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The classical Frank and Wolfe theorem states that a quadratic function which is bounded below on a convex polyhedron P attains its infimum on P . We investigate whether more general classes of convex sets F can be identified which have this Frank-and-Wolfe property. We show that the intrinsic characterizations of Frank-and-Wolfe sets hinge on asymptotic properties of these sets.

Introduction

The classical Frank and Wolfe theorem [START_REF] Frank | An algorithm for quadratic programming[END_REF][START_REF] Blum | Direct proof of the existence theorem in quadratic programming[END_REF] states that a quadratic function q which is bounded below on a convex polyhedron P attains its infimum on P . It is known that this result has consequences with regard to the existence of solutions to linear complementarity problems [START_REF] Gowda | Minimising quadratic functionals over closed convex cones[END_REF]. Here we investigate ways in which the Frank and Wolfe theorem can be extended.

A first line is to go beyond polyhedra and ask whether there are more general classes of Frank-and-Wolfe sets, that is, convex sets F with the property that every quadratic function q which is bounded below on F attains its infimum on F . What one would like to obtain is an internal characterization of Frank-and-Wolfe sets via geometric properties, or likewise, verifiable sufficient conditions for the Frank-and-Wolfe property. In response we will characterize Frank-and-Wolfe sets as those convex sets which do not admit conic asymptotes in a sense to be made precise here.

A variant of the same question concerns the larger class of convex sets F with the property that every quadratic function q which is bounded below on F , and which is in addition convex or quasiconvex on F , attains its infimum on F . It turns out that this class has a nice internal characterization. It consists of those convex sets that do not have affine asymptotes in the sense of Klee [START_REF] Klee | Asymptotes and projections of convex sets[END_REF].

A second idea to extend the Frank and Wolfe theorem would be to go beyond quadratics and look for more general classes of functions f attaining their finite infimum on polyhedra P . For instance, do higher degree polynomials f have this property? It turns out that without convexity this line has little hope for success, as shown by the quartic function f (x) = x 2 1 +(1-x 1 x 2 ) 2 , which has infimum 0 on the plane, but does not attain its infimum there. Positive results can at best be expected for convex polynomial functions f . For instance, Rockafellar [START_REF] Rockafellar | Convex Analysis[END_REF]Cor. 27.3.1] shows that a convex polynomial f which is bounded below on a polyhedron P attains its infimum on P . Other variations of this theme are for instance Perold [START_REF] Perold | A generalization of the Frank and Wolfe theorem[END_REF], Hirsch and Hoffman [START_REF] Hirsch | Fixed charge problems[END_REF], or Belousov and Klatte [START_REF] Belousov | A Frank-and-Wolfe theorem for convex polynomial programs[END_REF].

The structure of the paper is as follows. In Section 2 we define Frank-and-Wolfe sets and variants and obtain first basic properties. Section 3 establishes the link between the Frank-and-Wolfe property and the absence of f -asymptotes in the sense of Klee. In Section 2 we consider the Frank-and-Wolfe property within the class of Motzkin decomposable sets, where one expects key information to be provided by the recession cone. Section 5 characterizes Frank-and-Wolfe sets by the absence of q-asymptotes, a geometric notion we define in Section 5. In the final Section 6 we obtain an application to generalized complementarity problems.

Notations

We generally follow Rockafellar's book [START_REF] Rockafellar | Convex Analysis[END_REF]. The closure of a set F is F . The Euclidean norm in R n is ∥ • ∥, and the Euclidean distance is dist(x, y) = ∥x -y∥. For subsets M, N of R n we write dist(M, N ) = inf{∥x -y∥ : x ∈ M, y ∈ N }. A direction d with x + td ∈ F for every x ∈ F and every t ≥ 0 is called a direction of recession of F , and the cone of all directions of recession is denoted as 0 + F .

A function q(x)

= 1 2 x T Ax + b T x + c with A = A T ∈ R n×n , b ∈ R n , c ∈ R is called quadratic. The quadratic q : R n → R is quasiconvex on a convex set F ⊂ R n if the sublevel sets of q |F : F → R are convex. Similarly, q is convex on the set F if q |F is convex.

Frank and Wolfe sets

We call a convex set F in R n Frank-and-Wolfe if every quadratic function q : R n → R which is bounded below on F attains its infimum on F . For short we say that F is a FW -set. In the same vein we call the convex set F quasi-Frank-and-Wolfe if the property holds for every quadratic q which is in addition quasiconvex on F . For short, such sets are called qFW -sets.

Formally we may also consider convex sets F where the property holds for every quadratic q which is convex on F . We temporarily call those cFW -sets. Ultimately this class will turn out equivalent to quasi-Frank-and-Wolfe sets, i.e., cFW = qFW.

Clearly every bounded closed convex set is Frank-and-Wolfe, so the disquisition is only useful in studying unbounded convex sets. Trivially FW -sets are qFW, and qFW -sets are cFW. The classical theorem of Frank and Wolfe [START_REF] Frank | An algorithm for quadratic programming[END_REF] says that every convex polyhedron P is a FW -set. Our first observation is the following. Lemma 1. Every cFW-set is closed, hence so are qFW-and FW-sets. 2 is quadratic convex and its infimum on F is 0. Since by hypothesis this infimum is attained, we must have x ∈ F . □

Proof: Consider x ∈ F , then q(•) = ∥ • -x∥
Another useful property of Frank-and-Wolfe sets is the following.

Proposition 1. Affine images of cFW-sets are cFW-sets. Similarly, affine images of qFW-sets are qFW, and affine images of FW-sets are FW. In particular, affine images of cFW-sets, qFW-sets and FW-sets are closed.

Proof: Closedness of the affine image of a cFW -set F under an affine image follows from the first part of the statement in tandem with Lemma 1. To prove the first part let F be a cFW -set and T : R n → R m an affine operator. Let F = T (F ). We show that F is cFW. Let q : R m → R be quadratic and convex on F , and suppose it is bounded below on F with infimum γ. Then q = q • T is quadratic and convex on F , and bounded below on F with the same infimum γ. By the hypothesis on F the infimum γ of q is attained at x 0 ∈ F , and then clearly q attains its infimum γ on F at T x 0 .

