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An extension of the LQG-LTR procedure

L. Ravanbod-Hosseini∗† D. Noll ∗† P. Apkarian∗‡

Abstract

The LQG/LTR procedure is a classical method to desensibilize a system in closed loop
with respect to disturbances and system uncertainty. We discuss an extension which avoids
the usual loss of performance in LTR. We also show how the idea can be extended to other
control structures. In particular, we show how PID controllers can be desensibilized with this
new approach.

Keywords: LQG/LTR, observer-based control, PID control, mixed H2/H∞ synthesis,
trade-off, structured control law.

1 Introduction

It became apparent during the late 1960s that LQG controllers often lack robustness with regard
to system uncertainty. In 1966 Kwakernaak [17] proposed loop transfer recovery (LTR) as a means
to overcome this deficit in practical situations. LTR was later re-discovered and popularized in a
series of papers by Stein and Athans [23], Doyle and Stein [14, 15]. Even today LQG/LTR is still
used by practitioners to desensibilize LQG controllers to enhance the robustness of a design.

Unfortunately, LTR has two main limitations. On the one hand, the price for the enhanced
robustness may be a considerable loss of performance. And secondly, LTR is limited to controllers
with observer structure. Here we propose a new method which avoids these shortcomings. We
demonstrate its use for observer-based controllers and also for multi-variable PID controllers.

In our approach a trade-off between performance robustness is formalized as a multi-objective
optimization program. We propose to optimize performance in closed loop under a constraint on
the H∞ norm of the (input or output) sensitivity function, combined with a structural constraint
on the controller. This has the merits of the LTR controller, reduced sensitivity, but with only a
slight loss over nominal performance. Our approach is much in the spirit of [23], where it is already
shown that a similar trade-off between sensitivity and complementary sensitivity can be cast as an
optimization problem over the Hardy space of stable transfer functions with 2-norm, i.e. an H2-
optimization problem, which under some restrictions can be solved by LQG/LTR.

The structure of the paper is as follows. In Sections 2 and 3 we recall the essential features of
LQG/LTR, presented for the case of the input loop breaking point. The improved LTR procedure
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for this case is presented in Section 4. Section 5 briefly discusses LTR at the output loop breaking
point. Section 6 gives a dual mathematical programming approach, where the roles between
performance and robustness in the trade-off are changed. More general controller structures are
discussed in Section 7. Experiments are presented in Sections 8 and 9.

2 Preparation

Let us briefly recall the set-up for H2-synthesis. Given an open-loop plant in state-space form

P :

 ẋ
z2

y

 =

 A B2 B
C2 0 D2u

C Dy2 0

 x
w2

u

 ,(1)

the goal of H2 synthesis is to find a dynamic output feedback controller in state space form

K :

[
ẋK

u

]
=

[
AK BK

CK DK

] [
xK

y

]
(2)

which stabilizes P in closed loop and minimizes the H2 norm (cf. [11])

min
K
‖Tw2→z2(P, K)‖2(3)

of the closed-loop performance channel w2 → z2. We refer to P(K) = ‖Tw2→z2(P, K)‖2 as the
performance of the closed-loop system. It is well known that the optimal solution K∗ of (3) has
observer-based structure

K∗ =

[
A−B2Kc −KfC2 Kf

−Kc 0

]
,(4)

and that Kf , Kc can be computed via AREs or LMIs [13].
It is convenient to consider LQG control as a special case of H2 synthesis. Consider the following

LQG problem:

GLQG :

{
ẋ = Ax + Bu + Γw

y = Cx + v

where w and v are white noise with covariance matrices W and V , respectively. We denote by Q
and R the state and input weighting matrices used to define the LQG criterion and build a plant
of form (1) by setting

PLQG =

 A B2 B
C2 0 D2u

C Dy2 0

 =


A

(
ΓWΓ>

)1/2
0 B

Q1/2 0 0 0
0 0 0 R1/2

C 0 V 1/2 0

 ,(5)

where the original inputs v, w and outputs x, u of LQG are encoded as w2 and z2 and recovered
from the relations [

w
v

]
=

[
W 1/2 0

0 V 1/2

]
w2, z2 =

[
Q1/2 0

0 R1/2

] [
x
u

]
.

