
HAL Id: hal-01868675
https://hal.science/hal-01868675v1

Submitted on 5 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Domain-specific Language for Autonomic Managers in
FPGA Reconfigurable Architectures

Soguy Mak-Karé Gueye, Gwenaël Delaval, Eric Rutten, Dominique Heller,
Jean-Philippe Diguet

To cite this version:
Soguy Mak-Karé Gueye, Gwenaël Delaval, Eric Rutten, Dominique Heller, Jean-Philippe Diguet. A
Domain-specific Language for Autonomic Managers in FPGA Reconfigurable Architectures. ICAC
2018 - 15th IEEE International Conference on Autonomic Computing, Sep 2018, Trento, Italy. pp.1-
10. �hal-01868675�

https://hal.science/hal-01868675v1
https://hal.archives-ouvertes.fr

A Domain-specific Language for Autonomic
Managers in FPGA Reconfigurable Architectures

Soguy Mak karé Gueye 1, Gwenaël Delaval 1, Éric Rutten 1, Dominique Heller 2, Jean-Philippe Diguet 2

1 Univ. Grenoble Alpes, CNRS, Inria, LIG, F-38000 Grenoble France {soguy-mak-kare.gueye, eric.rutten}@inria.fr
2Lab-STICC - UMR CNRS 3192, Lorient, France, jean-philippe.diguet@univ-ubs.fr

Abstract—Field Programmable Gate Array (FPGA) architec-
tures are suitable hardware platforms for systems that need
high performance and flexibility, because they support dynamic
partial reconfiguration (DPR) to implement adaptive hardware
algorithms e.g., for performance or energy efficiency. They are
used for example in embedded systems such as UAV, e.g. for video
processing. It is a challenge to design Autonomic Managers for
such highly dynamic systems, taking into account the combina-
torial design space of configurations and criteria and policies to
decide on whether to reconfigure, and what next configuration to
choose. In this paper, we propose a Domain Specific Language
(DSL) called Ctrl-DPR, allowing designers to easily generate
Autonomic Managers. They can describe their system and their
management strategies, in terms of the entities composing the
system : tasks, versions, applications, ressources, policies. The
DSL relies on a behavioural modelling of these entities, targeted at
the design of autonomic managers to control the reconfigurations
in such a way as to enforce given policies and strategies. The
models we use involve automata to describe the state space of
configurations, and the transitions representing reconfigurations;
they also involve discrete control techniques exploiting such
models in order to obtain a correct runtime manager. These
model-based control techniques are embedded in a compiler,
connected to a reactive language and discrete controller synthesis
tool, which enables to generate a C implementation of the
controller enforcing the management strategies. We apply our
DSL for the management of a video application on a UAV.

Keywords—FPGA, Dynamic Partial Reconfiguration, Domain
Specific Language, Reactive Language.

I. INTRODUCTION

Embedded systems can benefit from Field Programmable
Gate Array (FPGA) architectures to improve performance
compared to software-based systems and to fulfill processing
space requirements by exploiting the flexibility offered by
FPGA. The latter supports dynamic reconfiguration which
enables to realize adaptive hardware algorithms e.g., to meet
performance or to reduce power consumption. Furthermore,
Dynamic Partial Reconfiguration (DPR) improves the flex-
ibility of FPGA by enabling partial reconfiguration of a
subfield of the architecture. This can be valuable when the
FPGA host mission critical systems that operate in a changing
environment, and cannot be disrupted1 . While parts of the
FPGA are being redefined to adapt to uncertainties, the rest
remains functioning. FPGA architectures are suitable platforms
to design robust and flexible embedded systems, supporting
changes of their mission parameters or functions at runtime.

1This work was supported by the French ANR and the Labex IMobS3
through the High Performance embedded Computing (HPeC) project.

Changing mission parameters or functions might lead to
reorganizing the processings and the allocation of the resources
based on their redefined priority and execution requirements.
This management can be automated by control loops as ad-
dressed in Autonomic Computing [1]. Autonomic Computing
has stemmed from distributed and Cloud systems, but is also
sometimes considered in reconfigurable hardware architectures
[2] as is the case in our present work.

Such control loops can be implemented with low-level pro-
gramming, but this could be error-prone, costly and complex
due to the design space, namely the number of possible con-
figurations to consider. Instead, we propose a design approach
for Autonomic Managers based on methods and tolls from
Control Theory [3], [4]. In particular we consider discrete
control [5], [6], where logical properties and control problems
are considered. In the context of embedded FPGA-based
architectures, this is justified by the fact that configurations
are defined by the set of bitstreams uploaded onto the FPGA,
and that reconfigurations consist of exchanging bitstreams on
part of the FPGA. These characteristics call naturally for
models of the kind of Petri nets or Finite State Automata.
We us a high level programming language for specification
of possible configurations, tools such as Discrete Controller
Synthesis, and powerful compilers automatically generating
an executable implementation in C. This approach produces
correct-by-construction controllers enforcing desired control
objectives, and avoids error-prone manual programming and
tedious debugging. We had previous work and experience on
the systematic but manual design of reconfiguration controllers
for FPGA using such a reactive language [7], [8], [9].

On the other hand, using such behavioral models can be
difficult, because of their technicality and the fact that they do
not represent directly the entities of the system under design.
Therefore, our contribution in this paper is an automated
methodology for the control of dynamic adaptation of FPGA-
based self-adaptive embedded systems, in the form of the au-
tomatic generation, from a Domain-Specific Language (DSL).
We transformed earlier work in the different field of software
components [10] and renewed the approach for DPR FPGA.
It is targeted at the programming of the control logic, for a
class of DPR FPGA architectures and applications. The benefit
is manifold: the designer’s work is eased by the automatic
generation, the latter is done based on formal techniques, from
discrete control, insuring correctness of the result.

In the remainder, Section II presents DPR in FPGA, the
Autonomic Computing approach and behavioral methods and
tools upon which we base our approach. Section III presents

the class of embedded systems we target. Section IV details
our domain-specific language. Section V presents the design
of an adaptation manager for search landing area task. We
conclude in Section VII and give directions for future work.

