

BIAXIAL COMPRESSION TESTS ON HOPKINSON BARS

Authors: Bastien DURAND, Ahmed ZOUARI, Han ZHAO, <u>Pierre QUILLERY</u>

LMT-Cachan, Mechanics & Material team, Dynamics unit

Industrial context

Hopkinson set-up working

• Experimental results

Conclusions and prospects

Multiaxial dynamic loadings occur in many industrial cases. For instance, automotive crashes:

crash-box crushing (shock absorber)

foam submitted to a complex stress state

[Durrenberger 2007]

Multiaxial dynamic loadings occur in many industrial cases. For instance, automotive crashes:

crash-box crushing (shock absorber)

foam submitted to a complex stress state

[Durrenberger 2007]

Hopkinson bars: most convenient dynamic set-up (impact of a striker) Problem: How to obtain a multiaxial loading from an initial uniaxial loading?

Overview focused on dynamic biaxial compression set-ups:

Hopkinson∠ bars∖

rigid device

- \Rightarrow transversal strain blocked
- ⇒ stress ratio dependent on the sample behavior

transversal preload

 \Rightarrow static loading

[Albertini 2014]

Overview focused on dynamic biaxial compression set-ups:

Perpendicular Hopkinson bar devices:

[Hummeltenberg 2012]

accuracy of a few tenth of ms on the impacts instants needed ⇔ accuracy of a few mm on the strikers positions needed

Layout:

Industrial context

Hopkinson set-up working

• Experimental results

Conclusions and prospects

single striker + single input bar \Rightarrow no problem due to shifting

single striker + single input bar \Rightarrow no problem due to shifting internal output bar inertia (impedance) \Rightarrow sample axial loading

single striker + single input bar \Rightarrow no problem due to shifting internal output bar inertia (impedance) \Rightarrow sample axial loading external output bar inertia (impedance) \Rightarrow sample transversal loading Presented by Pierre QUILLERY, 18th International Conference on Experimental Mechanics 11

Layout :

Industrial context

Hopkinson set-up working

• Experimental results

Conclusions and prospects

Measurements:

Measurements:

speckled sample observed by a camera frequency: 15 kHz resolution: 768 pixels \times 648 pixels

Industrial context, Hopkinson set-up working, Experimental results, Conclusions and prospects

18

Industrial context, Hopkinson set-up working, Experimental results, Conclusions and prospects

19

Industrial context, Hopkinson set-up working, Experimental results, Conclusions and prospects

Industrial context, Hopkinson set-up working, Experimental results, Conclusions and prospects

21

Industrial context, Hopkinson set-up working, Experimental results, Conclusions and prospects

Presented by Pierre QUILLERY, 18th International Conference on Experimental Mechanics

22

Industrial context, Hopkinson set-up working, Experimental results, Conclusions and prospects

wave transportation (time shifting of ε_i , ε_r , ε_{it} , ε_{et}) + Hopkinson formulae \Rightarrow forces and velocities at the bars interfaces

velocities at the bars interfaces + numerical integration

 \Rightarrow displacements at the bars interfaces

Digital Image Correlation (Correli RT3):

Digital Image Correlation (Correli RT3):

Digital Image Correlation (Correli RT3):

Axial displacement

Transversal displacement

 \Rightarrow displacement field calculation in **pixels**

Digital Image Correlation (Correli RT3):

Axial displacement

Transversal displacement

\Rightarrow displacement field calculation in **pixels** \Rightarrow displacement field calculation in **mm**

Comparison between bars and sample boundaries displacements:

Comparison between bars and sample boundaries displacements:

Comparison between bars and sample boundaries displacements:

Determination of the stress at the 4 boundaries:

- $F_{eo} \times \frac{1-f}{1+f}$ F_{io} : force applied by the internal bar
 - F_{eo} : force applied by the external bar

Determination of the stress at the 4 boundaries:

- $F_{eo} \times \frac{1-f}{1+f}$ F_{io}: force applied by the internal bar
 - F_{eo} : force applied by the external bar

 \Rightarrow At the end of the test: stress ratio = 1, whatever the strain ratio

From the stresses given by the gauges and the stains given by the camera:

friction coefficient: 0.00

From the stresses given by the gauges and the stains given by the camera:

friction coefficient: 0.10

From the stresses given by the gauges and the stains given by the camera:

friction coefficient: 0.05

From the stresses given by the gauges and the stains given by the camera:

From the stresses given by the gauges and the stains given by the camera:

Loading paths (without unloading):

From the stresses given by the gauges and the stains given by the camera:

Loading paths (without unloading):

From the stresses given by the gauges and the stains given by the camera:

Loading paths (without unloading):