Similarly, if q is quasiconvex on F , then q is quasiconvex on F . Therefore the other two statements follow as well. □

Yet another elementary property of FW -sets is the following Proposition 2. Suppose F is a FW-set, and let F ′ be a closed convex set containing F such that F ′ \F is bounded. Then F ′ is FW. The analogous statement holds for qFW-sets.

Proof: Suppose q is a quadratic function with finite infimum γ ′ on F ′ . Then q has also a finite infimum γ on F , where obviously γ ≥ γ ′ . There are two cases. If γ = γ ′ , then we choose x ∈ F where γ is attained, and then γ ′ is also attained at x. On the other hand, if

γ ′ < γ, then inf x∈F ′ q(x) = inf x ′ ∈F ′ \F q(x ′ ). Since F ′ \ F is bounded, there exists x ′ ∈ F ′ \ F ⊂ F ′
where the infimum γ ′ is attained. □

f -asymptotes

Following Klee [START_REF] Klee | Asymptotes and projections of convex sets[END_REF], an affine manifold M in R n is called an f -asymptote of the closed convex set F if F ∩ M = ∅ and dist(F, M ) = 0. The link between f -asymptotes and the Frank-and-Wolfe property is given by the following Theorem 1. Let F be a convex set in R n . Then the following statements are equivalent:

(i) Every quadratic function q which is quasiconvex on F and bounded below on F attains its infimum on F . That is, F is qFW. (ii) Every quadratic function q which is convex on F and bounded below on F attains its infimum on F . That is, F is cFW. (iii) F is closed and has no f -asymptotes.

Proof:

The implication (i) =⇒ (ii) is clear. Consider (ii) =⇒ (iii). We have to show that F is closed and has no f -asymptotes. Closedness follows readily from Lemma 1. Now let M be an affine manifold with dist(F, M ) = 0. We have to show that M is not an f -asymptote of F . Suppose M = y + U for its direction space U and some y ∈ U ⊥ . Let P be the orthogonal projection on U ⊥ , then P (M ) = {y} and M = P -1 (y). Since dist(F, M ) = 0, there exist sequences

x k ∈ F , z k ∈ M , such that dist(x k , z k ) → 0. Then dist(P x k , P z k ) ≤ dist(x k , z k ) → 0, but P z k =
y for every k, hence dist(P x k , y) → 0, so the sequence P x k converges to y. Now since F has property (ii), its affine image P (F ) is closed by Proposition 1, so y ∈ P (F ). Pick x ∈ F with y = P x, then x ∈ F ∩ P -1 (y) = F ∩ M , so that F ∩ M ̸ = ∅. This shows that F does not have f -asymptotes.

It remains to prove the implication (iii) =⇒ (i). We will prove this by induction on the dimension n of F . For dimension n = 1 the implication is clearly true, because any quadratic function q : R → R which is bounded below on a closed convex set F ⊂ R attains its infimum on F . Suppose therefore that the result is true for dimension n -1, and consider a quadratic function q : R n → R which is quasiconvex on F and bounded below on F . Assume without loss that the dimension of F is n, i.e., F has nonempty interior, as otherwise the result follows directly from the induction hypothesis. Let γ = inf{q(x) : x ∈ F } > -∞, and fix α > γ. If the sublevel set S α := {x ∈ F : q(x) ≤ α} is bounded, then by the Weierstrass extreme value theorem the infimum of q over S α is attained. But this infimum is also the infimum of q over F , so in that case we are done. Assume therefore that S α is unbounded. Since q is quasiconvex on F , the set S α is closed convex, which means S α has a direction of recession d, that is, a direction with x+td ∈ S α for every t ≥ 0 and every x ∈ S α (see e.g. [START_REF] Rockafellar | Convex Analysis[END_REF]Theorem 8.4]). Fix x ∈ S α . Expanding q at x + td ∈ S α gives

γ ≤ q(x + td) = 1 2 x T Ax + b T x + c + td T (Ax + b) + 1 2 t 2 d T Ad ≤ α
for every t ≥ 0, and this implies d T Ad = 0. Substituting this back gives

γ ≤ q(x + td) = 1 2 x T Ax + b T x + c + td T (Ax + b) ≤ α, for every t ≥ 0. That implies d T (Ax + b) = 0. But the argument is valid for every x ∈ S α .
By assumption F has dimension n, so S α has nonempty interior, meaning x + ϵB ⊂ S α for some ϵ > 0, with B the unit ball. That shows Ad = 0. Going back with this into d T (Ax + b) = 0 shows d T b = 0, too. Altogether we have shown [START_REF] Banks | Non-linear parametric optimization[END_REF] q(x + td) = q(x) for every x ∈ S α and every t ≥ 0.

Since q is a quadratic function and S α has nonempty interior, this implies q(x + td) = q(x) for every x ∈ R n and every t ∈ R. Now let P be the orthogonal projection onto the hyperplane H = d ⊥ . Then q := q |H is quadratic on the (n -1)-dimensional space H and takes the same values as q due to (1). In particular, q = q |H is bounded below on the qFW -set F = P (F ). Since q is quasiconvex on F , q is quasiconvex on F . Therefore q attains its infimum on F by the induction hypothesis, since dim( F ) = n -1, and then q, having the same values, also attains its infimum on F . □ Remark 1. From the implication (iii) =⇒ (i) it is clear that for a quadratic function q bounded below on F to attain its infimum on F , it is sufficient to have just one of its sublevel sets S α with α > γ = inf x∈F q (x) convex, a condition which is weaker than quasiconvexity on F . An even weaker condition suffices, namely, the existence of a not necessarily convex sublevel set S α and a direction d ∈ R n with the following property: For every x ∈ S α there exists t x ∈ R such that x + td ∈ S α for every t ≥ t x .

Remark 2. Yet another equivalent condition which we could add to the above list is (iv) P (F ) is closed for every orthogonal projection P . Indeed (ii) =⇒ (iv) is Proposition 1, and (iv) =⇒ (ii) is implicit in the proof of (ii) =⇒ (iii) above. For the equivalence of (iii) and (iv) see also [START_REF] Klee | Asymptotes and projections of convex sets[END_REF].