As a consequence the optimal LQG controller then has the observer structure (4).
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3 Loop transfer recovery

We continue with a rapid flashback on the LQG/LTR procedure [1, 22]. Using the embedding
PLQG → P , we interpret the situation in the context of H2 optimal control.

Along with its excellent performance p∗ = P(K∗) = ‖Tw2→z2(P, K∗)‖2, the optimal LQG con-
troller K∗ may be highly sensitive and therefore lack robustness with respect to system uncertainty.
This is where the LQG/LTR procedure sets in. In its so-called input-sensitivity form it provides
a one-parameter family of observer-based controllers

K(ρ) =

[
A−B2Kc −Kf (ρ)C2 Kf (ρ)

−Kc 0

]
,

indexed by 0 < ρ ≤ 1, such that

(i) K(ρ) is the LQG controller of the modified LQG plant

PLQG(ρ) =


A

(
ΓWΓ>

)1/2
0 B

Q1/2 0 0 0
0 0 0 R1/2

C 0 ρ1/2V 1/2 0

 ,(6)

the nominal case (5) being ρ = 1. In particular, K∗ = K(1). Explicitly

K(ρ) = −Kc (sI − (A−BKc −Kf (ρ)C))−1 Kf (ρ).(7)

(ii) As ρ → 0, the LTR controller K(ρ) gets less and less sensitive in so far as the H∞ norm of
the LQG sensitivity function S(G, K(ρ)) = (I + K(ρ)G)−1 approaches the H∞ norm of the
so-called target sensitivity function SLQ = (I +KcGLQ)−1, which has provable good gain and
phase margins [16]. Here

G(s) = C(sI − A)−1B, SLQ =
(
I + Kc(sI − A)−1B

)−1
= (I + KcGLQ)−1.

(iii) ρ1/2Kf (ρ) → ΓV −1/2 as ρ → 0, so K(ρ) has no limit in controller space as ρ → 0. In conse-
quence, performance of K(ρ) degrades in the sense that P(K(ρ)) = ‖Tw2→z2(P, K(ρ))‖2 →∞
as ρ → 0, where P is the nominal plant (5).

Altogether the family of LTR controllers K(ρ) in (7) represents a trade-off between performance
(3) with respect to the original LQG plant (5), and robustness with respect to the input sensitivity
function S(G, K) = (I + KG)−1. Each K(ρ) is conveniently obtained by solving a modified LQG
synthesis program based on (6). The procedure presented leaves Kc fixed and adapts the Kalman
filter gain Kf (ρ) to the noise level ρV .

Remark 1. A variant of the described LTR procedure is obtained by fixing V = V0 and letting
W = W0 + ρ−1BBT , where W0 is nominal.

The central theme is now the following: We wish to improve robustness ‖S(G, K)‖∞ →
‖SLQ‖∞ =: r∗ just as in LTR, but at the same time we want to avoid the loss of performance
P(K(ρ)) →∞ caused by the LTR controller.
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4 Improved LQG/LTR procedure

In order to emphasize the terms performance and robustness, we will use the notation

P(K) = ‖Tw2→z2(P, K)‖2, R(K) = ‖S(G, K)‖∞.

As we have seen, R(K(ρ)) → r∗ := ‖SLQ‖∞, while P(K(ρ)) → ∞ when ρ → 0. Let r∗ = R(K∗)
be the robustness level of the nominal H2 controller K∗. Since K∗ is too sensitive with regard to
S(G, K), we know that the value r∗ is too large. Fortunately, for every intermediate value r with
r∗ < r ≤ r∗ = R(K∗), there exists some ρ ∈ (0, 1] such that r = r(ρ) = R(K(ρ)).

Naturally, we seek a compromise r = r(ρ) somewhere in between these two extrema r∗, r
∗.