II. BACKGROUND

A. Dynamic Partial Reconfigurable FPGA

Dynamic Partial Reconfiguration (DPR) is a promising
solution for applications that require high performance and
high flexibility since it provides a way to modify (part of)
the implemented logic in the FPGA when the device is on. A
dynamic partial reconfiguration consists in loading a bitstream
which contains only the new logic for the target region of
the FPGA. The other regions keep executing their current
configuration. This allows an FPGA with DPR capability
to support more hardware functions than statically possible.
These hardware implementations can be stored in memory and
fetched when needed. Hence, multiple applications can run on
a single FPGA by sharing hardware resources.

Research works like [11],[12] have focused on the dy-
namically reconfigurable hardware to meet both performance
and cost required in most of embedded system. They demon-
strate how dynamic reconfigurable hardware can be suitable
for implementing compute-intensive embedded applications
while minimizing the costs. In [11] , the authors experienced
sequences of reconfigurations to run a fingerprint recognition
application. They show how the reconfiguration overhead can
be minimized to avoid performance degradation when per-
forming sequences of reconfigurations. The transfer is done at
the maximum throughput (the lowest latency) by using Native
Port Interface (NPI) bus specifically adapted to establish a fast
link between the external memory and the ICAP primitive.
However, these works pay less attention on the design of the
reconfiguration manager which can, at run-time, choose from
several possible configurations, the appropriate one satisfying
execution constraints under uncertainties.

Dynamic reconfiguration requires making decisions about
whether to reconfigure or not, as well as, when yes, the choice
of a new configuration, depending on occurring events and
sensor values in a system, on past events and sequences history,
and on predictive knowledge about possible outcomes of
reconfigurations. Therefore there is a need for design methods
for such managers of self-adaptations.

B. Autonomic computing

Autonomic computing [1] is a self-management (self-
configure, self-heal, self-protect, self-optimize) approach pro-
posed by IBM to address the increasing complexity of com-
puting system administration. It consists in providing a sys-
tem with the capability of managing itself automatically. An
autonomic computing system is able to control and adapt
the functioning of its components with no (or less) input
from a human administrator. As shown in Figure 1, a self-
managing system must maintain comprehensive knowledge
about all its components through sensors. This knowledge
guides the decision-making functions to take the appropri-
ate actions to apply through actuators. The decision-making
functions which make the self-managing capability are called
autonomic manager. An autonomic manager is a feedback

Fig. 1: MAPE-K loop. Fig. 2: Reactive system

control loop that collects details from the system and acts
accordingly based on the knowledge it has about the managed
system. Autonomic Computing has stemmed essentially from
distributed and Cloud systems, but is also sometimes consid-
ered in reconfigurable hardware architectures [2] as is the case
in our present work.

Autonomic managers can be considered as reactive sys-
tems, characterized by their continuous interaction with their
environment, reacting to flows of inputs (received through
sensors) by producing flows of outputs (actions to perform
through effectors). So the techniques used to design reactive
systems are suited for the design of autonomic managers.

C. Control techniques for autonomic loops

An autonomic manager is built as a closed loop and one
design methodology to build closed loop is to apply techniques
from Control Theory, classically continuous, or discrete [13].
Indeed, control theory is the classical discipline for the design
of automatic controllers of devices, with the advantage of
offering interesting properties on the resulting behavior of
the controlled system i.e., on its possible evolutions and on
those which will be insured to be avoided. Control theory
and techniques have began to be used for computing systems,
which are quite different from the usual electro-mechanical
systems. In most of the cases, continuous models are used,
typically for quantitative aspects [14].

More recently, there has been work relying on Discrete
Event Systems (DES) [13], and using the notions of super-
visory control, for logical or synchronization purposes [15].
Essentially, discrete control uses models like Petri nets or
automata, with uncontrollable and Boolean controllable vari-
ables ; objectives are logical properties e.g., invariance of a set
of good states, or reachability of goal states. Algorithms for
Discrete Controller Synthesis automatically explore the state
space, and extract the constraint on controllable variables such
that the resulting behaviors satisfy the objective properties.

D. Reactive Systems and languages

For such reactive systems, languages have been proposed
to describe systems that at each reaction perform a step taking
input flows, computing transitions, updating states, triggering
actions, emitting output flows [16]. Their definition is often
based on Finite State Automata (FSA), which constitute the
basic formalism for representing behaviours, as is the case of
StateCharts [17] and of synchronous languages.

I W

A

a=false a=false

a=true

r ∧ ¬c

r ∧ c/se

c/s

lifecycle(r,c,e)=a,s node lifecycle(r,c,e:bool)
returns(a,s:bool)

let automaton
state I do
a=false;s=r & c
until r & c then A |

r & not c then W
state W do
a=false;s=c
until c then A
state A do
a=true;s=false
until e then I
end; tel

Fig. 3: Graphical and Textual Representation of Component
Life-cycle.

lifecycle

b

reset(b,r,c,e)=a,s
node reset(b,r,c,e:bool)

returns(a,s:bool)
let automaton
state H do (a,s)=lifecycle(r,c,e)

until b then H
end; tel

Fig. 4: Example of Hierarchical Composition.

1) Heptagon: Heptagon/BZR [18] is an example of such
languages. It allows the definition of reactive systems by means
of generalized Moore machines, i.e., with mixed synchronous
data-flow equations and automata. An Heptagon program is
modularly structured with a set of nodes. Each node corre-
sponds to a reactive behaviour that takes as input and produces
as output a set of stream values. The body of a node consists
of a set of declarations that take the form of either automata or
equations. The equations determine the values for each output,
in terms of expressions on inputs’ instantaneous values or other
flows values. Figure 3 shows an Heptagon program in both
graphical and textual representations. The program describes
the control of a component’s life-cycle that can be in either idle
(I), waiting (W) or active (A) states. The program takes as input
three boolean variables: r, which represents a request signal for
the component; c, which represents an external condition (to
be used later on as controllable variable); and e, to represent
an end signal. It produces as output two boolean values, one
that indicates whether the component is active (a) the another
indicating a start action (s). When in the initial state, upon
a request signal (i.e., when r is true), the automaton leads to
either waiting or active states, depending whether the condition
c holds. If it does not, it goes first to the waiting state and then
to active when c becomes true. All the incoming transitions
arriving at active state triggers the start action (s). From active
state, it goes back to idle state upon an end signal.