Sample behavior in its elastic phase:

Strains as functions of the stresses:

 $\begin{cases} \varepsilon_a = \frac{\sigma_a - v\sigma_t}{E} \\ \varepsilon_a = \frac{\sigma_t - v\sigma_t}{E} \\ \varepsilon_t = \frac{\sigma_t - v\sigma_a}{E} \end{cases}$ E: homogenized Young modulus v: homogenized Poisson's ratio

 \Rightarrow axial stress-strain law \neq transversal stress-strain law

Sample behavior in its elastic phase:

Strains as coupled functions of the stresses:

 $\begin{cases} \varepsilon_a = \frac{\sigma_a - v\sigma_t}{E} \\ \varepsilon_a = \frac{\sigma_t - v\sigma_t}{E} \\ \varepsilon_t = \frac{\sigma_t - v\sigma_a}{E} \end{cases}$ E: homogenized Young modulus v: homogenized Poisson's ratio

 \Rightarrow axial stress-strain law \neq transversal stress-strain law

$$\Rightarrow \sigma_a + \sigma_t = \frac{E}{1 - \nu} (\varepsilon_a + \varepsilon_t)$$

From the stresses given by the gauges and the stains given by the camera:

friction coefficient: 0.05

650 longitudinal + transversal stresses (MPa) 600 550 500 450 400 350 300 250 200 150 100 50 0 0.0 2.0 1.0 3.0 4.0 5.0 6.0 7.0 8.0 longitudinal + transversal strains (%) -test1 -test2 -test3

From the stresses given by the gauges and the stains given by the camera:

friction coefficient: 0.05

650 longitudinal + transversal stresses (MPa) 600 550 500 450 400 350 300 good reproducibility \Rightarrow 250 200 150 100 50 0 2.0 0.0 1.0 3.0 4.0 5.0 6.0 7.0 8.0 longitudinal + transversal strains (%) -test1 ----test2 -test3

Layout :

Industrial context

Hopkinson set-up working

• Experimental results

Conclusions and prospects

Design of a dynamic biaxial compression set-up.

- 3 tests conducted with a good reproducibility.
- Axial measurements reliability similar to those of uniaxial tests.
- Transversal measurements dependent on the estimated friction coefficient. Loading path dependent on the clearances.

Design of a dynamic biaxial compression set-up.

- 3 tests conducted with a good reproducibility.
- Axial measurements reliability similar to those of uniaxial tests.

Transversal measurements dependent on the estimated friction coefficient. Loading path dependent on the clearances.

$$F_{eo}$$
: force applied by the external bar

$$\frac{F_{sensor}}{F_{eo}} = \frac{1-f}{1+f}$$

The friction could be measured from this dedicated test.

Design of a dynamic biaxial compression set-up.

- 3 tests conducted with a good reproducibility.
- Axial measurements reliability similar to those of uniaxial tests.

Transversal measurements dependent on the estimated friction coefficient. Loading path dependent on the clearances.

$$F_{eo}$$
: force applied by the external bar

$$\frac{F_{sensor}}{F_{eo}} = \frac{1-f}{1+f}$$

The friction could be measured from this dedicated test.

The set-up has been used for material characterization.

Thank you for your attention.

Questions?

Digital Image Correlation (Correli RT3):

displacements evolutions depending on the regularization length:

Digital Image Correlation (Correli RT3):

displacements evolutions depending on the regularization length:

 \Rightarrow convergence beyond 40 pixels (2 times the element size)

Digital Image Correlation (Correli RT3):

Digital Image Correlation (Correli RT3):

axial mean displacement on the left & right boundaries estimated over a 5-pix thickness

Digital Image Correlation (Correli RT3):

axial mean displacement on the left & right boundaries estimated over a 5-pix thickness transversal mean displacement on the top & bottom boundaries estimated over a 5-pix thickness

Digital Image Correlation (Correli RT3):

axial mean displacement on the left & right boundaries estimated over a 5-pix thickness transversal mean displacement on the top & bottom boundaries estimated over a 5-pix thickness

 \Rightarrow estimation of the mean axial and transversal strains

Comparison between bars and sample boundaries displacements:

Determination of the stress at the 4 boundaries:

In the case of a Von-Mises plastic threshold σ_{thr} :

Determination of the stress at the 4 boundaries:

In the case of a Von-Mises plastic threshold σ_{thr} :

Determination of the stress at the 4 boundaries:

In the case of a Von-Mises plastic threshold σ_{thr} :

Determination of the stress at the 4 boundaries:

In the case of a Von-Mises plastic threshold σ_{thr} :

Determination of the stress at the 4 boundaries:

In the case of a Von-Mises plastic threshold σ_{thr} :