This is where LTR has its limitation. It can only propose to stop at some K(ρ) where r = r(ρ)
is as desired, but it can then no longer influence the corresponding performance p(ρ) = P(K(ρ)).
The value p(ρ) := P(K(ρ)) is just somewhere in between p∗ = P(K∗) and p∗ = ∞ and has to
be accepted as such. But we can do better. Having identified the appropriate robustness level
r = r(ρ) = R(K(ρ)) of the LTR controller K(ρ), we consider the mixed H2/H∞ optimization
program

(Pρ)
minimize P(K) = ‖Tw2→z2(P, K)‖2

subject to R(K) = ‖S(G, K)‖∞ ≤ r(ρ)
K has observer structure (4)

(8)

whose decision variable is x = (vec(Kc), vec(Kf )). For short, we go beyond LTR and optimize
performance P subject to the robustness constraint R ≤ r(ρ). For the following, we will denote the
solution of (8) as K2,∞(ρ), indicating that a mixed H2/H∞ controller synthesis problem is solved,
where the robustness level r(ρ) = R(K(ρ)) is imposed as a constraint, K(ρ) being the LQG/LTR
controller (7) with parameter ρ. Program (8) is the key element of the following

Algorithm I

1: Initialize. Synthesize the nominal LQG controller K∗ and compute its robustness r∗ =
R(K∗) = ‖S(G, K∗)‖∞. If r∗ is small enough, meaning that K∗ is sufficiently robust, then
quit. Otherwise continue.

2: Calibrate. Compute LTR controller K(ρ) so that robustness r(ρ) := ‖S(G, K(ρ))‖∞ < r∗ is
small enough. A lower bound is r∗ = ‖S(GLQ, Kc)‖∞.

3: Optimize. Solve mixed H2/H∞ program (Pr(ρ)), using K(ρ) as initial guess. The locally
optimal solution is K2,∞(ρ).

4: Evaluate. Check whether K2,∞(ρ) is acceptable. If it is not sufficiently robust use smaller ρ
to get a smaller r(ρ). If it is too robust and not sufficiently performing, use larger ρ to get a
larger r(ρ). Then go back to step 3.

Remark 2. Notice that in (8) the Kalman gain Kf and the state feedback gain Kc are optimized
simultaneously. The principle of separation of observation and control is no longer valid here. In
particular, the optimal Kc, Kf are no longer characterized by AREs. Nonetheless K2,∞(ρ) is an
observer-based controller.

Remark 3. The fact that the r(ρ) cover the range (r∗, r
∗] does not mean that r(ρ) ∈ (r∗, r

∗] for
all ρ. Typically, for ρ close to the nominal value 1 it may happen that r(ρ) > r∗. This means LTR
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is not a monotone procedure, as can be seen e.g. in Figure 3. Naturally, the ρ with r(ρ) > r∗ are
of no use in Algorithm I.

The central property of the solution K2,∞(ρ) of (8) is the following

Proposition 1. The optimal H2/H∞ controller K2,∞(ρ) computed in step 3 of Algorithm I is
as robust as the LTR controller K(ρ): ‖S(G, K2,∞(ρ))‖∞ = ‖S(G, K(ρ))‖∞, but it has better
performance: P(K2,∞(ρ)) ≤ P(K(ρ)).

Proof: Notice that the constraint R ≤ r(ρ) in (8) must be active, because otherwise K2,∞(ρ)
would be an unconstrained local minimum of the nominal H2 program (3). But program (3) is
in fact strictly convex and its unique solution is the LQG controller K∗. Hence we would have
r∗ = P(K∗) < P(K(ρ)) = r(ρ). However, according to step 2 of algorithm I, ρ is such that
r∗ < r(ρ) ≤ r∗ and values ρ with r(ρ) > r∗ are not considered. This shows that the constraint is
active.

The second claim, the improvement of the performance, is due to the fact that K(ρ) is a feasi-
ble point in (8), and that we start optimization at K(ρ). This assures that the (locally) optimal
solution has a lower objective value P(K2,∞(ρ)) ≤ P(K(ρ)). �

Remark 4. What we have shown is that K2,∞(ρ) is always preferable to the LQG/LTR controller
K(ρ) with regard to the chosen criteria P ,R. Therefore the LTR controller should not be accepted
as the final solution of the process, but K(ρ) remains a very useful tool to calibrate the procedure,
and it also serves as starting point for the optimization program (8).

Remark 5. Graphical visualization. One can compare the LTR controller K(ρ) and the
mixed controller K2,∞(ρ) graphically as shown in Figures 3 and 9. We display P(K(ρ)) and
P(K2,∞(ρ)) over the same abscissa log(ρ). The matched robustness level of the two controllers
r(ρ) = R(K(ρ)) = R(K2,∞(ρ)) is also displayed over the same logarithmic scale.