One important characteristic of Heptagon/BZR is the sup-
port for hierarchical and parallel automata composition. Fig-
ure 4 illustrates an example of hierarchical composition, in
which a single-stated super-automaton embodies the lifecycle
automaton. It has a self-transition that results in the resetting of
the containing automata (i.e., lifecycle) at every occurrence of
signal b. Listing 1 illustrates the parallel composition of two
instances of the delayable node (and the operator ’;’). They
run in parallel, in a synchronous way, meaning that one global
step corresponds to one local step for every node.

2) Contracts and Discrete Controller Synthesis: BZR is
an extension of Heptagon with specific constructs for Discrete
Controller Synthesis (DCS). That makes Heptagon/BZR dis-
tinguishable since its compilation may involve formal tools
such as Reax [19] for DCS purposes. A DCS consists in
automatically generating a controller capable of acting on
the original program to control input variables such that a
given temporal property is enforced. In Heptagon/BZR, DCS
is achieved by associating a contract to a node. A contract
is itself a program with two outputs: eA, an assumption on
the node environment; and eG, a property to be enforced by
the node. A set {c1, c2, . . . , cq} of local controllable variables
is used for ensuring this objective. Putting it differently, the
contract means that the node will be controlled by giving
values to {c1, . . . , cq} such that given any input flow satisfying
assumption eA, the output will always satisfy goal eG. When a
contract has no controllable variables specified, a verification
that eG is satisfied in the reachable state space is performed
by model checking, even if no controller is generated.

1 node twocomponents(r1,r2,e1,e2:bool) returns (a1,a2,s1,s2:bool)
2 contract
3 assume true
4 enforce not(a1 and a2)
5 with (c1,c2)
6 let
7 (a1,s1)=lifecycle(r1,c1,e1);(a2,s2)=lifecycle(r2,c2,e2)
8 tel

Listing 1: Example of Contract in Heptagon/BZR.

Listing 1 shows an example of contract on a node enclosing
a parallel composition of two instances of lifecycle (cf. Figure
3). It is composed of three blocks. The assume block (line 3),
which in this case, states that there is no assumption on the
environment (i.e., eA = true). The enforce block (line 4)
describes the control objective : eG = ¬(a1∧a2), meaning that
both components are mutually exclusive, i.e., they cannot be
active at the same time. Lastly, the with block (line 5) defines
two controllable variables that are used within the node (line
7) : In practice they will be given values such that variables
a1 and a2 are never both true at the same instant.

3) Compilation and code generation: The Heptagon/BZR
compilation chain is as follows: from source code, the Hep-
tagon/BZR compiler produces as output a sequential code in
a general-purpose programming language (e.g., Java or C)
implementing the control logic, in the form of a step function
to be called at each decision in the autonomic loop. At the
same time, if the code provided as input contains any contract,
the compiler will also generate an intermediary code that will
be given as input to the model checker (e.g., Sigali or Reax),
which will, in turn, perform the DCS and produce as output an
Heptagon/BZR code corresponding to the generated controller.
The latter is then compiled again so as to have an executable
code also for the generated controller.

III. TARGET CLASS OF RECONFIGURABLE SYSTEMS

Before defining our Domain Specific Language, we are de-
scribing the domain which we are targeting : the particularities
of FPGA architectures that we are considering, at a given level
of abstraction, as well as the structure of the programs run-
ning on these architectures, composed of tasks with different
versions (software or hardware). We also describe how the

Autonomic Manager controlling reconfigurations is integrated
in the general architecture of the system.

A. DPR FPGA architecture and configurations

The system architecture we address is a board equipped
with a dynamically reconfigurable hybrid FPGA (e.g. Altera,
Xilinx Zynq) including ARM processors. DDRAM memories
are connected to the FPGA for ARM memory system and also
storing the bitstreams.

Fig. 5: FPGA device

Figure 5 shows an example of an FPGA. Two DDRAM
memories are connected to the FPGA, the first one is usual and
implements the ARM memory system. The second one is used
to store bitstreams; and also as shared memory for hardware
and software tasks. The FPGA programmable circuit is divided
into tiles which will be shared by the tasks at runtime. The
sharing leads to perform sequences of reconfigurations so that
all tasks requiring hardware can be executed.

B. Processings

The system is provisioned offline with all the required
tasks, in the form of their bistream implementations, even if
all can not be running simultaneously due to area limitations,
as shown in Figure 6.

1) Application: At any given moment in time, the applica-
tion level determines the subset of tasks to be activated : this
can change due to changes in the sequential application defi-
nition and its goals, the results of the current processings, the
architecture state changes (e.g. one tiles becoming unavailable
because of a fault) or the environment conditions to which the
must react (e.g. by changing functionalities).

2) Tasks: Furthermore, a given activated task may have
multiple versions, software (executed on the ARMs) and/or
hardware (executed on the FPGA), which differ in terms of
used computing resources (e.g. number of tiles), as well as
provided performance and processing quality. The version of
an active task to activate must be chosen based on the execution
requirements and the priority level associated with the task.

One possible example of a scenario is that, when the
system mission requires a new task to be activated, some of
the already active other tasks may have to be reconfigured to
other versions, either requiring less hardware resource (tiles) or

Taska
V
1
V
2
V
3 V

n

…

...

time
10 n

Tasks

Taska
V
1
V
2
V
3 V

n

…

Taskb
V
1
V
2
V
3 V

m

…

V
1
V
2
V
3 V

z

…

Taskc

Taskb
V
1
V
2
V
3 V

m

…

V
1
V
2
V
3

V
z

…

Taskc

V
1
V
2
V
3 V

n

…

Taska

V
1
V
2
V
3 V

m

…

Taskb

V
1
V
2
V
3 V

z

…

Taskc

V
1
V
2 V

n

…

Taskz

V
1
V
2 V

n

…

Tasky

...

V
1
V
2 V

n

…

Taskz

Tasky
V
1
V
2 V

n

…

...

