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We developed a six-band k · p model that describes the electronic states of monolayer transition
metal dichalcogenides (TMDCs) in K-valleys. The set of parameters for the k ·p model is uniquely
determined by decomposing tight-binding (TB) models in the vicinity of K±-points. First, we
used TB models existing in literature to derive systematic parametrizations for different materials,
including MoS2, WS2, MoSe2 and WSe2. Then, by using the derived six-band k · p Hamiltonian
we calculated effective masses, Landau levels, and the effective exciton g-factor gX0 in different
TMDCs. We showed that TB parameterizations existing in literature result in small absolute values
of gX0 , which are far from the experimentally measured gX0 ≈ −4. To further investigate this issue
we derived two additional sets of k · p parameters by developing our own TB parameterizations
based on simultaneous fitting of ab-initio calculated, within the density functional (DFT) and GW
approaches, energy dispersion and the value of gX0 . We showed that the change in TB parameters,
which only slightly affects the dispersion of higher conduction and deep valence bands, may result
in a significant increase of |gX0 |, yielding close-to-experiment values of gX0 . Such a high parameter
sensitivity of gX0 opens a way to further improvement of DFT and TB models.

PACS numbers: 73.20.-r, 73.21.Fg, 73.63.Hs, 78.67.De

I. INTRODUCTION

Monolayers of transition metal dichalcogenides
(TMDCs) have attracted recently much attention due to
their exceptional properties, such as coupling of spin and
valley degrees of freedom, which allows for the valley
polarization with a circularly polarized light in these
materials [1–6]. Recent magneto-photoluminescence
experiments revealed the significant Zeeman splitting
of emission lines associated with optical recombination
of excitons and trions in different valleys. The effective
exciton g-factors of this “valley Zeeman effect” in a
magnetic field directed normal to a monolayer plane were
found to be gX0 ≈ −4 for a wide range of investigated
materials, including selenides [7–12], sulphides [13, 14]
and tellurides [15].

The multi band k ·p method is perfectly suited for the-
oretical investigation of magneto-optical and transport
effects, including Zeeman effect, optical absorption and
photogalvanics [16, 17]. The available two-band k·p mod-
els describing electronic spectra in TMDCs [18–20] ac-
count for the bottom conduction and topmost valence
bands and are parameterized by density functional the-
ory (DFT) calculations. The simple two-band model
is, however, insufficient for calculation of exciton Zee-
man effect since the exciton g-factor gX0 vanishes in the
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two-band k · p approximation [11]. Therefore to ob-
tain nonzero gX0 additional terms describing contribu-
tions of remote bands should be included in the two-band
k ·p model [19, 21], which make the model less transpar-
ent. Moreover parametrization of the k · p model by
fitting the DFT band structure only in the vicinity of
distinct points of the Brillouin zone is less reliable and
allows for a much freedom in the choice of parameters.

In this work we use an alternative approach based on
the idea proposed in Ref. [11]. This approach comprises
three steps, namely, (i) use DFT-based calculations of
electronic states in TMDCs as a starting point, (ii) use
atomistic tight-binding (TB) model to fit the electronic
spectrum and wave functions along the high-symmetry
paths of the Brillouin zone, and (iii) derive k · p Hamil-
tonian by decomposing the TB model in the vicinity of
a given wave vector in the Brillouin zone. As a result,
we obtain a multi band k · p Hamiltonian (the number
of bands is equal to the number of atomic orbitals in-
cluded in the TB model) with a set of parameters that are
uniquely determined by the TB parametrization. This
Hamiltonian can be further used for calculating the val-
ley Zeeman effect, Landau levels, etc.

As a starting point we use several existing eleven-band
TB models [22–26]. These models include d-type or-
bitals of metal atoms and p-type orbitals of chalcogen
atoms, and capture all symmetries of the studied sys-
tem. The resulting k · p Hamiltonian, which describes
dispersion of the bottom conduction and topmost va-
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lence bands, contains six bands that have even parity
with respect to mirror reflection in the monolayer plane.
We present a systematic parametrization of the six-band
k ·p Hamiltonian by expansion of TB Hamiltonians [22–
26] in the vicinity of K± points of the Brillouin zone
for different materials (MoS2, WS2, MoSe2, WSe2) and
different TB models. We also do the whole three-step
procedure on our own, i.e., perform post-DFT calcula-
tions by applying GW formalism to obtain reliable band
gaps and accurate band dispersion, fit it with the TB
model and do the k · p decomposition, which allows us,
as a result, to obtain an independent k · p parameteri-
zation. We want to stress the novelty of using GW set
of data to extract TB parameters since in previous stud-
ies the main focus was made on DFT calculations using
mainly local or semi-local exchange-correlation function-
als [22–24], whereas hybrid functional was also used [25]
to partially correct the severe underestimation of band
gap values usually observed at the DFT level for MoS2

monolayers, see Ref. [27] for a recent review. The use of
GW correction strongly affects the effective charge car-
rier masses [28, 29] too.