Remark 6. It is well-known that the optimal H2 controller K∗ has the observer-based structure (4)
if no additional control law specifications are imposed. In that sense the observer-based structure
is optimal for H2 control. This is no longer the case in (8). If we wish to obtain an observer-based
solutions, we have to impose (4) as a constraint, as we do. Otherwise the H2/H∞ program has an
infinite dimensional solution [12], which need not even be realizable. And even when we impose
realizability as the sole structural constraint, the optimal solution need not be observer-based.

Remark 7. Mixed H2/H∞-programs had originally been proposed by Bernstein and Haddad [10],
who characterize the solution in the full-order case (in the absence of constraint (4)) by a system
of coupled algebraic Riccati equations. A homotopy method is proposed to compute the solutions.
The first numerically efficient way to solve (8) with the constraint (4) was presented in [8] and is
based on nonsmooth optimization techniques. Notice that program (8) is no longer convex due to
the structural constraint on K.

5 Other LTR procedures

There exists a dual LTR procedure, which generates a family K(q) of LQG controllers parametrized
by q ≥ 0 such that K(0) = K∗, and such that K(q) now gets less sensitive as q → ∞. Consider
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the deformed LQG system

P (q) :


A

(
ΓWΓ>

)1/2
0 B

Q1/2(q) 0 0 0
0 0 0 R1/2

C 0 V 1/2 0

 ,

where Q(q) = Q+qC>C, and q = 0 corresponds to the nominal case (5). The LQG/LTR controller
is then obtained by an LQG synthesis for P (q) and has the form

K(q) =

[
A−B2Kc(q)−KfC2 Kf

−Kc(q) 0

]
(9)

where now Kf is fixed and Kc(q) tuned. Limiting results now hold with respect to the output

sensitivity function S̃(G, K) = (I + GK)−1. Namely ‖S̃(G, K(q))‖∞ → ‖S̃LQ‖∞, where S̃LQ =

(I + C(sI − A)−1Kf )
−1

= (I + GLQKf )
−1, which again has guaranteed good margins as q →∞.

Remark 8. Notice that K(q) is obtained by artificially increasing the cost term x>Qx in the LQG
objective, replacing the nominal Q by Q + q C>C. As q →∞ increases, this obviously forces the
trajectories x(t) to decay faster to 0 as t → ∞, hence a gain in robustness. In [23] a variant is
discussed, where in the cost term x>Qx + µu>Ru the parameter µ is driven to zero.

The new type of controller K2,∞(q) associated with the family K(q) is constructed as follows.

Let r̃(q) = ‖S̃(G, K(q))‖∞, solve the mixed H2/H∞ program

minimize P(K) = ‖Tw2→z2(P, K)‖2

subject to R(K) = ‖S̃(G, K)‖∞ ≤ r̃(q)
K observer based

(10)

and let K2,∞(q) be the solution of (10). The link between the dual LQG/LTR controller K(q) and
its associated H2/H∞ controller K2,∞(q) is the following

Proposition 2. The mixed H2/H∞ controller K2,∞(q) is as robust as the LQG/LTR controller

K(q) in the sense that ‖S̃(G, K2,∞(q))‖∞ = ‖S̃(G, K(q))‖∞, but it has better performance. �

Remark 9. It is straightforward to propose an algorithm similar to algorithm I based on (10).
We leave the details to the reader.

6 Trade-off with performance certificate

There is a second approach to (8), which can be interpreted as setting aside some of the good
performance in order to buy some robustness. Suppose the unconstrained H2 program has p∗ =
P(K∗), where K∗ solves (3). We call p∗ the nominal performance. As soon as K∗ is overly
sensitive and lacks robustness, we expect p∗ to be too small. Assuming that we are working
with the sensitivity function R(K) = ‖S(G, K)‖∞, we can therefore consider the following mixed
H∞/H2 program

(Dα)
minimize R(K) = ‖S(G, K)‖∞
subject to P(K) = ‖Tw2→z2(P, K)‖2 ≤ (1 + α)p∗

K has observer structure (4)
(11)
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where we accept a loss of α% in nominal performance p∗ and use this freedom to buy as much
robustness as possible. Let K∞,2(α) be a locally optimal solution of (Dα).

It turns out that there is a close relationship between programs (Pρ) and (Dα).