…Taska
V
1
V
2
V
3 V

n

…

Taskb
V
1
V
2
V
3 V

m

…

Task
c

V
1
V
2
V
3 V

z

V
1
V
2 V

n

…

Taskz

V
1
V
2 V

n

…

Tasky

...

V
1
V
2 V

n

…

Taskz

Tasky
V
1
V
2 V

n

…

...

Perf,
QoS Compatibility

priority

n-1

Fig. 6: Reconfigurations: Applications (subset of active tasks),
Task (active version)

software (to free the tiles completely), in order to make place
for the new one, while still having to insure their required
quality of service.

C. Policies

The architectures we consider hence have a space of
possible configurations, all presenting dofferent characteristics,
providing for flexibility in the realizations of the system
fucntionalities. The reconfigurations constitute a navigation
across this configurations space, and allow for dynamically
reacting to uncertainties from the environment or the platform,
in order to maintain overall objectives. These latter have to
be described as a part of the specification, and it will be the
task of the Autonomic Manager to enforce them, using the
controllability choices of the system.

These policies typically state that the tasks required by the
application have to be active, and that their current implemen-
tation should fulfill the given requirements in performance (e.g.
response time) and quality of service (e.g. tracknig quality in
a video processing task). These parameters might be subject
to dynamical change, implying that the manager performs
reconfigurations in order to satisy the new values.

Other policy elements can involve energy management e.g.,
choosing the configuration using the minimal number of tiles
in order to swith off (e.g., by clock gating) the unused ones.
On the other hand, in case of urgency determined by the
mission level, this economy policy might be suspended, and
processings optimized in quality whatever energy costs.

D. Control loop

The control loop, involving the adaptation manager which
we want to desing, is responsible for dynamically adapting
the configuration of the system. This involves the processing
resources, the active tasks and the applications. The processing
resources are reconfigured to reduce the energy consumption
or to enhance the performance of the active tasks in order to
meet their execution requirements.

As shown in Figure 7, the management decisions are based
on the execution requirements associated with the active tasks
and their priority. The manager monitors the system to detect
violation and reacts. It receives the subset of tasks that must be
running as well as their execution requirements and priority.

...Task
a

Task
b

Task
c

Task
z

CPU Tile Peripheral
device

sensors actuators

Adaptation manager ● Tasks cmd {version}
● Tile cmd {on/off}
● CPU DVFS
● Peripheral devices modes

● Tasks {state,metrics}
● Tile {used, unavail}
● CPUs state
● Peripheral devices state

Requests
● Activation
● Requirements

Internal state

Fig. 7: Self-adaptation Manager

The manager must know the possible configurations of each
architecture element and their difference according to relevant
aspects for management strategy. It also must know for each
task, the available versions and their characteristics in terms
of resource, performance and quality of service.

IV. DOMAIN SPECIFIC LANGUAGE FOR THE DESIGN OF
ADAPATATION MANAGER

This work is based on [9] which details the approach for
designing an adaptation manager based on discrete control.
We adopt automata-based modeling to capture the dynamics
and the controllability of the resources of the system (CPUs,
tiles, peripherals) and the processings (the tasks and the appli-
cations). The composition of the behavioral models describes
the configurations space of the system including the subset
which violates the management policies. Discrete Controller
Synthesis is then applied to refine the composition with a
control logic. The latter restrains the composition to the subset
of configurations which satisfies the management policies.

The contribution of this paper is a high level, domain
specific language. This enables designers to describe their
FPGA architecture as well as the tasks and applications, and to
declare the management policies. The compiler of the language
is able to translate the description into automata and the
policies as control objectives. Hence, designers who are not
familiar with automata and formal languages can easily adopt
the approach detailled in [9]. The automata are automatically
contructed by the compiler of the DSL from the description.

A. System description

1) FPGA architecture: We consider that the relevant as-
pects about an FPGA necessary for the control problem are
the set of tiles and the set of CPU that compose it and the set
of connected peripheral devices.

a) Resources (Tiles/CPUs/Peripherals): The DSL al-
lows describing the states of a resource in relation with its
utilization, availability and configurations. The utilization and
the availability are relevant information necessary for the allo-
cation decisions. Indeed resources like tiles must be exclusively
used. So, it is important to know when a tile is being used.
The configuration of resources like CPU can be updated. For
example, a CPU can be equipped with Dynamic Voltage Fre-
quency Scaling (DVFS) configurations which enable changing
the voltage and frequency to improve performance or reduce
power consumption. A peripheral device can also have several

possible configurations. The FPGA architecture is described
by a set of resources.

2) Processings:

a) Task: A task is described in terms of processing
states. A task can be active or not. It could also be waiting (this
will be optional). This can happen when the task is requested
but it has no software version or when we limit the number
of software concurrently running and there is no available
hardware. Multiple hardware and/or software versions of a task
can be available. Each version is described in terms of required
computing resources, performance and processing quality.

b) Application: An application is described as a set of
tasks. The DSL enables specifying the execution mode of the
tasks (sequential (DAG), parallel, data-flow or a mix of them).

B. Management strategies

The management strategies are mostly related to the per-
formance, the quality of service and energy optimization. The
objectives consist in:

• Maintaining the performance in defined intervals, e.g.,
execution time of a task greater than a minimum
threshold and/or lower than a maximum threshold.

• Ensuring coherent usage of the resources, e.g., mutual
exclusion in relation to the tiles.

• Ensuring coherent configuration of the resources to
reduce energy consumption while maximizing the
performance.

C. Description of the Syntax

Each managed element can have these following state-
ments: in, out and policy. The in (resp. out) statement contains
the declaration of the input (resp. output) variables separated
by a comma, and ends with semi-colon. The input variables
correspond to the events (e.g., failure, metrics) upon which
the decisions are based. The output variables contain the value
that are the criteria for choosing the next configuration. The
policy statement contains the declaration of the management
strategies to satisfy. A variable is declared as follows : name
[int | bool] (possibly followed by = default_value). It has
an identifier (name), a type. Currently, the supported types are
: int and bool. An output variable can have a default value.

1) Resource (Tile, CPU, Peripheral): A resource can be
exclusive or shareable. The keyword provides enables declaring
shareable elements that the resource provides. The syntax
provides N of U means that the resource provides N elements of
unit U.