Then, we use the derived six-band k ·p Hamiltonian to
calculate effective masses, Landau levels, and the effec-
tive exciton g-factor gX0 in different TMDCs. We ana-
lyze the main contributions to gX0 , which result from the
mixing with excited conduction and deep valence bands.
We show that the calculated values of gX0 and effective
masses vary in a wide range for different TB parame-
terizations. The calculated values of gX0 for available
in literature TB models (|gX0 | . 1) are rather far from
experimental values. However using our DFT+GW cal-
culations and the TB fitting procedure we were able to
find additional k · p parameterization sets, which well
describe the experimental exciton g-factor (gX0 ≈ −4),
as well as conduction and valence band effective masses
and the wave functions coefficients. This result underlies
the importance of the careful choice for the DFT starting
point calculations and TB parameterizations: along with
effective masses and energy gaps the g-factor value may
serve as a test for improving both the DFT calculations
and TB models.

II. EFFECTIVE KP-HAMILTONIAN

As a starting point for construction of an effective k ·p-
Hamiltonian we will use eleven-band tight-binding mod-
els developed in Refs. 22–26. These tight-binding models
include three p-type orbitals on each of the two chalco-
gen atoms (X) and five d-type orbitals on a metal atom
(M). The electron wave function within the tight-binding
approximation is presented as a linear combination of

atomic orbitals φ
(a)
j [11]

Ψ
(n)
k (r) =

∑
a,l,j

eikRa,lC
(a)
j φ

(a)
j (r −Ra,l) , (1)

where n is a number of an electronic band, k is a wave
vector, a = M,X denotes the type of an atom, l runs
through the atoms of a given type, j enumerates the set
of orbitals, Ra,l gives the position of atoms in a two-

dimensional lattice, and C
(a)
j are coefficients.

The basis orbitals of the eleven-band tight-binding
model are [22–26]

φ
(a)
j = {dz2 , d+, d−, p+, p−, pz,A,

dxz, dyz, px,A, py,A, pz,S} , (2)

where d± = dx2−y2±2idxy, p± = px,S± ipy,S , dα denotes
the orbital with a d-like symmetry of the M atom and
pβ,S = (pβ,t + pβ,b)/

√
2, pβ,A = (pβ,t − pβ,b)/

√
2 are the

symmetric and asymmetric combinations of the p-type
orbitals of the top (t) and bottom (b) X atoms in the unit
cell, x and y axes lie in the monolayer plane, and z is the
monolayer normal. The spin orbit interaction between
electron spin and orbital momenta of atomic orbitals [23,
24] is neglected in this work.

If the z → −z mirror symmetry is conserved, i.e. for a
free-standing monolayer in the absence of external elec-
tric field and strain, the Hamiltonian, which describes
the energy spectrum of a monolayer electron with a wave
vector k, written in the basis Eq. (2) has the form

H(k) =

(
HE 0
0 HO

)
. (3)

HereHE is the 6×6 block acting on the orbitals with even
with respect to z → −z symmetry, and HO is the 5×5
block acting on the orbitals with odd symmetry. The ex-
act form of blocks HE and HO depends on a particular
tight-binding model [22–26]. It is known that the Bloch
functions of the bottom conduction and topmost valence
bands, which are of the main interest in this work, are
even with respect to z → −z reflection [18, 20], and there-
fore these bands are described by the HE block. We note
that magnetic field normal to a monolayer does not break
the parity of wave functions, and hence we do not need
the HO block in the calculation of gX0 . We also note,
that the mixing of the HE and HO blocks by a perturba-
tion that breaks z → −z symmetry does not affect gX0

in the first order in this perturbation.
To construct an effective k ·p Hamiltonian in the vicin-

ity of K± = (±4π/3a0, 0) points, where a0 is the lattice
constant, we will decompose the tight-binding Hamilto-
nian HE(k) over a small wave vector q = k −K±. Up
to the second-order terms this decomposition yields