Proposition 3. Let K2,∞(ρ) be a locally optimal solution of (Pρ). Then there exists α = α(ρ) such
that K2,∞(ρ) = K∞,2(α(ρ)), i.e., K2,∞(ρ) is also a locally optimal solution of a suitable program
(Dα(ρ)). One simply has to set α(ρ) := [P(K2,∞(ρ))− p∗]/p∗.

Conversely, let K∞,2(α) be a locally optimal solution of (Dα), where the constraint P ≤ (1+α)p∗

is active. Then K∞,2(α) = K2,∞(ρ(α)) for a suitable ρ = ρ(α), i.e., K∞,2(α) is also a locally
optimal solution of (Pρ(α)). One simply puts ρ(α) = R(K∞,2(α)).

Proof: It suffices to compare the necessary optimality conditions of both programs. �

Remark 10. While programs (Pρ) and (Dα) are at least locally in one-to-one correspondence via
ρ 7→ α(ρ) and α 7→ ρ(α), it is beneficial to have both casts at our disposition. For instance, in
some cases it may be easier to calibrate the value α, i.e. the accepted loss of performance, than
to guess an appropriate ρ in (Pρ). On the other hand, LTR can be used more directly to calibrate
the procedure in the primal approach based on Pρ. Notice, however, a difference between (Dα)
and (Pρ). In (Dα) it may happen that the constraint P ≤ (1 + α)p∗ is inactive. In that case we
have found a local minimum of the robustness function R alone. This is possible, because the
H∞-program min{‖S(G, K)‖∞ : K observer based} is not a convex program and may therefore
have locally optimal solutions.

7 Extension to more general controller structures

In this section we propose a variant of algorithm I which applies to more general controller struc-
tures. In Section 8.2 we will apply it to PID controllers.

We call a controller in state-space form (2) structured if the matrices AK , BK , CK , DK depend
smoothly on a design parameter vector x, that is

AK = AK(x), BK = BK(x), CK = CK(x), DK = DK(x).

We assume that x varies in some parameter space Rn, or in a constrained subset of Rn. Here n =
dim(x) is typically smaller than dim(K) = n2

K + m2nK + p2nK + m2p2, where m2 is the number
of inputs, p2 the number of outputs, nK the order of K. We also expect nK � nx, even though
this is not formally imposed, so that the full order controller is admitted. We usually refer to full
order controllers as unstructured.

We have already encountered a controller structure, namely observer-based controllers, where
x = (vec(Kc), vec(Kf )) ∈ Rnxm2+nxp2 . Other useful controller structures are for instance reduced-
order controllers (nK � nx), decentralized, or PID controllers. For PIDs the structure is:

Kpid(x) =

 0 0 Ri

0 −τIm2 Rd

Im2 Im2 DK

 ,(12)

where x = (τ, vec(Ri), vec(Rd), vec(DK)) has dim(x) = 3m2p2 + 1, and a constraint τ ≥ ε (for
some small ε > 0) is typically added in parameter space.
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Armed with this, we can propose the following

Algorithm II

1: Nominal synthesis. Compute the structured optimal H2 controller K(x∗) by solving the
nominal structured H2 problem

minimize P(x) = ‖Tw2→z2(P, K(x))‖2

subject to K(x) internally stabilizing
(13)

Evaluate its sensitivity r∗ = R(K(x∗)) = ‖S(G, K(x∗))‖∞. If r∗ is small enough, meaning
that K(x∗) is sufficiently robust, then quit. Otherwise continue and keep r∗ as upper bound.

2: Lower bound. Compute the structured H∞-optimal controller K(x∞) by solving

minimize R(x) = ‖S(G, K(x))‖∞
subject to K(x) internally stabilizing

(14)

Keep r∗ = R(K(x∞)) as lower bound. Choose r ∈ [r∗, r
∗].

3: Optimize. Solve the following structured mixed H2/H∞ program

minimize P(x) = ‖Tw2→z2(P, K(x))‖2

subject to R(x) = ‖S(G, K(x))‖∞ ≤ r
K(x) internally stabilizing

(15)

The locally optimal solution is K(x2,∞(r)).
4: Evaluate. Check whether K(x2,∞(r)) offers an acceptable compromise between performance

and robustness. If it is not sufficiently robust, choose a smaller r ∈ [r∗, r
∗]. If it is too robust

and lacks performance, use larger r ∈ [r∗, r
∗]. Then loop back to step 3.