Figure 8 shows a description of a tile. It can be used as
processing element (Pe) or for storage (Mem). When used as
processing element, it provides 100 units of CPU (which can
be read, e.g., as a percent of use of the CPU by unit of time)
When used as Mem, it provides 1024 MBytes of RAM.

A resource can have different possible configurations. An
example is the DVFS available in modern CPU or the quality
of produced images of a camera. The configurations are

1 resource tile:
2 configurations
3 config PE:
4 provides 100 of CPU
5 end;
6 config Memory:
7 provides 1024 of mbytes
8 end
9 end
10 end

Fig. 8: Example of tile description

1 resource arm:
2 out: speed int, energy int;
3 provides 5 of arm_unit;
4 configurations DVFS:
5 config Low : speed = 10; energy = 5 end;
6 config Medium : speed = 50; energy = 10 end;
7 config High : speed = 100; energy = 25 end
8 end
9 end

Fig. 9: Example of CPU description

declared in the section called configurations. Each item of a
configuration has characteristics, as shown in Figure 9 and 10.

Figure 9 describes an ARM CPU. The number of active
tasks simultaneously executed by the CPU is limited to 5. It is
equipped with DVFS enabling three possible configurations:
Low, Medium and High which differ in terms of processing
speed and energy consumption.

1 resource camera:
2 out: pixel int, delay int, factor int;
3 provides 5 of camera_unit;
4 configurations Size:
5 config Small: pixel = 256; delay = 3 end;
6 config Normal: pixel = 1024; delay = 12 end;
7 config Large: pixel = 4096; delay = 48 end;
8 end;
9 configurations Quality:
10 config Low : factor = 1 end;
11 config Fine : factor = 3 end;
12 config High : factor = 7 end;
13 end
14 end

Fig. 10: Example of Peripheral description

Figure 10 describes a camera. The size of the images
produced by the camera can be configured as well as the
quality of the images. There are three possible configurations
for the size : Small, Normal and Large. They differ in terms
of pixels (pixel) and the processing time (delay). The quality
of the images can be configured in Low, Fine or High.

2) Processings:

a) Task: The description of a task can constain four
sections: in, out, version and policy. A version section
contains the description of one implementation of the task.
It describes the required resources, the estimated performance,
quality of service and other criteria necessary for the decision.

Figure 11 shows an example of the description of a task.
The task has two versions: v1 and v2. The version v1 uses

1 task task_a :
2 in : e_a bool, e_b bool;
3 out : wcet int;
4 version v_1: uses 1 of arm, wcet = 500 end
5 version v_2: uses 20 of tile.Pe, wcet = 300 end
6 policy:
7 e_a then v_1;
8 e_b then v_2;
9 end
10 end

Fig. 11: Example of task description

an ARM and takes 500 sec in the worst case execution time
(wcet). The version v2 uses a tile as processing element. It
takes 300 sec in the worst case execution time. The input ea
(resp. eb) is the event that triggers switching to v1 (resp. v2).

b) Application: The description of an application can
constain four sections : in, out, execution and policy. The
execution section contains the description of the execution of
the tasks.

1 application app:
2 execution: task_a ; task_b end
3 end

Fig. 12: Example of application description

The execution flow of the tasks can be sequential. This
is represented with “;” as shown in Figure 12. Parallel
execution is represented with "||" (e.g., (taska || taskb)). In
our definition, parallel execution does not necessarily mean
that the involved tasks are simultaneously activated. It just
means that there is no precedence relationship in term of
execution flow. Hence, to represent data-flow execution, we
use the same syntax as for the parallel execution ("||"), and
we declare a statement in the policy section to specify that the
involved tasks must be activated (stopped) at the same time.
This is declared with "◃" as shown in this example : (taska.v1
◃ taskb.v2). This says that the version v1 of taska matches
with the version v2 of taskb and whenever taska.v1 is running
taskb.v2 must be running.

3) Policies: The management strategies can be declared in
the form of :

• Condition then action: As shown in Figure 11 (ea
then v1), the designer can explicitly "program" the
decision. In this case the synthesized control logic will
only apply the decision if it is possible. However, this
approach can be too constraining.

• Invariance: The designer can also specify invari-
ants (e.g., min ≤ time_t). In this case, the control
logic is responsible of choosing which is the next
configuration such that the invariants are satisfied.
Defining invariants can be more efficient. It gives more
flexibility to the control logic. The synthesized control
logic is maximally permissive.

The following Keywords available for expressing the man-
agement strategies are: not, or, and, then, prior, pre, ◃.

D. Compilation to a reactive language

The DSL is compiled towards Heptagon/BZR, used as
a back-end. The declarative/imperative feature of this target
language allows the structural translation of DSL elements
(resources, tasks and applications) towards Heptagon/BZR
equations, automata and synthesis objectives.

Each resource is translated into equations and automata de-
scribing the current configuration of the resource. Each task is
translated into equations and automata describing current used
versions, and synthesis objectives associating these versions
with the appropriate resource configuration. Each application
is translated into automata, emitting requests for task launches.

The inputs c* in Figures 13,14,15 are automatically added
in the automata. They are the controllable variables through
which the control decisions are applied.

1) Resources translation: A resource declaration is com-
posed of equations, defining outputs, whose value can depend
on the current configuration of the resource. Providing of
shared units are also translated to equations, defining the
number of units provided:

DSL Heptagon/BZR
provides (x) of unit; provides_unit = x;

A set of configurations is translated to one automaton,
in which each configuration corresponds to one state (see
Figure 13).

DSL Heptagon/BZR

1 resource ...
2 ...
3 configurations C:
4 config C1: ...
5 config C2: ...
6 ...
7 config Cn: ...
8 end
9 ...
10 end

C1

C2 Cn

c2

c1

cn

c2

c1

cn

Fig. 13: Translation of configurations to Heptagon/BZR au-
tomaton

2) Tasks translation: A task is translated into an automaton
composed of at least two states: Inactive and Active. The
Inactive state is the initial state. The automaton can also
have an additional state named Wait. This represents that the
task is suspended or its activation is delayed.