H±E(q) ≈ HE(K±) +
∑
α=x,y

∂HE
∂kα

(K±)qα+

+
1

2

∑
α,β=x,y

∂2HE
∂kα∂kβ

(K±)qαqβ . (4)

Electron wave functions at K± valleys of MX2 trans-
form according to irreducible representations (irreps) of
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the C3h point group. We denote six wave functions that

diagonalize H+
E(q) at q = 0 as Ψ

(v−5)
E′1

, Ψ
(v−4)
A′ , Ψ

(v−3)
E′2

,

Ψ
(v)
A′ , Ψ

(c)
E′1

, Ψ
(c+2)
E′2

, where a superscript names the elec-

tronic band and a subscript denotes the corresponding
irreducible representation (A′, E′1 and E′2), see Tab. I.
Note that in addition to two conduction (c and c + 2)
and two valence (v and v − 3) bands, known from the
four-band k · p models [18, 20], the six-band model con-
tains two deep valence bands v − 4 and v − 5, which
transform at K+-point via A′ and E′1 representations,
respectively.

In the new basis H±E(q) can be written as

H±E(q) = H±1 (q) +H±2 (q) , (5)

where the first term contains linear in q terms:

H+
1 (q) =


Ev−5 δ7q− δ6q+ δ4q− 0 δ2q+
δ7q+ Ev−4 δ5q− 0 δ3q+ δ1q−
δ6q− δ5q+ Ev−3 γ2q+ γ5q− 0
δ4q+ 0 γ2q− Ev γ3q+ γ4q−

0 δ3q− γ5q+ γ3q− Ec γ6q+
δ2q− δ1q+ 0 γ4q+ γ6q− Ec+2

 ,

(6)
and the second one

[
H±2 (q)

]
nl

=
~2q2

2m′n
δnl , n, l = 1..6 (7)

is a diagonal matrix with quadratic in q elements. In
Eqs. (6), (7) En (n = c + 2, c . . . ) are the band energies
at K±-points, γj and δj are parameters, q± = qx ± iqy,
and q2 = q2x + q2y. The effective masses m′n describe
contributions to the band dispersion arising from the
mixing with remote bands, which are not present in the
k·p model [11]. Note that in the decomposition of the off-
diagonal elements of the tight-binding Hamiltonian (4)
we retained only the linear in q terms. The phases of
wave functions at K+-point (Tab. I) are chosen in such a
way that parameters γj and δj are real. Parameters of the
k · p Hamiltonians (6) and (7) for different parametriza-
tions, materials and tight-binding models are listed in
Tab. III of the Appendix A.

To derive the k · p Hamiltonian H−1 at the K−-point
of the Brillouin zone one should replace q+ by q− and
vice versa in Eq. (6) [30]. Note that at k = K− basis
wave functions Ψ(c) and Ψ(v−5) transform according to
E′2 irreducible representation whereas Ψ(c+2) and Ψ(v−3)

transform according to E′1.

The effective masses of the main conduction and va-
lence bands in the framework of k · p model are

1

mc
=

1

m′c
+

1

m∗c
,

1

mv
=

1

m′v
+

1

m∗v
, (8)

where

1

m∗c
=

2

~2

(
γ25

Ec − Ev−3
+

γ23
Ec − Ev

+ (9)

+
γ26

Ec − Ec+2
+

δ23
Ec − Ev−4

)
,

1

m∗v
=

2

~2

(
γ22

Ev − Ev−3
+

γ23
Ev − Ec

+ (10)

+
γ24

Ev − Ec+2
+

δ24
Ev − Ev−5

)
result from the mixing of electronic bands described by
Hamiltonian (6), whereas m′c and m′v account for the
mixing with remote bands, see Eq. (7).

Figure 1 shows the dispersion of electronic bands in
MoS2 calculated in the framework of TB models of
Refs. [24, 26], respectively, in panels (b) and (a) and the
dispersion εn = En + ~2q2/2mn, where an effective mass
of the n-th band is calculated similar to n = c and n = v,
see Eqs. (8), (9), (10). Figure 1 illustrates that a certain
care should be taken when labeling the valence bands:
the bands are labeled according to its wave functions rep-
resentations, see Tab. I, and the order might be different
for different TB models. The effective masses mc and mv

for different TB models are listed in Tab. II.