Corollary 1. Frank-and-Wolfe sets have no f -asymptotes. □

We end this section by indicating that the converse of Corollary 1 is not true. Put differently, the absence of f -asymptotes does not characterize Frank-and-Wolfe sets. Or put again differently, there exist quasi-Frank-and-Wolfe sets, which are not Frank-and-Wolfe.

Example 3.1. We construct a closed convex set F without f -asymptotes, which is not Frank-and-Wolfe. We use Example 2 of [START_REF] Luo | On extensions of the Frank-Wolfe theorem[END_REF], which we reproduce here for convenience. Consider the optimization program

minimize q(x) = x 2 1 -2x 1 x 2 + x 3 x 4 subject to c 1 (x) = x 2 1 -x 3 ≤ 0 c 2 (x) = x 2 2 -x 4 ≤ 0 x ∈ R 4
then as Lou and Zhang [START_REF] Luo | On extensions of the Frank-Wolfe theorem[END_REF] show the constraint set F = {x ∈ R 4 : c 1 (x) ≤ 0, c 2 (x) ≤ 0} is closed convex, and the quadratic function q has infimum γ = -1 on F , but this infimum is not attained.

Let us show that F has no f -asymptotes. Note that F = F 1 ×F 2 , where

F 1 = {(x 1 , x 3 ) ∈ R 2 : x 2 1 -x 3 ≤ 0}, F 2 = {(x 2 , x 4 ) ∈ R 2 : x 2 2 -x 4 ≤ 0}. Observe that F 1 ∼ = F 2 ,
and that F 1 does not have asymptotes, being a parabola. Therefore, F does not have f -asymptotes either. This can be seen from the following

Proposition 3. Suppose F 1 , F 2 do not have f -asymptotes. Then neither does F 1 × F 2 have f -asymptotes. Proof: We write F 1 × F 2 = (F 1 × R n ) ∩ (R n × F 2 ). Suppose M is an f -asymptote of F 1 × F 2 , then by Klee [9, Theorem 4] the flat M contains either an f -asymptote N 1 of F 1 × R n , or it contains an f -asymptote N 2 of R n × F 2 .
Assume without loss that M contains N 1 . Let P be the projection on the first coordinate, then P (N 1 ) is an affine manifold, and it is easy to see that it is an f -asymptote of

F 1 . □ Example 3.2. Let F be the epigraph of f (x) = x 2 +exp(-x 2 ) in R 2 . Then q(x, y) = y-x 2
is bounded below on F , but does not attain its infimum, so F is not FW. However, F has no f -asymptotes, so it is qFW. □

Motzkin decomposable sets

The proof of the classical Frank-and-Wolfe theorem [START_REF] Frank | An algorithm for quadratic programming[END_REF] exploits the fact that a polyhedron P can be decomposed as P = C + D, where C is a polytope, and D a convex polyhedral cone. This rises the question whether the Frank and Wolfe theorem may be extended to other classes of convex sets F with this type of decomposition. We recall the following

Definition 1. A nonempty closed convex set F in R n is called Motzkin decomposable if there exists a compact convex set C and a closed convex cone D such that F = C + D. We call (C, D) a Motzkin decomposition of F . □
We start with a disclaimer. Not all Motzkin decomposable sets are Frank-and-Wolfe.

Example 4.1. We put D = {x ∈ R 3 :

x 1 ≥ 0, x 2 ≥ 0, x 1 x 2 -x 2 3 ≥ 0}, then D is a closed convex cone,
hence is trivially Motzkin decomposable. But D is not Frank-and-Wolfe. In fact, it is not even quasi-Frank-and-Wolfe, as we now show. Indeed, define q : R 3 → R by q(x) = x 2 1 + (x 3 -1) 2 , then q is quadratic convex and bounded below by 0. In fact, γ = 0 is the infimum of q on D, because q

( 1 k , (k+1) 2 k , 1 + 1 k ) = 2 k 2 → 0, but 0 is not attained on D. In view of Theorem 1, the cone D must have f -asymptotes. □ Example 4.2.
In the same vein consider the quadratic function q : R 3 -→ R defined as q (x, y, z) := (x -1) 2 -y+z and the ice-cream cone

F := { (x, y, z) ∈ R 3 : z ≥ √ x 2 + y 2 } . Clearly q ≥ 0 on F since z ≥ y for every (x, y, z) ∈ F. But the infimum of q on F is 0, since ( 1, k, √ 1 + k 2 ) ∈ F and q ( 1, k, √ 1 + k 2 ) = √ 1 + k 2 -k -→ 0,
and this infimum is not attained, as for (x, y, z) ∈ F, one has either x ̸ = 1 or z ≥ √ 1 + y 2 > y, which both imply q (x, y, z) > 0.

The orthogonal projection of F onto the hyperplane

H := { (x, y, z) ∈ R 3 : y + z = 0 }
is not closed. To see this, notice that the orthogonal projection P on H is given by

P (x, y, z) = ( x, y-z 2 , z-y 2 ) . Consider again ( 1, k, √ 1 + k 2 ) ∈ F , then P ( 1, k, √ 1 + k 2 ) = ( 1, k- √ 1+k 2 2 , √ 1+k 2 -k 2
) ∈ P (F ), but its limit (1, 0, 0) does not belong to P (F ), because

P -1 (1, 0, 0) = {(x, y, z) ∈ R 3 : x = 1, y = z} does not intersect F. □
These examples raise the question whether a Motzkin decomposable set F is Frankand-Wolfe as soon as its recession cone 0 + F is Frank-and-Wolfe. A similar question can be asked for quasi-Frank-and-Wolfe sets. For the latter class things have been simplified due to Theorem 1, and we have the following answer. Proposition 4. Let F be a Motzkin decomposable set. Then F is quasi-Frank-and-Wolfe if and only if its recession cone 0 + F is quasi-Frank-and-Wolfe.

Proof: 1) Suppose 0 + F is qFW. Assume contrary to what is claimed that F has an f -asymptote M . Write M = y + U for the direction space U of M and y ∈ U ⊥ . Let P be the orthogonal projection onto U ⊥ . Then M = P -1 (y). Observe that P (F ) is not closed. Indeed, there exist

x k ∈ F , y k ∈ M , with dist(x k , y k ) → 0. Therefore P x k → y. But y ̸ ∈ P (F ), because if y = P x for some x ∈ F , then x ∈ F ∩ P -1 (y) = F ∩ M , which is impossible due to F ∩ M = ∅.
Since F is Motzkin decomposable, there exist a compact convex C with F = C + 0 + F . Then P (F ) = P (C) + P (0 + F ), while P (F ) = P (C) + P (0 + F ). Since P (F ) ̸ = P (F ), we deduce that P (0 + F ) cannot be closed, and that means 0 + F has an f -asymptote parallel to U , contradicting the fact that 0 + F is a qFW -set.