As shown in Figure 14, the input c represents the control
of the activation of the task. The input r represents the request
to start the task. When it is true, the task becomes Active if
c is true. Otherwise it goes to the Wait state waiting for c to
become true. The input e represents the request to stop the
task. In Wait or Active, when e is true the task becomes
Inactive. Depending on the description of the user, the inputs
r and/or e can be notifications instead of requests. This is the
case when the task is not controlled but just observed. The
output act indicates the current state of the task.

The Active state represents the running state. It encap-
sulates an sub-automaton in which each state corresponds to

Fig. 14: Translation of a task

Fig. 15: Translation of a task

a declared version. The initial state is the first declared
version. The output ver indicates the active version.

3) Applications translation: An application is translated in
a composition of automata corresponding to the instances of
the tasks which compose the application.

(act1, ver1, ...) = application (r1, e1, ...)

(act_1, ver1, ...) = task1 (r1, e1, ...) ;
...
(...) = taskn (...)

Fig. 16: Application translation

Figure 16 shows an illustration of a translation of an
application. The application is composed of n tasks. The
automata are composed in parallel.

4) Policies translation: The policy section is translated into
BZR contract.

assume true
enforce equations
with c, ...

Fig. 17: policy

Figure 17 shows an illustration. The equations within the
policy are formalized in the enforce section of the contract.
The control variables of automata are declared in the with
section.

5) Main program translation: The partial translations
above are composed into a global program in H/BZR, where
domain-specific features have been encoded and formalized
as equations, automata and contracts. This H/BZR program is
compiled, involving DCS and resolution of the constraints and
contracts, into executable C code. This executable implements

the Autonomic Manager, which is ready for integration into
the execution runtime of the system, by connection with the
monitored variables and the reconfiguration actions.

V. CASE STUDY : SEARCH-LANDING-AREA

This section shows an example of the application of Ctrl-
DPR, first on the very simple case of a single task, which
enables us to illustrate our approach from high-level spec-
ification, through automata compilation, executable C code
generation, all the way down to FPGA implementation.

A. Informal description

We consider an FPGA-based embedded system with one
task: search-landing-area. The task receives flow of images
from the camera and performs a sequence of transformation
on each image in order to determine suitable areas for landing.
The task can process and image with a SW or a HW versions.
The architecture model is based on ARM CPUs running SW
tasks and an FPGA area divided in a static part and a single
reconfigurable tile. Depending on the urgency of landing, the
landing task can be executed with the HW or the SW version.
The interest of going for a much slower software version of the
task is that the FPGA resource can then be released, and used
by another task high priority task such as obstacle avoidance.

The execution requirements associated with the search-
landing-area task is defined in terms of interval delimited by a
minimum threshold and a maximum threshold. The thresholds
can be adapted at runtime depending on the urgency of landing.
The management strategy within the control loop consists in
maintaining the processing time of an image between the
minimum threshold and the maximum threshold. We can see
that this strategy cannot be achieved all time.

The control strategy consists of keeping the execution time
of the task between a minimum threshold and a maximum
threshold, which define the range of acceptable performance.
Below the minimum threshold, a version which uses lower
resources can be executed if its performance is inside the
interval in order to minimize the active hardware resources.
Reducing the hardware resources used can make sense in
systems where many tasks share them, so that hey are allocated
to the tasks needing them most urgently.

B. Specification in Ctrl-DPR

With Ctrl-DPR, we describe the system and the control
problem as shown in Figure 18. The tile can be used only as a
processing element and can become unavailable. The CPU as
well as the camera are shareable. The description of the task
has three inputs corresponding to the value of the thresholds
and the measured execution time (time_t). The ouput wcet
indicates the estimated execution time of each version of the
task. In the policy, time_t ∼= wcet indicates that there is a
relation between time_t and wcet. Hence, acting on wcet
affects time_t. The main decribes the global composition.

C. Automata-based Behavioral models and contract

Figure 19 shows Heptagon/BZR code [18] generated for
the description of the tile and Figure 20 the model of the task.

resource tile :
... ;
end

resource arm :
... ;
end

resource camera :
... ;
end
task searchArea :
in : min int, max int, time_t int;
out : wcet int;
version Software : uses arm, wcet = 1500 end
version Hardware : uses tile, wcet = 55 end
policy :

(min < time_t) and (time_t < max) and
(time_t ∼ wcet);

end

Fig. 18: Description of the control problem

Fig. 19: Tile automaton Fig. 20: Task automaton

Figure 21 shows the global composition of the Hep-
tagon/BZR models (task and FPGA resources). The contract
shows objectives (objective) where the three first lines cor-
respond to the policy in Fig. 18. When the observed execution
time (time_t) is greater than the max, it switches to a version
with lower wcet. When time_t is lower than min, it switches
to a version with greater wcet but lower than max. The other
lines consist in preventing the hw version of the task from being
selected when the tile is unavailable, and also preventing the
tile from being active while not used.

main (r, e, time_t, min, max, f, rp)
= act_t, res, wcet, act, err, ..., objective
assume true
enforce objective
with cp1, cp2, cp3, c1, c2, c, ...

(act_t, ver, res, wcet) = searchArea (r, c1, c2, e) ;

(act, err) = tile (c, f, rp) ;
(...) = arm (...) ;
(...) = camera (...)

objective = (
(cp1 ⇒ (((0 fby wcet) > wcet) ⇒ (wcet < max))) and
(cp2 ⇒ ((time_t < min) ⇒ ((0 fby wcet) < wcet))) and
(cp3 ⇒ ((time_t > max) ⇒ ((0 fby wcet) > wcet))) and
(err ⇒ not (res = 2)) and (not (res = 2) ⇒ not act)
) ;

Fig. 21: Global Heptagon/BZR program

Starting task

Stopping tasktime_t > max_thres

 Task active :SW Switching to HW

Objective = True

Fig. 22: Simulation

D. Controller simulation before integration

Figure 22 shows a snapshot of the simulation of the
generated manager. The minimum threshold is fixed at 8 and
the maximum threshold at 29. We observe, at step 3, when the
stask is requested, the manager triggers the activation of the
SW version of the task. At step 28, the execution time of the
task becomes greater than the maximum threshold (time_t >
max_thres). The manager switches to the HW version which
is the fastest version and requires the tile. We see that the
manager reacts correctly with respect to the defined objectives.