III. ZEEMAN EFFECT

In this section we use the developed k · p model to
calculate the g-factors of electrons in conduction and va-
lence bands. The main interest, however, is related to the
exciton g-factor, which has been measured in a number
of recent experiments by optical means. Single carrier
Zeeman splittings can be determined, for instance, from
the measurements of Shubnikov-de Haas oscillations.

We consider the Zeeman splitting of electrons in
K± valleys in magnetic field B = (0, 0, Bz) directed nor-
mal to a monolayer plane. The Zeeman effect contains
spin and valley contributions described by g-factors g0

TABLE I. The nonzero coefficients C
(a)
j of wave functions

Eq. (1) at K+-point and corresponding irreducible represen-
tations of the C3h point group. The phases of the wave func-
tions are chosen in such a way, that αi and βi are real num-
bers, α2

i + β2
i = 1, and αi > 0. We denote pz ≡ pz,A.

Irrep Band Nonzero wave function coefficients

A′ v, v − 4 Ψ(v): Cd+ = α1, Cp+ = iβ1;

Ψ(v−4): Cd+ = β1, Cp+ = −iα1

E′1 c, v − 5 Ψ(c): Cd
z2

= α2, Cp− = iβ2;

Ψ(v−5): Cd
z2

= β2, Cp− = −iα2

E′2 c+ 2, v − 3 Ψ(c+2): Cd− = α3, Cpz = β3;

Ψ(v−3): Cd− = β3, Cpz = −α3
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TABLE II. The values of g-factors and effective masses (in units of m0) of the v and c bands calculated within the k ·p model
based on different TB parameterizations (listed in footnotes).

MoS2
a MoS2

b MoS2
c MoS2

d MoS2
e MoSe2

f WS2
g WSe2

h

mv -0.54 -0.72 -0.58 -0.40 -0.56 -0.82 -0.53 -0.57

mc 0.54 0.86 0.90 0.37 0.37 1.02 0.68 0.76

gv 8.73 5.57 6.18 11.90 5.59 5.12 6.08 5.64

gc 7.82 5.41 6.83 10.15 1.77 5.12 6.13 5.79

gX0 = gc − gv -0.91 -0.16 0.65 -1.75 -3.82 0 0.05 0.15

a TB model of Ref. [26] for DFT calculations
b TB model of Ref. [24] for DFT calculations
c TB model of Ref. [24] for DFT+GW calculations
d DFT+GW and TB model of this work (TB model based on Ref. [26])
e DFT+GW and TB model of this work (TB model based on Ref. [24])
f TB model of Ref. [24] for DFT calculations
g TB model of Ref. [24] for DFT calculations
h TB model of Ref. [24] for DFT calculations

Γ M K Γ

TB
k·p

c+2

c

v

v-5

v-3

v-4

−6

−4

−2

0

2

Γ M K Γ

c+2

c
v

v-5

v-3

v-4

En
er

gy
 (e

V
)

−12

−10

−8

−6

−4

−2

0

2(a) (b)

FIG. 1. Electronic spectra of MoS2 calculated using TB
models H. Rostami et al. [26] (a) and S. Fang et al. [24] (b).
Red lines are k ·p quadratic dispersions at K-point calculated
using effective masses for each band (see text for details).
Note the different order of deep valence bands in two panels.

and gorb, respectively

HB =
g0
2
µBBzσz +

gorb
2
µBBzτz . (11)

Here σz is a spin operator (σz = ±1 for spin-up and spin-
down electrons, respectively), and τz represents the valley
degree of freedom (τz = ±1 for K+ and K− electrons,
respectively), µB is the Bohr magneton. The effective
g-factors of K+ and K− electrons are defined as [11]

gK+
c,v ≡ gc,v = g0 + gc,vorb , gK+

c,v = −gK−c,v . (12)

The valley term gc,vorb has an orbital nature and accounts
for the mixing of the electronic bands by magnetic field.
Within the k · p scheme this mixing is obtained by re-
placing q in Eq. (6) with q − (e/c~)A, where e = −|e| is
the electron charge, and A is the vector potential of the

magnetic field, resulting in (cf. Ref. [11])

gcorb =
4m0

~2

(
− γ25
Ec − Ev−3

+
γ23

Ec − Ev
− (13)

− γ26
Ec − Ec+2

+
δ23

Ec − Ev−4

)
,

gvorb =
4m0

~2

(
γ22

Ev − Ev−3
− γ23
Ev − Ec

+ (14)

+
γ24

Ev − Ec+2
− δ24
Ev − Ev−5

)
.