The difference with algorithm I is that we no longer have LTR at our disposition to calibrate the
procedure. Instead we compute the lower bound r∗ in step 2 based on a structured H∞-synthesis
with objective R. This can be obtained via the matlab function hinfstruct [26]. The mixed
H2/H∞-program can be solved via [8] or using the matlab function fmincon [25].

In order to solve (15) efficiently, we can use the result x∗ of step 1 or x∞ of step 2. It is also
possible to stop the minimization in (14) at the first xr where R(xr) ≤ r. This feature is indeed
available in the matlab function hinfstruct [26]. We may then use the controller K(xr) as initial
guess in (15). The result extending Proposition 3 is the following

Proposition 4. Suppose xr with R(xr) = r is obtained as intermediate solution in step 2 of algo-
rithm II. If xr is used as initial guess in program (15), then the locally optimal solution K(x2,∞(r))
of (15) is as robust as K(xr), but has better H2 performance. �

Remark 11. Notice that solutions to (13), (14), and (15) can no longer be computed by algebraic
Riccati equations or LMIs. While (13) can be solved by smooth optimization technique, see
e.g. [20], programs (14) and (15) are non-smooth and require specific bundle techniques. (BMI
solvers could at least in principle be used, but they suffer from the presence of Lyapunov variables,
which lead to numerical trouble). For nonsmooth H∞ synthesis we refer to [3], and also [2, 5, 6].
An implementation is hinfstruct in [26]. Constrained programs like (15) are discussed in [8, 9].
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General mathematical background is given in [18, 19]. A recent approach to combine nonsmooth
techniques with classical nonlinear programming techniques is discussed in [4].

8 Numerical Experiments

In this section we present two studies in which we test our trade-off models via local optimization
techniques. In each study performance of the nominal system is optimized subject to the structural
constraint observer-based, respectively, PID. Performance refers to the H2 norm. The working
hypothesis is that nominal synthesis is not sufficiently robust. In order to decide what sufficiently
robust means, we consider in each study two uncertain parameters of the system matrix. We
expect a valid solution to be robustly stable with respect to α% variation in these parameters
(where α = 30 for LQG, and α = 40 for H2-PID). We want best nominal performance subject
to parametrically robust stability in this sense. In both studies the input sensitivity function S is
used to robustify the system.

8.1 LQG/LTR

Our first study uses the mass-spring system [1] of Figure 1, which can be considered as a prototype
of a flexible system. We compare the LQG/LTR procedure to our H2/H∞ trade-off model (8) of
section 4, i.e., we follow Algorithm I.

Figure 1: Mass-spring system. Nominal data are m1 = m2 = 0.5kg, k = 1N/m, f = 0.0025Ns/m.
Measured output is y = x2, control force u acts on m1.

We start with a nominal LQG synthesis, where the covariance matrices W = BB> and V = 1
are chosen, while Q = C>C and R = 1; see [1]. In order to decide whether a controller is sufficiently
robust, we pose the following parametric robustness goal:

• Any acceptable controller K should stabilize the system for all parameter variations of α% in
k and m2 about the nominal values, (α = 30 for LQG, α = 40 for PID), and should optimize
the nominal performance within the given structure.

As can be seen in Figure 2, (c), this goal is missed for the nominal LQG controller (Kf , Kc) =
([0.94 0.06 0.97 0.75], [1.49 1.93 0.13 1.87]), whose performance is P(K2) = 3.99. We therefore use
the LTR procedure to generate a curve (Kf (ρ), Kc), which consists in keeping W fixed, and letting
V = ρI = ρ → 0. This corresponds to using the input sensitivity function R(K) := S(K) = (I +
KG)−1 as robustness index. The LQG/LTR controller K(ρ) is used to calibrate r(ρ) = S(G, K(ρ)),
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and for each r(ρ) an optimal H2/H∞ controller K2,∞(ρ) is synthesized using program (8). That
means

R(K(ρ)) = R(K2,∞(ρ)) = r(ρ), P(K2,∞(ρ)) < P(K(ρ)),

so that K2,∞(ρ) is better than K(ρ). Figure 3 shows the evolution of the curves P(K(ρ)),
P(K2,∞(ρ)) and r(ρ) as ρ → 0.
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Figure 2: LQG/LTR study. Image (a) shows the stability region of the nominal H2 controller
K2 with performance P(K2) = 3.99 and evident lack of robustness. Image (b) shows the stability
region of the LTR controller at ρ = .001. Its performance P(K(.001)) = 27.85 is degraded. Image
(c) shows what the mixed H2/H∞ controller achieves at the same ρ = .001. On top of having
significantly better performance P(K2,∞(.001)) = 4.23, it has also better parametric robustness
than the LTR controller.