E. A variant of the case study with two tasks

We describe the control of a system including two tasks.
The FPGA board has one tile and one CPU ARM. Each task
has two versions (sw and hw). The hw versions of the tasks
can not be active simultaneously because there is only one
tile in the system. In this example, we show that the generated
manager enforces exclusive use of the tile, and how conflict are
resolved based on priority specified with the keyword prior.

...
main :
in : prio_t1 int, prio_t2 int;
Involve :

1 tile, 1 arm, 1 camera, 1 task1, 1 task2;
Policy :

(prio_t2 ≤ prio_t1) then (task1 prior task2);
(prio_t2 > prio_t1) then (task2 prior task1);

end

Fig. 23: Description of the two tasks control problem

Starting t1

Starting t2

t1 prior t2 t2 prior t1

t1 prior t2

time_t2 > max_thres

time_t1 > max_thres

t1=HW,t2=SW

t1=SW,t2=HW

t2=HWt2=SW
t2=HW

t1=HW,t2=SW

Objective = True

Fig. 24: Simulation

Figure 24 shows a snapshot of the simulation of the
generated manager. The minimum threshold is fixed at 5 and
the maximum threshold at 40. At step 6, the sw versions of
the tasks are running. task1 is prior, but when the execution
time of task2 is greater than the maximum threshold, the tile
is allocated to task2 (step 10). When the execution time of
task1 becomes greater than the maximum threshold, the tile
is retreived from the task2 and allocated to task1 because it
is prior. At step 32, the priority are changed and the tile is
allocated to task2 which was the priority task.

Ctrl-DPR allows describing the control of a system with
multiple tasks. Conflicting decisions are resolved based on pri-
ority, which can be changed dynamically by the environment.

VI. FPGA IMPLEMENTATION OF THE CASE STUDY

To validate our approach, we execute the generated adap-
tation manager for the search-landing-area task. Although the
example is very simple, it illustrates the approach down to
hardware implementation. We use the DE1-SoC board, and the
Robot Operating System (ROS) [20] for the communication
between the adaptation manager and the controlled task.

a) DE1-soc system: The board is based on a Altera/In-
tel Cyclone R⃝ V SoC chip which supports DPR. It includes
a Hard Processor System (HPS) and an FPGA. The HPS
comprises an ARM Cortex A9 dual-core processor, a DDR3
memory port, and a set of peripheral devices. The FPGA
implements the reconfigurable tile (one in this experiment) and
different peripheral controllers. We run a Linux OS on the HPS
side. We implement a cma_driver module for the interaction
with the hardware implementation of the task. The module
allocates a continuous area of memory in the kernel space.

b) Search-landing-area application: The application is
composed of 6 functions : 1) pixel format converter, 2) median
filter, 3) Canny filter, 4) Dilatation/Erosion, 5) area coordinate
extraction and 6) landing pattern matching to identify valid
candidates. We consider some benchmark pictures which are
stored and an external SD card and so not a camera for the ex-
periment. In the first version all the functions are implemented
in SW and the WCET is 1500 ms including overheads due to
the SD card access and the use of a middleware, which is
necessary for a flexible configuration of application, platform
and sensors (ROS over Linux, described in SectionVI-0c).

The HW version implements functions 1-4 on the FPGA
and a DMA port to execute functions 5 and 6 on the CPU.
It allows to reach 60fps with a very limited clock frequency
(25Mhz). On the target Cyclone-V, it uses 2.4%, 4% and 3%
of ALM, BRAM and DSP blocks respectively. It means it
can be easily implemented in a single tile in case of a 4 tile-
architecture model. The complete worst case execution time is
55ms including the previously cited overheads.

c) ROS: support for the communication: We use the
Robot Operating System (ROS) [20] to enable the manager to
communicate with the tasks. ROS enables to run in parallel a
large number of executables that must be able to exchange in-
formation synchronously or asynchronously. The fundamental
concepts of the ROS implementation are nodes, messages,
topics, and services. In this evaluation we have two ROS
nodes. We define a Task node for the search-landing-area task.

We also implement a ROS node for the adaptation manager.
ROS supports the two modes to execute the step from the
compilation in Section IV-D : even-driven (e.g., ros::spin ()) or
periodic (i.g., ros::spinOnce ()). In this evaluation we choose
the periodic method.

 0

 500

 1000

 1500

 2000

 0 500 1000 1500 2000

 0
 0.5
 1
 1.5
 2
 2.5
 3

Pr
oc

es
sin

g
tim

e
(m

s)

Ta
sk

 (r
eq

,V
er

s)

Time (Second)

Adaptation manager: Decisions

Processing time
Request start (1)/stop (0)

0 1 0

Task Version

0 1 2 1 2 0

Threshold max

2000

70

1500

40

Threshold min

0 100 30

 0

 500

 1000

 1500

 2000

 0 500 1000 1500 2000

 0

 0.5

 1

 1.5

 2

 2.5

 3

Pr
oc

es
sin

g
tim

e
(m

s)

V
er

s (
H

w
:2

, S
w

:1
)

Time (Second)

Search Landing area Task : Executed version

Processing time Task State/version

0 1 2 1 2 0

Fig. 25: Manager decisions

d) Experimentations: We first send to the manager a
request to start the search-landing-area task. When the task
is active, we change the value of the minimum and maximum
thresholds to see which decisions the manager takes. Figure 25
shows an execution in which we set the value of the thresholds
as follows. Initially the maximum threshold is set to 2000 ms
while the minimum threshold is set to 0 ms. After 370 sec
of execution the maximum threshold is set to 70 ms. Later,
it is set to 1500 ms and finally to 40 ms after 1590 sec. The
minimum threshold is set to 100 ms after 980 sec and later to
30 ms. As shown in Figure 25, the manager dynamically adapts
the version executed depending on minimum and maximum
thresholds.

VII. CONCLUSION

The contribution of this paper is a high level, domain-
specific language for the control of FPGA-based systems. It
allows designers to describe their FPGA architecture as well
as the tasks and application, and to declare the management
policies. The compiler of the language is able to translate the
system description into automata and the policies into control
objectives; the latter are then compiled by H/BZR into an
executable, correct Autonomic Manager enforcing the policy.