The spin g-factor g0 comprises two contributions, namely,
the bare electron g-factor (g0 = 2) and a small contribu-
tion due to the spin-orbit interaction, which is not taken
into account in our model. This contribution within the
k · p model is of the order of ∼ gorb∆so/∆Eij � gorb,
where ∆so is the spin-orbit splitting of a given band, and
∆Eij is a characteristic energy distance to other bands.

The σ+ and σ− photoluminescence lines observed in
experiment originate from the radiative recombination
of neutral excitons X0 with electrons occupying K+ and
K− valleys, respectively [31]. Therefore the effective Zee-
man splitting of X0 is ∆Z = gX0µBBz with [11]

gX0 = gc − gv . (15)

In this difference, according to Eqs. (12), (13), (14), the
contribution to gc and gv, which occurs due to the mix-
ing between c and v bands (∝ γ23), cancels out, so that
nonzero contributions to gX0 arise due to the mixing of
v and c with deep valence and excited conduction bands.

IV. LANDAU LEVELS

The developed k·p model allows for calculation of Lan-
dau levels in the system. For this purpose we make re-
placements q+ →

√
2a†/lB and q− →

√
2a/lB in Eqs. (6)
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and (7), where a† and a are the creation and annihila-
tion operators acting in the space of Landau functions,
lB =

√
|e|~/|Bz|c, and decompose the six-component

wave function of the j-th band Ψ(j) in a series of the
Landau level functions ϕn,qy [32]

Ψ(j) =
∑
n≥0



an
bn
cn
dn
en
fn


ϕn,qy , (16)

where n and qy are the quantum numbers, and an, bn,
cn, dn, en, and fn are coefficients. The numeric diag-
onalization of obtained Hamiltonian yields the energy
position of the j-th band in magnetic field Ej(n,Bz).
However this energy contains also the valley Zeeman
term, described by the second term of Eq. (11). To
get rid of the Zeeman term we define Landau levels as
εj(n,Bz) = 1/2[Ej(n,Bz) + Ej(n,−Bz)].

The dispersion of the first four Landau levels for j = c
and j = v is presented in Fig. 2. For comparison we also
show linear dispersions calculated using the simple for-

mula εj(n,Bz) = ~ω(j)
c (n+ 1/2), with ω

(j)
c = |eBz|/mjc

and the effective masses mc and mv given by Eq. (8).
One can see that the results given by the exact numeric
diagonalization of the effective Hamiltonian and the sim-
ple analytical formula coincide in the wide range of Bz,
the discrepancy in the valence band is more noticeable
due to more pronounced band non parabolicity.

V. DISCUSSION

Table II presents the values of g-factors and effective
masses calculated within the developed k · p model after
Eqs. (13), (14) and Eqs. (8), (9), (10). Since the large
contributions to gc and gv that originate from the mixing
between v and c bands cancel out in the exciton g-factor,
the value of gX0 is defined by the mixing with deep va-
lence and excited conduction bands. The main contribu-
tions to gX0 in the studied parameterizations come from
the mixing with v−3 and c+2 bands, i.e. from the terms
−γ25/(Ec − Ev−3) and −γ26/(Ec − Ec+2) in Eq. (13) and
terms γ22/(Ev − Ev−3) and γ24/(Ev − Ec+2) in Eq. (14).
As an example, the contribution from c+ 2 gives ≈ 15 %
of the total gc value, and the contribution from v−3 gives
≈ 30 % of the total gv value for MoS2 parametrization
(a) in Tab. II. As seen from Tab. II, existing in literature
TB models result in small absolute values of gX0 , which
are far from the experimentally measured gX0 ≈ −4.