2) Conversely, suppose F is qFW, but that 0 + F is not qFW. Then 0 + F must have an f -asymptote L by Theorem 1. Suppose L = y + W with W the direction space of L and y ∈ W ⊥ . Let P be the orthogonal projection on W ⊥ , then again P (0 + F ) is not closed. Now by [START_REF] Iusem | Motzkin predecomposable sets[END_REF]Proposition 5] F has an f -asymptote parallel to W , and by Theorem 1 this contradicts the fact that F is qFW. □ Remark 3. The statement of Proposition 4 is no longer correct if one drops the hypothesis that F is Motzkin decomposable. We take F = {(x, y) ∈ R 2 : x > 0, y > 0, xy ≥ 1}, then F , being a hyperbola, has f -asymptotes, but 0 + F is the positive orthant, which does not have f -asymptotes.

An immediate consequence of Proposition 4 is the following Corollary 2. Let F be a Motzkin decomposable qFW-set. Let T : R n → R m be a linear operator. Then T (0

+ F ) is closed in R m . □
Proposition 4 is a strong incentive to look for similar criteria for the Frank-and-Wolfe property in terms of 0 + F . A first partial answer is the following generalization of the classical Frank and Wolfe theorem.

Theorem 2. Let F be a Motzkin decomposable convex set, and suppose its recession cone 0 + F is polyhedral. Then F is Frank-and-Wolfe.

Proof: Write F = C + 0 + F for C compact convex. Now consider a quadratic function q(x) = 1 2 x T Ax + b T x bounded below by γ on F . Hence (2) inf x∈F q(x) = inf y∈C inf z∈0 + F q(y + z) = inf y∈C ( q(y) + inf z∈0 + F y T Az + q(z) ) ≥ γ.
Now observe that for fixed y ∈ C the function q y : z → y T Az + q(z) is bounded below on 0 + F by η = γ -max y ′ ∈C q(y ′ ). Indeed, for z ∈ 0 + F we have

y T Az + q(z) ≥ ( q(y) + inf z ′ ∈0 + F y T Az ′ + q(z ′ ) ) -q(y) ≥ inf y∈C ( q(y) + inf z ′ ∈0 + F y T Az ′ + q(z ′ ) ) -max y ′ ∈C q(y ′ ) ≥ γ -max y ′ ∈C q(y ′ ) = η.
Since q y is a quadratic function bounded below on the polyhedral cone 0 + F , the inner infimum is attained at some z = z(y). This is in fact the classical Frank and Wolfe theorem on a polyhedral cone. In consequence the function f :

R n → R ∪ {-∞} defined as f (y) = inf z∈0 + F y T Az + q(z),
satisfies f (y) = y T Az(y) + q(z(y)) > -∞ for y ∈ C, so the compact set C is contained in its domain. But now a stronger result holds, which one could call a parametric Frank and Wolfe theorem, and which we shall prove in Lemma 2 below. We show that f is continuous relative to its domain. Once this is proved, the infimum (2) can then be written as

inf x∈F q(x) = inf y∈C q(y) + f (y),
and this is now attained by the Weierstrass extreme value theorem due to the continuity of q + f on the compact C. Continuity of f on C is now a consequence of the following Lemma 2. Let D be a polyhedral convex cone and define

f (c) = inf x∈D c T x + 1 2 x T Gx,
where G = G T . Then dom(f ) is a polyhedral convex cone, and hence f is continuous relative to dom(f ).

Proof: If x T Gx < 0 for some x ∈ D, then dom(f ) = ∅, so we may assume for the remainder of the proof that x T Gx ≥ 0 for every x ∈ D. Clearly then, Now observe that if u ≥ 0 satisfies u T Z T GZu = 0, then it is a minimizer of the quadratic function u T Z T GZu on the cone u ≥ 0, hence Z T GZu ≥ 0 by the Kuhn-Tucker conditions. Therefore we can write the set P = {u ∈ R p : u ≥ 0, u T Z T GZu = 0} as

dom(f ) = { c : c T x ≥ 0 for every x ∈ D such that x T Gx = 0 } .

Now by the

P = ∪ I⊂{1,...,p} P I ,
where the P I are the polyhedral convex cones

P I = {u ≥ 0 : Z T GZu ≥ 0, u i = 0 for all i ∈ I, (Z T GZu) j = 0 for all j ̸ ∈ I}.
For every I ⊂ {1, . . . , p} choose m I generators u I1 , . . . , u Im I of P I . Then,

dom(f ) = { c : c T Zu ≥ 0 for every u ∈ P } (3) = { c : c T Zu ≥ 0 for every u ∈ ∪ I⊂{1,...,p} P I } = ∩ I⊂{1,...,p} { c : c T Zu ≥ 0 for every u ∈ P I } = ∩ I⊂{1,...,p} { c : c T Zu Ij ≥ 0 for all j = 1, . . . , m I } .
Since a finite intersection of polyhedral cones is polyhedral, this proves that dom(f ) is a polyhedral convex cone. To conclude, continuity of f relative to its domain now follows from [12, Thm. 10.2], since f is clearly concave and upper semicontinuous. □ Remark 4. The proof includes the case when x T Gx > 0 for every x ∈ D \ {0}. In that case one has P I = {0} for every I ⊂ {1, ..., p}, and therefore {c : c T Zu ≥ 0 for every u ∈ P I } = R n , so that the equality (3) still holds and reduces to dom(f ) = R n .

Remark 5. We refer to Banks et al. [1, Thm. 5.5.1 (4)] or Best and Ding [START_REF] Best | On the continuity of the minimum in parametric quadratic programs[END_REF] for a related result in the case where G ⪰ 0. For the indefinite case see also Tam [START_REF] Tam | Continuity of the optimal value function in indefinite quadratic programming[END_REF]. Remark 6. The example in Remark 3 shows that Theorem 2 is no longer true if F is not Motzkin decomposable.