Perspectives are in several directions, amongst which co-
ordination of multiple autonomic loops, switching controllers
(integrating into the DSL schemes explored in another context
[21]) ; modularity and hierarchical loops, both for re-use and
to managed compilation complexity, and considering more ad-
vanced discrete control features like logico-numeric properties
[22], [23] ; and integrating the DSL for Autonomic Managers
into a global design process for FPGA-based applications.

REFERENCES

[1] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, pp. 41–50, January 2003.

[2] M. D. Santambrogio, “From reconfigurable architectures to self-
adaptive autonomic systems,” in Int. Conf. Computational Science and
Engineering, 2009. CSE ’09., vol. 2, Aug 2009, pp. 926–931.

[3] M. Litoiu, M. Shaw, G. Tamura, N. M. Villegas, H. Müller, H. Giese,
R. Rouvoy, and E. Rutten, “What Can Control Theory Teach Us
About Assurances in Self-Adaptive Software Systems?” in Software
Engineering for Self-Adaptive Systems III. Assurances., R. de Lemos,
D. Garlan, C. Ghezzi, and H. Giese, Eds., 2018, vol. LNCS 9640.

[4] A. Filieri, H. Hoffmann, and M. Maggio, “Automated design of self-
adaptive software with control-theoretical formal guarantees,” in Proc.
36th Int. Conf. Software Engineering, ser. ICSE 2014, 2014.

[5] N. D’Ippolito, V. Braberman, J. Kramer, J. Magee, D. Sykes, and
S. Uchitel, “Hope for the best, prepare for the worst: Multi-tier
control for adaptive systems,” in Proceedings of the 36th International
Conference on Software Engineering, ser. ICSE 2014, 2014.

[6] E. Rutten, N. Marchand, and D. Simon, “Feedback Control as MAPE-
K loop in Autonomic Computing,” in Software Engineering for Self-
Adaptive Systems III. Assurances., ser. LNCS, R. de Lemos, D. Garlan,
C. Ghezzi, and H. Giese, Eds. Springer, Jan. 2018, vol. 9640.

[7] X. An, E. Rutten, J.-P. Diguet, N. le Griguer, and A. Gamatié,
“Autonomic management of dynamically partially reconfigurable fpga
architectures using discrete control,” in Proc. 10th Int. Conf. Autonomic
Computing (ICAC 13), San Jose, CA, 2013.

[8] X. An, E. Rutten, J.-P. Diguet, and A. Gamatié, “Model-based design of
correct controllers for dynamically reconfigurable architectures,” ACM
Transactions on Embedded Computing Systems (TECS), vol. 15, no. 3,
Jun. 2016. [Online]. Available: http://dx.doi.org/10.1145/2873056

[9] S. M. K. Gueye, É. Rutten, and J. Diguet, “Autonomic management
of missions and reconfigurations in fpga-based embedded system,” in
NASA/ESA Conf. Adaptive Hardware and Systems, AHS, Pasadena,
CA, USA, July 24-27, 2017, 2017, pp. 48–55. [Online]. Available:
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8030149

[10] F. Alvares, E. Rutten, and L. Seinturier, “Behavioural model-based
control for autonomic software components,” in Proc. IEEE Int. Conf.
Autonomic Computing, ICAC, 2015, pp. 187–196.

[11] F. Fons, M. Fons, E. Cantó, and M. López, “Real-time embedded
systems powered by fpga dynamic partial self-reconfiguration: A case
study oriented to biometric recognition applications,” J. Real-Time
Image Process., vol. 8, no. 3, pp. 229–251, Sep. 2013.

[12] E. Chen, V. G. Lesau, D. Sabaz, L. Shannon, and W. A. Gruver, “Fpga
framework for agent systems using dynamic partial reconfiguration,” in
Proc. 5th Int. Conf. Industrial Applications of Holonic and Multi-agent
Systems for Manufacturing, ser. HoloMAS’11, 2011, pp. 94–102.

[13] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event
Systems. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2006.

[14] J. Hellerstein, Y. Diao, S. Parekh, and D. Tilbury, Feedback Control of
Computing Systems. Wiley-IEEE, 2004.

[15] Y. Wang, S. Lafortune, T. Kelly, M. Kudlur, and S. Mahlke, “The theory
of deadlock avoidance via discrete control,” in Proc. Conf. POPL, 2009.

[16] D. Harel and A. Pnueli, “Logics and models of concurrent systems,”
K. R. Apt, Ed. New York, NY, USA: Springer-Verlag New York, Inc.,
1985, ch. On the Development of Reactive Systems, pp. 477–498.

[17] D. Harel, “Statecharts: A visual formalism for complex systems,” Sci.
Comput. Program., vol. 8, no. 3, pp. 231–274, Jun. 1987.

[18] G. Delaval, É. Rutten, and H. Marchand, “Integrating discrete controller
synthesis into a reactive programming language compiler,” Discrete
Event Dynamic Systems, vol. 23, no. 4, pp. 385–418, 2013.

[19] N. Berthier and H. Marchand, “Discrete controller synthesis for infinite
state systems with reax,” in IEEE International Workshop on Discrete
Event Systems, Cachan, France, May 2014, pp. 46–53.

[20] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA Workshop on Open Source Software, 2009.

[21] A. N. Sylla, M. Louvel, E. Rutten, and G. Delaval, “Design Framework
for Reliable Multiple Autonomic Loops in Smart Environments,” in
2017 IEEE International Conference on Cloud and Autonomic Com-
puting (ICCAC), Tucson, AZ, United States, Sep. 2017.

[22] F. Alvares, G. Delaval, E. Rutten, and L. Seinturier, “Language support
for modular autonomic managers in reconfigurable software compo-
nents,” in 2nd Workshop on Self-Aware Computing, SeAC@ICAC, 2017.

[23] N. Berthier, F. Alvares, G. Delaval, H. Marchand, and E. Rutten,
“Logico-numerical control for software components,” in 1st IEEE
Conference on Control Technology and Applications, CCTA, 2017.