Based on our own DFT and post-DFT (GW ) calcula-
tions and TB fitting procedure (see computational details
and dispersion of energy bands in Appendices B, C) we
obtained two additional k ·p parameterizations for MoS2,
see columns (d) and (e) in Tabs. II, III. For this purpose

numerical
analytics

En
er

gy
 (m

eV
)

0

2

4

6

0 5 10

En
er

gy
 (m

eV
)

−8

−6

−4

−2

0

Magnetic field (T)
0 5 10

conduction band (c)

valence band (v)

(a)

(b)

FIG. 2. Dispersion of the first four Landau levels in the bot-
tom conduction (c) and topmost valence (v) bands calculated
using parametrization (a) of the k · p model (see Tab. III).
Solid lines show the results of numeric calculations using de-
composition Eq. (16), and dashed lines stand for a simple

analytical formula εj(n,Bz) = ~ω(j)
c (n + 1/2) (see text for

details).

we used two different TB models, the eleven-parameters
TB model of Ref. [26] and the TB model of Ref. [24]
with twenty five independent parameters. Within the
fitting procedure we numerically extracted parameters of
the k ·p Hamiltonian and calculated exciton g-factor us-
ing Eqs. (13), (14). We then used the value of gX0 as
an extra fitting parameter (we fit it to the experimental
value gX0 ≈ −4) additional to band dispersions and wave
function coefficients.

The fitting procedure for the TB model of Ref. [26]
results in a good fit of the dispersion of c and v bands
across high-symmetry paths of the Brillouin zone and
only a slight change of energy position and dispersion
of high conduction and deep valence bands compared to
the original parameterization of Ref. [26]. However this
change is sufficient to obtain a large increase of |gX0 |,
gX0 ≈ −1.75 (see column (d) of Tab. II). Using the TB
model of Ref. [24] we were able to obtain gX0 ≈ −3.82
as well as a good fit for all six energy bands dispersions,
wave function coefficients and effective masses, see col-
umn (e) in Tab. II.

The wide spread of calculated gX0 values underlies the
sensitivity of gX0 to a given parametrization of a DFT
or a TB model. Hence, along with effective masses and
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energy gaps the value of gX0 may serve as a test tool
for a given parametrization of a DFT or a TB model.
The TB parameterizations that fit gX0 can be obtained
in principle for other materials (e.g. MoSe2, WS2, and
WSe2), however this is beyond the scope of the present
work.

So far in our theory we treated electron and hole in
the exciton independently, neglecting the Coulomb inter-
action between charge carriers. It is well known, however,
that the exciton binding is large in TMDCs and plays a
significant role in optical experiments [33, 34]. The ef-
fects of Coulomb interaction between an electron and a
hole as well as localization by an in-plane potential [35]
can be estimated by introducing the g-factor dependence
on a charge carrier energy. Such a dependence is derived
by simply replacing Ec with Ec + ∆Ec in Eq. (13) and
Ev with Ev − ∆Ev in Eq. (14), where ∆Ec and ∆Ev
are the energy shifts of electron and hole levels [36] due
to either localization or Coulomb binding. This depen-
dence is depicted in Fig. 3. Note that negative energies
∆Ec, ∆Ev reflect the binding of electron and hole in an
exciton, whereas positive ∆Ec, ∆Ev correspond to local-
ization of a charge carrier in a quantum dot. One can see
that within a typical scale of exciton binding energy in
TMDCs, EB ∼ 400 meV, gc and gv change significantly,
resulting in a possible enhancement ∆|gX0 | ≈ 1.

gc
gv

gc
gv

Param. (a)

c

v
E

E
0

0

Param. (c)

g-
fa

ct
or

6

7

8

9

10

Energy (eV)
−0.4 −0.2 0 0.2 0.4

FIG. 3. Conduction and valence band g-factors, gc and gv,
as functions of electron and hole energy, respectively. The
energies are counted from the bottom of the conduction band
and from the top of the valence band as shown in the inset.
The solid and dashed lines show results of calculations for
parameterizations (a) and (c) from Tab. III, respectively.

VI. CONCLUSIONS

To conclude, we developed a six-band k ·p model that
describes the electronic states of monolayer TMDCs in
K-valleys. The set of parameters for the k · p model is
uniquely determined by decomposing eleven-band tight-

binding models in the vicinity of K±-points. Using ex-
isting in literature TB models we were able to derive sys-
tematic parametrizations for different materials (MoS2,
WS2, MoSe2, WSe2) and different TB Hamiltonians. Us-
ing the derived six-band k · p Hamiltonian we calculated
effective masses, Landau levels, and the effective exciton
g-factor gX0 in different TMDCs. We showed that the
main contributions to gX0 result from the mixing with
excited conduction band c + 2 and deep valence band
v − 3. We also obtained two additional sets of k · p pa-
rameters by developing our own TB parameterizations
based on simultaneous fitting of ab-initio calculated en-
ergy dispersion and the value of gX0 .