A second partial answer to the question whether the Frank-and-Wolfe property of 0 + F implies that of F is given in the following Proposition 5. Let F have a Motzkin decomposition of the form F = P + 0 + F with P a polytope. If 0 + F is Frank-and-Wolfe, then so is F .

Proof: Consider a quadratic q which is bounded below on F . Splitting the infimum according to (2), we see as in the proof of Theorem 2 that every q y : z → y T Az + q(z) is quadratic and bounded below on 0 + F , and since 0 + F is Frank-and-Wolfe by hypothesis, the inner infimum in ( 2) is attained at z(y) ∈ 0 + F . As in the proof of Theorem 2 define f (y) = inf z∈0 + F q y (z) = q y (z(y)), then f is the infimum of the family of affine functions y → y T Az +q(z) on the polytope P , hence is lower semi-continuous on P by [12, Theorem 10.2]. But then y → q(y) + f (y) is lower semi-continuous on P , and by compactness of P the outer infimum y ∈ P in ( 2) is therefore attained. □

q-Asymptotes

The discussion in Section 3 shows that the absence of f -asymptotes is only a necessary condition for the Frank-and-Wolfe property. In this section we shall develop a related concept of asymptotes, where we replace affine (flat) surfaces by quadratic surfaces. We start with the following Definition 2. A quadric in R n , also called a quadratic surface or a conic, is a set of the form Klee [9] and in the sense of Section 3. Now we can give the central definition of this section.

Q = {x ∈ R n : 1 2 x T Ax + b T x + c = 0} with A = A T ̸ = 0. □ Definition 3. A nonempty closed set A is said to be asymptotic to the nonempty closed convex set F if A ∩ F = ∅ and dist(F, A) = 0. □ If A is an affine subspace of R n , then A is asymptotic to F iff it is an f -asymptote in the sense of
Definition 4. The quadric Q = {x ∈ R n : q(x) = 1 2 x T Ax + b T x + c = 0} is a q-asymptote of the closed convex subset F of R n if F ∩Q = ∅ and dist(Q×{0}, {(x, q(x)) : x ∈ F }) = 0. □
The condition means F ∩Q = ∅, and that there exist x k ∈ F and y k with q(y k ) = 0 such that x k -y k → 0 and q(x k ) → 0. This shows that the notion of a q-asymptote is invariant under an affine change of coordinates in R n , hence is a concept of affine geometry. The condition could also be expressed as follows: The quadric Q × {0} in R n+1 is asymptotic to graph F (q) := graph(q) ∩ (F × R) in the sense of Definition 3.

Remark 7.

If Q is a q-asymptote of F , then Q is clearly asymptotic to F , but the converse is not true in general. To see this consider the following example. Let F = {(x, y) ∈ R 2 : x ≥ 0, y ≥ 0} be the positive orthant, and let q(x, y)

= xy + 1, then Q = {(x, y) ∈ R 2 : q(x, y) = 0} = {(x, y) : xy = -1} is a hyperbola with F ∩ Q = ∅. We have dist(F, Q) = 0, because (-1 n , n) ∈ Q and (0, n) ∈ F , so Q is asymptotic to F in the sense of definition 3. But Q is not a q-asymptote of F , because the sets Q × {0} = {(x, -1 x , 0) : x ̸ = 0} and graph(q) ∩ (F × R) = {(x, y, xy + 1) : x ≥ 0, y ≥ 0} cannot be close. □ Remark 8. Consider the quadric Q : q(x) = x 2 1 + • • • + x 2 n-1 = 0, then Q = {x ∈ R n : q(x) = 0}
is the x n -axis. Suppose the x n -axis is an f -asymptote of a closed convex set F . This is equivalent to Q being asymptotic to F . However, we argue that Q is then even a q-asymptote of F in the sense of definition 4. Namely, we have

Q × {0} = {(0 n-1 , ξ, 0) : ξ ∈ R} ⊂ R n+1 and graph(q) ∩ (F × R) = {(x, q(x)) : x ∈ F } = {( x, n-1 ∑ i=1 x 2 i ) : x ∈ F } . Now given ϵ > 0 choose x ∈ F and t ∈ R such that ∥x -(0 n-1 , t)∥ 2 < ϵ 2 , which is possible because dist(Q, F ) = 0. (Naturally, we could take t = x n ). Then q(x) = x 2 1 + • • • + x 2 n-1 < ϵ 2 and (x n -t) 2 < ϵ 2 . Therefore ∥(0, t, 0) -(x, q(x))∥ 2 ≤ ∥x -(0 n-1 , t)∥ 2 + q(x) 2 ≤ ϵ 2 + q(x) 2 < ϵ 2 + ϵ 4 .
This shows the claim. We can generalize this to a proof that any flat M which is an f -asymptote is also a q-asymptote when interpreted as a quadric: Proposition 6. Let F be closed convex in R n , and let Q = {x ∈ R n : q(x) = 0} be a quadric. Suppose Q is flat, that is, degenerates to an affine subspace. Then Q is a qasymptote of F in the sense of Definition 4 if and only if it is an f-asymptote of F in the sense of [START_REF] Klee | Asymptotes and projections of convex sets[END_REF]. Moreover, for any f -asymptote M of F there exists a quadric representation of M as M = {x ∈ R n : q(x) = 0}, and then M is also a q-asymptote of F .

Proof:

The fact that Q is an affine subspace of dimension k ≤ n -1 means that one can find affine coordinates in R n such that Q has the form

Q = {x ∈ R n : x 2 k+1 + • • • + x 2 n = 0} = R k × {0 n-k }.
Since being a q-asymptote implies being asymptotic, and since for an affine subspace this coincides with being an f -asymptote, we have but to prove the opposite implication.