In a second step we now identify the value r = r(ρ), which gives closed-loop stability for all
parameter values k + ∆k, m2 + ∆m2 over the square |∆k| ≤ α%k, |∆m2| ≤ α%m2. It turns out
that in this respect K2,∞(ρ) is way better than the LTR controller K(ρ). For the mixed controller
we achieve parametric robustness at K2,∞(0.001), whereas K(ρ) is still not parametrically robust
at ρ = 10−10. Nonetheless, we can observe that the region of parametric robustness of LQG/LTR

10



controller K(ρ) also increases as ρ decreases.
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Figure 3: LQG/LTR study. Performance of K(ρ) and K2,∞(ρ) in logarithmic scale. Lower bound
is the performance of the nominal LQG controller. The curve 100r(ρ) shows the robustness level
over the same abscissa. As a by-product, we see that LTR is not a monotone procedure.
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Figure 4: LQG/LTR study. Each graph shows relative performance P(G(k,m2),K)−P(G,K)
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ferent controllers K plotted over the square Ω = (k0±30%k0, m0
2±30%m0

2). Left: LQG controller,
middel: LQG/LTR controller, right: mixed H2/H∞.

8.2 H2-optimal PID controller

In our second study we design a H2 optimal PID controller for the mass-spring system of Figure
1 by solving the nominal program

minimize P(K) = ‖Tw→z(G, K)‖2

subject to K a PID of the form (12)
K closed-loop stabilizing

(16)

which is a specific instance of (13). Using local optimization methods we obtain a H2 locally
optimal PID controller Kpid,2 within the class of internally stabilizing PID controllers. Inspecting
the same parameter variations as before, we see that Kpid,2 fails to stabilize the system within the
40%-square, so we use a robustness constraint as outlined in Section 7. Since LTR is no longer
available in this case, we use Algorithm II for the trade-off.
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Figure 5: PID study. (a) shows nominal H2 optimal PID controller Kpid,2, which is not para-
metrically robust over the 40% square. Its robustness r∗ = 17.23 it too large and gives the upper
bound. The H∞ optimal PID shown in (b) gives the lower robustness bound r∗ = 6.39. Its perfor-
mance P(Kpid,∞) = 152.8 is degraded. The mixed H2/H∞ PID controller shown in (c) is limiting
parametrically robust for r = 17.0.

The solution Kpid,∞ of (14) is the H∞ optimal PID for the sensitivity objective S(K) =
(I + KG)−1. Knowing that Kpid,2 performs too well and lacks robustness, we compute r∗ =
‖S(Kpid,∞)‖∞ = 6.39, r∗ = ‖S(Kpid,2)‖∞ = 17.23, and then choose r = 17.0 in between r∗ and
r∗. Mixed H2/H∞ PID control then gives the solution Kpid,2,∞, which is as robust as Kpid,∞, but
has better performance. Naturally, Kpid,2,∞ is less performing than Kpid,2, but is as robust as we
require, in addition to performing best subject to this constraint. Here the choice r = 17.0 achieves
parametric robustness over the square. The result is shown in Figure 5.

9 Lateral flight control of an F-16 aircraft

In our last study we apply the improved LTR procedure to lateral flight control of an F-16 aircraft.
The nonlinear F-16 lateral model was linearized using the F-16 simulation program [21]. The high
fidelity model is evaluated at altitude h = 15000 ft and velocity v = 500 ft/s, considering Steady
Wings-Level Flight condition for trimming. The state variables are sideslip β, bank angle Φ, roll
rate p and yaw rate r.