The k ·p parameterizations extracted from existing TB
models result in small absolute values of gX0 , which are
far from the experimentally measured gX0 ≈ −4. How-
ever as we showed using our additional sets of k · p pa-
rameters, the change in parameters, which only slightly
affects the dispersion of higher conduction and deep va-
lence bands, may result in a significant increase of |gX0 |.
As a result, we obtained gX0 ≈ −1.75 and gX0 ≈ −3.82
for the two sets. Such a high parameter sensitivity of
gX0 opens a way to further improvement of DFT and
TB models, since g-factor modeling requires at the same
time an accurate description of deep valence and high
conduction bands.
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Appendix A: Parameters of kp model

Parameters of the k · p Hamiltonians (6) and (7) for
different parametrizations, materials and tight-binding
models are listed in Tab. III.

Appendix B: Computational details of DFT+GW
method

The atomic structures and the quasi-particle band
structures have been obtained from DFT calculations
using the VASP package [37, 38]. The Perdew-Burke-
Ernzerhof (PBE) [39] functional was used as approxi-
mation of the exchange-correlation electronic term. The
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TABLE III. Parameters of the k ·p model as introduced in Eqs. (6), (7). The values of γi and δi are given in eVÅ, the units of
Ei are eV, the effective masses m′n are given in the units of m0. Parameterizations are based on TB models listed in footnotes.

MoS2
a MoS2

b MoS2
c MoS2

d MoS2
e MoSe2

f WS2
g WSe2

h

Ev−5 -6.96 -4.50 -4.99 -6.88 -5.20 -4.42 -5.27 -5.14

Ev−4 -5.17 -3.83 -4.32 -4.15 -4.66 -3.70 -4.21 -4.02

Ev−3 -9.59 -3.49 -3.62 -10.52 -4.18 -3.36 -3.82 -3.67

Ev -0.97 -0.03 0 0 -0.05 -0.05 0.04 0.02

Ec 0.86 1.77 2.48 2.47 2.44 1.52 2.00 1.69

Ec+2 1.91 2.98 4.04 3.96 4.60 2.50 3.36 2.80

γ2 -5.75 1.62 2.08 -8.00 -0.88 1.50 1.62 1.49

γ3 4.27 3.39 4.43 5.93 4.65 2.96 3.91 3.43

γ4 -0.87 -0.92 -2.14 -1.77 -3.05 -0.91 -1.53 -1.44

γ5 2.57 -2.66 -3.07 3.36 -8.27 -2.44 -3.26 -3.04

γ6 1.33 0.94 1.52 1.79 0.67 0.84 1.21 1.05

δ1 3.19 -4.20 -5.14 4.05 -3.80 -3.86 -4.95 -4.52

δ2 0.80 -0.19 -0.50 1.26 3.55 -0.16 -0.30 -0.29

δ3 -0.61 2.08 2.53 0.55 -2.63 2.11 2.23 2.25

δ4 -2.05 0.14 0.02 -2.09 -0.26 -0.06 0.18 -0.06

δ5 1.74 2.06 2.15 2.28 -0.42 1.79 2.15 1.88

δ6 1.45 0.69 0.69 2.23 -0.23 0.48 0.32 0.07

δ7 7.49 4.45 5.05 6.53 3.90 4.81 4.78 5.14

m′v−5 0.87 0.76 0.67 0.85 0.44 0.67 0.64 0.57

m′v−4 1.34 0.83 0.71 2.00 1.22 0.78 0.84 0.80

m′v−3 6.09 6.92 14.00 1.64 0.62 7.69 9.50 12.32

m′v -2.81 6.37 3.04 -3.39 1.03 6.58 6.64 7.16

m′c -1.96 -1.16 -0.90 -1.33 -0.40 -1.18 -1.02 -1.04

m′c+2 -0.70 -0.60 -0.47 -0.59 -0.36 -0.63 -0.53 -0.55

a TB model of Ref. [26] for DFT calculations
b TB model of Ref. [24] for DFT calculations
c TB model of Ref. [24] for DFT+GW calculations
d DFT+GW and TB parametrization of this work (TB model based on Ref. [26])
e DFT+GW and TB parametrization of this work (TB model based on Ref. [24])
f TB model of Ref. [24] for DFT calculations
g TB model of Ref. [24] for DFT calculations
h TB model of Ref. [24] for DFT calculations