Assume therefore that Q is an f -asymptote of

F , i.e., F ∩ Q = ∅ and dist(F, Q) = 0. We have to show that Q × {0} = {(x, 0) : x ∈ Q} is asymptotic to graph(q) ∩ (F × R) = {(y, q(y)) : y ∈ F }. Clearly the two sets are disjoint. Splitting x = (x ′ , x ′′ ), y = (y ′ , y ′′ ) ∈ R k × R n-k , we have q(y) = y ′′2 k+1 + • • • + y ′′2 n = ∥y ′′ ∥ 2 . Now pick x r ∈ Q, y r ∈ F with dist(x r
, y r ) → 0 as r → ∞. Then x r = (x ′r , x ′′r ) = (x ′r , 0) and y r = (y ′r , y ′′r ), hence ∥y ′′r ∥ 2 ≤ ∥x r -y r ∥ 2 → 0, and this implies q(y r ) = ∥y ′′r ∥ 2 → 0. Hence Q is a q-asymptote of F , because it now follows that ∥(x r , 0) -(y r , q(y r ))∥ → 0. □

This result shows that the notion of a q-asymptote is a natural extension of Klee's concept of f -asymptotes. We move from flat asymptotes to quadratic asymptotes. We are now ready to state the principal result of this section.

Theorem 3. A convex set F is Frank-and-Wolfe if and only if it is closed and has no q-asymptotes.

Proof: 1) Assume that there exists a quadratic function q : R n → R which is bounded below on F , but does not attain its infimum on F . We have to show that F has a qasymptote. Assume without loss that the infimum of q on F is 0. Since there exists x ∈ F with q(x) > 0 and y ̸ ∈ F with q(y) = 0, the set

Q = {x ∈ R n : q(x) = 0} is a quadric in R n .
Note that if F is not qFW, then by Theorem 1 the set F has an f -asymptote, and then has also a q-asymptote by Proposition 6. So we can assume that F is qFW, and by Proposition 1 we therefore know that orthogonal projections of F are closed.

We clearly have F ∩Q = ∅, so we have to show that dist({(x, q(x)) : x ∈ F }, Q×{0}) = 0. Since the statement we have to prove is invariant under an affine change of coordinates in R n , we may assume that the quadric Q is given by one of the following equations:

(4) Q : q(x) = p ∑ i=1 x 2 i - r ∑ i=p+1 x 2 i + γ = 0, (p < r ≤ n)
where γ ∈ {0, 1} if Q is a center quadric with 0 as its center, or

Q : q(x) = p ∑ i=1 x 2 i - r ∑ i=p+1 x 2 i + x r+1 = 0 (p ≤ r < n) if Q is a paraboloid. a) (5) 
Let us first discuss the easier case of a paraboloid [START_REF] Frank | An algorithm for quadratic programming[END_REF]. Since q is a quadratic function, it satisfies a Łojasiewicz inequality at infinity. In other words, following [15, Theorem 2.1] there exist constants δ > 0, c > 0 and a Łojasiewicz exponent α > 0 at infinity such that for every x ∈ R n with |q(x)| < δ we have

|q(x)| ≥ c dist ( x, Q ) α ,
where

Q = Q ∪ Q 1 with Q = {x ∈ R n : q(x) = 0} , Q 1 = { x ∈ R n : ∂ ∂x r+1 q(x) = 0 } .
This result uses the fact that q is a monic polynomial of degree m = 1 in the variable x r+1 . Since ∂/∂x r+1 q(x) = 1, the set Q 1 is empty, hence we obtain

|q(x)| ≥ c dist (x, Q) α for |q(x)| < δ. Now choose a sequence x k ∈ F with q(x k ) → 0. Then from some k onward, q(x k ) ≥ c dist(x k , Q) α → 0, which proves dist({(x, q(x)) : x ∈ F }, Q × {0}) = 0.
This settles the case where Q is a paraboloid. b) Let us next consider the more complicated case where Q is a center quadric. Choose a sequence x k ∈ F such that q(x k ) → 0. We want to show dist(x k , Q) → 0, at least for a subsequence. Assume on the contrary that dist(x k , Q) > d > 0 for every k. Write x k = (ξ k 1 , . . . , ξ k n ), and note that ∥x k ∥ → ∞. We now have two principal cases. Case I is when (ξ k 1 , . . . , ξ k r ) → 0, while the part (ξ k r+1 , . . . , ξ k n ) on which q given by (4) does not depend satisfies ∥(ξ k r+1 , . . . , ξ r n )∥ → ∞. In this case we necessarily have r < n. Case II is when there exists i ∈ {1, . . . , r} such that ξ k i → ξ i ̸ = 0 for a subsequence k ∈ K, including the possibilities ξ i = ±∞.

We start by discussing case II. Suppose ξ i is finite and the signature of i is negative (i.e. i ∈ {p + 1, . . . , r}). Then there must also exist another index with positive signature j ∈ {1, . . . , p} say, for which ξ k j → ξ j ̸ = 0. (This is because in (4) the -ξ 2 i and ξ 2 j have to sum to γ ≥ 0. Therefore if there is a non-vanishing contribution from an index i with negative signature, there is necessarily also one from an index j with positive signature.) We may without loss assume that this contribution with positive signatures comes from missing is indeed an argument which allows to infer from f (x k ) → 0 for x k ∈ F that also dist(x k , Q) → 0, and for higher order polynomials such an argument may not exist.

Example 5.1. To illustrate Theorem 3 we consider the set F = {(x, y) ∈ R 2 : y ≥ x 2 } and claim that it is Frank-and-Wolfe. We check this by showing that F has no q-asymptotes. Suppose Q = {q = 0} is a q-asymptote of F . If Q is a hyperbola or consists of two lines, then F itself has lines as asymptotes, which is impossible, because F is a parabola. It is equally impossible that Q is an ellipse, so Q must be a parabola, too. But it is intuitively clear that no other parabola can be a q-asymptote of y = x 2 .

To prove this rigorously, suppose q(x, y) = ax 2 + bxy + cy 2 + dx + ey + f . By the definition of a q-asymptote there exist

(x k , y k ) ∈ Q and (x k , x 2 k ) ∈ F , such that ∥(x k , x 2 k )- (x k , y k )∥ → 0 and q(x k , x 2 k ) → 0.
Picking a subsequence, we may without loss assume

x k → +∞. Then q(x k , x 2 k ) = ax 2 k + bx 3 k + cx 4 k + dx k + ex 2 k + f → 0
implies successively c = 0, then b = 0, then a = -e, then d = 0 and f = 0, and finally a ̸ = 0. Hence Q = {(x, y) : a(x 2 -y) = 0}, but this is the boundary curve of F , which contradicts

F ∩ Q = ∅. □
Remark 7 suggests an equivalent geometric characterization of q-asymptotes, which we now develop. Let Q = {x ∈ R n : q(x) = 0} be a quadric and consider the associated one-parameter family Q = {Q α } α∈R of quadrics Q α = {x ∈ R n : q(x) -α = 0}. Note that Q is a geometric object, as an affine change of coordinates leads to the same family of sets. Informally, we intend to show that Q ∈ Q is a q-asymptote of the closed convex set F if and only if Q, F are asymptotic, and no other element Q ′ of the bundle Q can be squeezed in between F and Q.