9.1 Performance channel

As in [24], state variables δa and δr representing deflection of aileron and rudder actuators are
included in the model each with approximate transfer function 20.2/(s + 20.2). The objective of
the study is to make the bank angle Φ follow a reference command rΦ, while simultaneously keeping
the sideslip angle β as close to rβ = 0 as possible. The plant has u = [uΦ uβ] as control input and
y = [Φ β] as measured output and is of type-0 with constant steady state error. To eliminate this
error, the dynamics are augmented by integrators in each control channel. Moreover, to balance
the singular values at dc, the system was augmented again by the inverse of the dc gain of the
system [24]. The overall state vector including aircraft state variables, actuators and integrators
is then

x = [β Φ p r δa δr εΦ εβ].
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The model for synthesis is shown in Figure 6, G(s). In this figure the precompensator block
represents the inverse of the dc gain. This figure also demonstrates the observer structure K(s).
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Figure 6: Model of F16 aircraft lateral control system and the observer structure.

9.2 LTR procedure

In this study LTR recovery at the output breaking point is used, i.e., robustness is measured via
the output sensitivity function S̃. Using

V = I2 and W = diag([0.1 0.1 0.1 0.1 0 0 10 10]) ∗ 100,

we first fix the Kalman gain Kf such that the target loop gain C(sI − A)−1Kf has the desired
performance. That this goal is achieved can be seen in the singular value plot in Figure 7, and
through the step responses of Figure 8 (solid lines).
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Figure 7: Singular values of the loop transfer function L(s) = K(s)G(s) for LQ, LQG and LTR
controller.

LTR is now applied with Q = C>C and R = ρI2, where ρ → 0, and Kc(ρ) is tuned. With
q = 1/ρ this corresponds to the case discussed in Section 5. Figure 7 compares the singular values
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Figure 8: Step responses with different controllers.

σ and σ of the LQ target with those of LQG and LTR (where C(sI − A)−1Kf is matched with
the LQG controller (ρ = 1) and the LTR controller Kc(ρ)(sI − (A + BKc(ρ) + K>

f C))−1Kf at
ρ = 10−10. As can be seen, forcing ρ → 0 brings the singular values of the LTR controller near
those of the target. In addition, this drives the system output responses (with LTR controller)
toward the model responses of the target, as shown in Figure 8 (a) and (b). In Figure 8 (c)
and (d), the control input signals of LQ, LQG and LTR are compared. Unfortunately, the LTR
controller causes a large control input, which results in a large (degraded) performance. This loss
of performance increases with ρ−1 as Figure 9 shows. In the same figure the robustness index
RLTR = ‖S̃‖∞ = ‖(I + GKLTR(ρ))−1)‖∞ is displayed. As can be seen, at the beginning (going
from right to left) R increases and then decreases before stabilizing around ‖(I + GKLQ(ρ))−1)‖∞.
This proves that LTR with recovery at the output breaking point is not a monotone procedure
either.

9.3 Mixed synthesis

We use the analogue of program (15) with S̃ replacing S and for ρ ∈ [10−4 10−1.3]. In this
range robustness R decreases monotonically with ρ, while performance P increases. Figure 9
compares performance after matching robustness of the H2/H∞ and LTR controllers. A substantial
improvement in performance can be observed.

We check the efficiency of our method by considering changes of the flight parameters. We
consider h = h0±∆h and v = v0±∆v, with |∆h| ≤ 1000 ft and |∆v| ≤ 25 ft/s, the nominal flight
point being h0 = 15000 ft and v0 = 500 ft/s. The LTR controller and the corresponding mixed
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Figure 9: F-16 study. Comparison of performance of LTR and H2/H∞ controller when robustness

according to R(K) = ‖S̃(G, K)‖∞ are matched.

controller are evaluated at ρ = 1.438e−4. Figure 10 (a) and (b) compares the first output and the
first control input of the 8 neighbouring flight points around the nominal flight point. The diagram
in Figure 10 (c) shows the improvement in performance obtained with the mixed controller.

10 Conclusion

We have used mixed H2/H∞ synthesis for structured control laws to obtain a quantified trade-off
between performance and robustness in feedback control design. Within the class of observer-based
controllers this leads to an improvement of the LQG/LTR procedure. The latter is still useful to
calibrate and initialize the procedure. For other controller structures a different idea is used to
calibrate the mixed program. The new method was applied to a mass-spring benchmark example
and also to lateral flight control of an F-16 aircraft. Experiments indicate that the new technique
can also be useful to enhance the parametric robustness of a design. In our tests the achieved
degree of parametric robustness was satisfactory.
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