determined : they give
the failure mechanisms if such failures occur. Furthermore we showed that the
second order work seems to decrease during shearing, irrespective of the loading
direction. This means, roughly speaking, that shearing leads to instability. Ho-
wever, the instability becomes a failure or does not, depending on the loading
directions and on the loading parameters .

Regarding rock slope stability, which is the framework of this study, an
analysis of an existing cliff was presented in another work [55]. From a numerical
model of the cliff, using the INL2 relation, conditions of instability were obtained
in some simulations, even if they did not trigger failure. A global value of the
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second order work (only local values were considered) needs to be used to deal
with such boundary problems.

These results can be applied to any interface media, that is soil-structure in-
terfaces (e.g., around piles), but also natural interfaces : for example rock faults
responsible for earthquakes.

APPENDIX

We derived in section 1.2 the links existing between the orientation of the
cones of instability and the signs of dγ and Gu ´ Nγ . The orientation of the
cones are determined through the signs of dσk

u, k “ 1; 2, defined in Figure 1.
We have, due to equations (6) and (11) :

dσu
k “ Nγ dγ `Nu du “ dγ

˜

Nγ `Nu

´pGu `Nγq ` fk
?
∆

2Nu

¸

“ dγ

2

`

Nγ ´Gu ` fk
?
∆

˘

“ dγ

2
Lk

(39)

We have in Equation (39) fk “ 1 for one branch of the cone and fk “ ´1 for
the other. The sign of dσ depends partly on sign of Lk “ Nγ ´Gu `fk

?
∆. And

the sign of Lk depends itself on the one of Nγ ´Gu.
If Nγ ´ Gu ą 0 we get obviously Lk ą 0 for branch k such as fk “ 1. For

the other branch in this case :

Lk ě 0 ô Nγ ´Gu ě
?
∆ ą 0

ô pNγ ´Guq2 ě ∆
ô pNγ ´Guq2 ě pNγ `Guq2 ´ 4NuGγ

ô NuGγ ´Nγ Gu ě 0 ô detpMq ě 0

Determinant of the constitutive matrix appears. It is physically positive (va-
nishing only on plastic limit criterion), which proves that Lk is also positive
for both branchs of the cone : both dσu

k have then the same sign as dγ, for
Nγ ´Gu ą 0.

If Nγ ´Gu ă 0. For branch k with fk “ ´1, we get easily again Lk ă 0. For
other branch with fk “ 1, we show that Lk is also negative because detpMq is
positive :

detpMq ě 0 ô NuGγ ´Nγ Gu ě 0
ô 1

4

`

4NuGγ ` pGu ´Nγq2 ´ pGu `Nγq2
˘

ě 0
ô ´∆ ` pGu ´Nγq2 ě 0

ô
?
∆ ď Gu ´Nγ : both terms, ∆ and Gu ´Nγ , are ě 0

ô Lk ď 0

In this case Nγ ´Gu ă 0, signs of both dσu
k are opposite to the one of dγ. We

end up with the conditions presented in Table 1.
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515.

[25] Nicot F, Darve F. A micro-mechanical investigation of bifurcation in
granular materials. International Journal of Solids and Structures 2007 ;
44 :6630–6652.
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