Definition 5. Let F, Q be closed sets with F ∩ Q = ∅ and dist(F, Q) = 0. We say that the closed set Q ′ is squeezed in between F and Q if F ∩ Q ′ = ∅ = Q ∩ Q ′ and if every segment [x, y] with x ∈ F and y ∈ Q contains a point z ∈ Q ′ , i.e., [x, y] ∩ Q ′ ̸ = ∅. □
We now have the following Proposition 7. Let F be closed convex and let Q = {x ∈ R n : q(x) = 0} be a quadric. Then Q is a q-asymptote of F if and only if Q is asymptotic to F and no other member Q ′ of the bundle Q can be squeezed in between F and Q. In other words, Q is a tight quadric asymptote to F .

Proof: 1) Suppose Q is a q-asymptote of F . Then there exist

x k ∈ F , y k ∈ Q such that x k -y k → 0 and q(x k ) → 0. Clearly Q is asymptotic to F . Since F ∩ Q = ∅ and F is connected, we either have F ⊂ {x : q(x) > 0} or F ⊂ {x : q(x) < 0}. Assume without loss that F ⊂ {x : q(x) > 0}. Suppose Q ′ = {x : q(x) = α} can be squeezed in between Q and F . Since Q ∩ Q ′ = ∅, we have α ̸ = 0.
There are two cases to be discussed. Suppose first that α < 0. Then we find a point z k in the open segment (x k , y k ) such that q(z k ) = α < 0. But q(x k ) > 0, hence by the mean value theorem there exists another point v k in the open segment (x k , z k ) with q(v k ) = 0. Now we repeat the argument on [x k , v k ], which must also contain a point with value q = α. That leads to a contradiction, because we thereby find a third root of q -α on the segment [x k , y k ], which is impossible as q is quadratic. In consequence the squeezing value must be α > 0.

Suppose therefore that the quadric Q ′ which may be squeezed in between F and Q has α > 0. Then we have the following situation on the segment [x k , y k ]. There exists z k ∈ (x k , y k ) with q(z k ) = α > 0, while q(y k ) = 0 and q(x k ) → 0, 0 < q(x k ) ≪ α. Let L k be the line generated by [x k , y k ]. Since q is a quadratic function on L k , there exists a point v k ∈ L k preceding x k where q(v k ) = 0. Here preceding means that

x k ∈ [v k , y k ]. Since F ⊂ {q > 0}, we have v k ̸ ∈ F . In particular, F ∩ L k is contained in the segment [v k , x k ]. But v k ∈ Q, x k ∈ F , hence the segment [v k , x k ]
must also contain an element w k of Q ′ , i.e., with q(w k ) = α, and that is impossible because q is quadratic. Namely, the arrangement on the line

L k is now v k < w k < x k < z k < y k with q(y k ) = 0, q(z k ) = α > 0, q(x k ) ≪ α, q(w k ) = α, q(v k ) = 0. But q |L k
is concave, so this is impossible. This proves that Q ′ ∈ Q could not possibly be squeezed in between F and Q.

2) Conversely, suppose Q is asymptotic to F and is tight in the sense that no other member Q ′ of the bundle Q can be squeezed in between F and Q. Since F ∩ Q = ∅, we may assume F ⊂ {x : q(x) > 0}. Let γ := inf x∈F q(x). We claim that γ = 0. For suppose we had γ > 0 then on choosing 0 < α < γ we find that Q ′ = {x : q(x)-α = 0} is squeezed in between F and Q, which is impossible. Hence γ = 0. Now pick x k ∈ F with q(x k ) → 0 and y k ∈ Q. Using the argument of part 1) of the proof of Theorem 4, it follows that

y k -x k → 0. Hence (x k , q(x k )) -(y k , 0) → 0. That shows dist(Q × {0}, graph F (q)) = 0, hence Q is a q-asymptote of F . □ Remark 11.
In view of this new characterization of q-asymptotes we have the following description of Frank-and-Wolfe sets. Whenever Q is a quadric asymptote of a Frank and Wolfe set F , then there exists another quadric Q ′ in the bundle Q associated with Q that can be squeezed in between F and Q. We could say that Q ′ is a tighter asymptote than Q. As this argument can be repeated, the FW -set F has no tightest asymptote among the quadrics in Q.

Remark 12. It is instructive to give a direct argument for the fact that an f -asymptote in the sense of Klee is tight in the sense of the previous remark, hence is a q-asymptote.

To see this, suppose M = {x ∈ R n : Ax -b = 0} is an f -asymptote of F and represent M as the quadric M = {x : q(x) = ∥Ax -b∥ 2 = 0} = Q. Consider the associated bundle Q = {Q α } and suppose some Q α with α ̸ = 0 can be squeezed in between Q = M and F . Clearly this means α > 0, as the Q α ′ with α ′ < 0 are empty. But q is convex, hence F ⊂ {x : q(x) = ∥Ax -b∥ 2 > α}. Indeed, suppose there exists x ∈ F with q(x) < α.

Pick y ∈ M , then q(y) = 0. Since {z : q(z) < α} is a convex set containing x, y, it also contains the segment, [x, y] ⊂ {z : q(z) < α}. But since Q α is by assumption squeezed in between F and M , there exists z ∈ [x, y] with q(z) = α, a contradiction. So we have shown F ⊂ {x : q(x) > α}. But now we arrive at a contradiction with the fact that dist(M, F ) = 0, as the latter implies inf x∈F ∥Ax -b∥ = 0.