software uses the plane-augmented wave scheme [40, 41]
to treat core electrons. Fourteen electrons for Mo, W
atoms and six for S, Se ones are explicitly included in
the valence states. All atoms are allowed to relax with a
force convergence criterion below 0.005 eV/Å. A grid of
12×12×1 k-points has been used, in conjunction with a
vacuum height of 17 Å, to take benefit of error’s cancella-
tion in the band gap estimates [42]. A gaussian smearing
with a width of 0.05 eV was used for partial occupan-
cies, when a tight electronic minimization tolerance of
10−8 eV was set to determine with a good precision the
corresponding derivative of the orbitals with respect to
k needed in quasi-particle band structure calculations.
Spin-orbit coupling was not included to determine eigen-
values and wave functions as input for the full-frequency-
dependent GW calculations [43] performed at the G0W0

level. The total number of states included in the GW

procedure was set to 600, after a careful check of the
direct band gap convergence, to be smaller than 0.1 eV.

Appendix C: Details of TB fitting procedure and
additional TB parameterizations

Most of the modern TB parametrizations are made
to reproduce the energy bands of ab-initio calculations.
The parameter set is usually found by minimizing the
function:

f({ti}) =
∑
i,k

wi,k
(
ETB
i,k − EGWi,k

)2
, (C1)

where {ti} are the TB-parameters, i and k denote the
number of the electronic band and the wave vector,
respectively, and wi,k are the weight coefficients. In
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Eq. (C1) ETB are the tight binding energies, which de-
pend on the particular TB Hamiltonian and parameters
used, and EGW are the starting-point values, obtained
by DFT+GW or another ab-initio method. We found,
however, that even if the parameter set reproduces the
electronic bands with great accuracy, it does not nec-
essarily give satisfying values of the g-factor. In order
to overcome this problem, we included the calculation
of the g-factor in our optimization procedure and var-
ied the TB parameters to fit both the GW -energies and
g-factor values. To prevent the order change of the en-
ergy bands during optimization we also included the er-
ror in the eigenvectors at the K-point. The weights were
concentrated in the vicinity of the K and Γ points of
the hexagonal Brillouin zone and had higher values for v
and c bands for better reproduction of the most impor-
tant electronic states. The fitting was carried out by an
adaptive random search algorithm until a compromise
between the quality of the band structure and g-factor
value for MoS2 was found.

Resulting parameterizations of TB Hamiltonians of
Refs. [24] and [26] are presented in Tabs. IV and V.
The resulting energy dispersions in comparison with
DFT+GW calculations are presented in Fig. 4. Based on
these two sets of TB parameters we obtained k ·p param-
eterizations listed in Tab. III, columns (d) and (e), with
effective masses and g-factor listed in Tab. II, columns

(d) and (e).

TABLE IV. Parameters of the TB Hamiltonian (in units
of eV) of Ref. [24] for MoS2 obtained after fitting of GW
calculations.

ε6 ε7 = ε8 ε9 ε10 = ε11 t
(1)
6,6 t

(1)
7,7 t

(1)
8,8

-0.913 0.251 -1.538 -2.264 -0.922 0.437 -0.668

t
(1)
9,9 t

(1)
10,10 t

(1)
11,11 t

(1)
6,8 t

(1)
9,11 t

(1)
6,7 t

(1)
7,8

0.240 1.106 -0.003 0.046 -0.041 -0.762 -0.400

t
(1)
9,10 t

(1)
10,11 t

(5)
9,6 t

(5)
11,6 t

(5)
10,7 t

(5)
9,8 t

(5)
11,8

-0.168 -0.133 -0.975 0.016 1.829 0.914 -0.045

t
(6)
9,6 t

(6)
11,6 t

(6)
9,8 t

(6)
11,8

0.935 0.945 0.796 0.449

TABLE V. Parameters of the TB Hamiltonian (in units of
eV) of Ref. [26] for MoS2 obtained after fitting of GW calcu-
lations.

ε0 ε2 εp εz Vpdσ Vpdπ Vddσ

-5.707 -5.784 -8.319 -12.171 4.791 -1.606 -1.221

Vddπ Vddσ Vppσ Vppπ

0.526 0.359 0.905 -0.396
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