Generalized linear complementarity problem

Let F be a closed convex cone in R n , let A = A T ∈ R n×n , and b ∈ R n . Then we consider the following generalized linear complementarity problem on F with data (A, b): Proof: Let x 0 be a feasible solution, then (Ax 0 + b) T x ≥ 0 for every x ∈ F . Since F is a cone we have 2x 0 ∈ F , and (2Ax 0 + 2b) T x ≥ 0 for every x ∈ F . Due to feasibility the quadratic function q(x) = (Ax + 2b) T x is now bounded below by 2γ on F , and since F is Frank-and-Wolfe, there exists x * ∈ F such that (7) (Ax + 2b) T x ≥ (Ax * + 2b) T x * for every x ∈ F . For x ∈ F and 0 < t ≤ 1 we have x = x * + t(x -x * ) ∈ F , hence on substituting x in [START_REF] Hirsch | Fixed charge problems[END_REF] and expanding, we get t(Ax * + 2b) T (x -x * ) + t(x -x * ) T Ax * + t 2 (x -x * ) T A(x -x * ) ≥ 0.

Dividing by t and letting t → 0 gives 2(Ax * +b) T (x-x * ) ≥ 0, hence (Ax * +b) T (x-x * ) ≥ 0 for every x ∈ F . Putting x = 0 ∈ F we get (Ax * + b) T x * ≤ 0, while putting x = 2x * ∈ F gives (Ax * + b) T x * ≥ 0, so together we get complementarity Ax * + b ⊥ x * . From that follows (Ax * + b) T (x -x * ) = (Ax * + b) T x ≥ 0 for all x ∈ F , hence x * is a solution of (6). □

For sufficient conditions guaranteeing inf x∈F (Ax + b) T x > -∞ we refer to [START_REF] Gowda | Minimising quadratic functionals over closed convex cones[END_REF] and the references given there. Links with the linear complementarity problem can already be found in the original work [START_REF] Frank | An algorithm for quadratic programming[END_REF].

  Farkas-Minkowski-Weyl theorem (cf.[START_REF] Rockafellar | Convex Analysis[END_REF] Thm. 19.1] or[START_REF] Schrijver | Theory of Linear and Integer Programming[END_REF] Cor. 7.1a]) the polyhedral cone D is the linear image of the positive orthant of a space R p of appropriate dimension, i.e. D = {Zu : u ∈ R p , u ≥ 0}. This implies dom(f ) = {c : c T Zu ≥ 0 for every u ≥ 0 such that u T Z T GZu = 0}.

( 6 )Theorem 4 .

 64 Find x * ∈ F such that (Ax * + b) T x ≥ 0 for every x ∈ F , and Ax * + b ⊥ x * . Every x * ∈ F satisfying (6) is called a solution of the problem. We say that the generalized linear complementarity problem (6) is feasible if γ = inf x∈F (Ax + b) T x > -∞ and if there exists x 0 ∈ F such that (Ax 0 + b) T x ≥ 0 for every x ∈ F . Suppose problem (6) is feasible. If F is a Frank-and-Wolfe cone, then (6) has a solution x * .
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j = 1. A similar argument applies when ξ i = ±∞. We now have two subcases. Case II.1 is when ξ k 1 → ξ 1 ∈ (0, +∞], case II. 2 is when ξ k 1 → ξ 1 ∈ [-∞, 0). Let us discuss case II.1. Shrinking d if need be, we assume ξ 1 -d > 0, and then also ξ k 1 > d for all k large enough. (This works also for ξ 1 = +∞). Now define

Therefore the sequence g k converges to 0 in the space of quadratic polynomials in the variable t. But that implies its coefficients tend to 0, a contradiction with

, because the coefficient of t 2 is 1 and does not tend to 0. That is a contradiction in case II. 1, and therefore settles that case. Now consider case II. 2. Here we arrange ξ 1 + d < 0, and then also ξ k 1 + d < 0 for k sufficiently large, and that works also for ξ 1 = -∞. So here f k is positive and decreasing on I k . We use an analogous argument, and get a similar contradiction. That settles case II.

c) It remains to discuss case I. Note that here we must have γ = 0, so Q is a cone (in the sense of quadric theory). Suppose r > 0, then the sublevel set {x ∈ F : q(x) ≤ r} is nonempty and unbounded. Fix x in this set, then q(x) = q(x + td) for every d of the form d = (0, . . . , 0, ξ r+1 , . . . , ξ n ), because q does not depend on the coordinates ξ r+1 , . . . , ξ n . Now let P be the orthogonal projection on d ⊥ , then P (F ) is convex and, in addition, closed by what was observed at the beginning of the proof. But the infimum of q on P (F ) is still 0, and it is not attained. With regard to the form (4) we have therefore reduced the dimension n by 1, but the quadric is still of the form (4) with the same r. Continuing in this way, we end up with the case where r = n in (4). But then we are in case II, because remember that case I can only occur when r < n. That settles case I and therefore completes the first part of the proof.

2) Let us now prove that if F has a q-asymptote Q, then it is not Frank-and-Wolfe. From the definition of a q-asymptote we have F ∩ Q = ∅. We may therefore assume without loss that F ⊂ {x ∈ R n : q(x) > 0}, because F is connected and q is continuous. Now there exists a sequence x k ∈ F and a sequence y k ∈ Q such that dist((x k , q(x k )), (y k , 0)) → 0. That means 0 is the infimum of q on F , and it is not attained. □ Remark 9. One might be tempted to guess that F is Frank-and-Wolfe iff there is no quadratic Q which is asymptotic to F . The example of the positive orthant in remark 7 shows that this guess is incorrect. The corresponding condition is too strong.

Remark 10. The crucial point in the first part of the proof of Theorem 3 is that dist(Q, F ) = 0 is inferred from the fact that 0 is in the closure of the value set {q(x) : x ∈ F }. This is obviously strongly linked to the fact that q is quadratic, and we now indicate why there is little hope for an extension of the argument to higher degree polynomials. Consider for instance f (x, y, z) = (y 2 + (xy -1) 2 )z, then Q = {(x, y, z) : f (x, y, z) = 0} = {z = 0} is an affine manifold. We have f (k, 1 k , 1) → 0, but dist((k,

as k → ∞. Putting F = {(x, y, 1) ∈ R 3 : xy ≥ 1}, we see that f does not attain its infimum 0 on F , yet the affine manifold Q = {f = 0} is not asymptotic to F . What is