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Abstract— Keeping up with bandwidth requirements in next 

generation short- and long-reach optical communication systems 

will require migrating from simple modulation formats such as 

on-off keying (OOK) to more advanced formats such as 

quadrature phase-shift keying (QPSK). In this work, we report 

the first demonstration of QPSK signal generation in the O-Band 

using a silicon dual-drive Mach-Zehnder modulator (DD-MZM). 

The performance of the silicon DD-MZM is assessed at 20 Gb/s 

and compared against a similar DD-MZM based on LiNbO3, 

showing a limited implementation power penalty of only 1.5 dB. 

 
Index Terms— Advanced modulation formats, coherent optical 

communications, integrated optics, optical transmitters, silicon 

modulators, silicon photonics. 

 

I. INTRODUCTION 

ILICON photonics devices have shown impressive 

evolution from the first demonstration of active functions 

to high-performance transmitters and receivers [1-2]. 

Interestingly, the use of Si photonics for coherent 

communications in long haul network could pave the way for 

future large-scale industrialization of high performance and 

low cost optoelectronic transceivers [2]. Indeed, while today 

standards are based on 100-Gb/s transmission, future 

standards will require 200 or 400-Gb/s transponders, to meet 
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with the ever-growing demand triggered by multi-media and 

cloud-based applications [3]. State-of-the-art silicon on-off 

keying (OOK) modulators are currently reaching 50-Gb/s 

operation, [4-5], while higher modulation format such as 

n-level pulse amplitude modulation (PAM-n), quadrature 

phase-shift keying (QPSK), or 16-state quadrature amplitude 

modulation (16-QAM) allow to increase transmission rate up 

to 224 Gb/s [6-12]. As a major step forward, the phase 

efficiency of the modulators has recently been significantly 

increased [13-14]. While most of the reported work has been 

done in the C-band of telecommunication (around 1550 nm), 

silicon photonics systems are highly attractive for 

short-distance intra-data-center communications [15], where 

the O-band (around 1300 nm) is widely used. Despite the 

lower free-carrier dispersion effect at this wavelength in 

comparison with 1550 nm, high-performance devices have 

been demonstrated, showing 50-Gbit/s OOK modulation [16] 

or low-voltage operation [17]. As the volume of data 

exchanged inside data centers is continuously increasing, even 

higher data rates are still required. Developing higher-order 

modulation formats in the O-band of communications has thus 

recently received significant attention. 56-Gb/s PAM-4 [18], 

112-Gb/s PAM-8 [9] and 200-Gb/s QAM-16 [19] were thus 

demonstrated.  

While standard IQ modulators used for QPSK signal 

generation are based on nested Mach-Zehnder (MZ) 

modulator structures [6], a single dual-drive Mach-Zehnder 

modulator (DD-MZM) has been proposed as a simpler 

structure, allowing a reduction of the power consumption of 

the transceiver to generate the QPSK constellation [20]. This 

scheme has already been demonstrated using a LiNbO3 

modulator [21]. Interestingly, this structure offers a better 

power efficiency and scalability in term of modulation format 

order that are key advantages for short-distance 

intra-data-center communications. In this context, we report 

the first demonstration of QPSK signal generation using a 

single dual-drive Mach-Zehnder silicon modulator operating 

in the O-band. As a first demonstration, 20-Gb/s operation is 

shown, with a large potential for increasing the data rate. 

Preliminary results of this work have been recently reported in 

[22]. They are here complemented by a more thorough 

experimental characterization of QPSK modulation at 

10 Gbaud.  
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II. MODULATOR DESIGN AND PROPERTIES 

The phase-shifter used for optical modulation in silicon is 

based on carrier depletion, using a PN diode embedded in the 

core of a silicon-on-insulator (SOI) waveguide. The cross 

section of the phase shifter and its SEM image are reported in 

Fig 1 (a) and (b), respectively. The rib waveguide is 300-nm 

high and 400-nm wide. A 50-nm slab is used and provides 

electrical connection to the highly doped part of the diode. 

Free-carrier concentration variation is obtained in the core of 

the waveguide. The PN junction interface is slightly shifted 

(25 nm) from the center of the waveguide to take benefit from 

the larger refractive index variation obtained by varying the 

concentration of holes in comparison with electrons [23]. The 

targeted doping concentrations are P = 5×1017 cm−3 and 

N = 1.4×1018 cm−3. Previous work based on the same phase-

shifter design allowed demonstrating high modulation 

efficiency with VπLπ products of 0.95 to 1.15 Vcm for reverse 

bias from 1 to 4 V at 1310 nm wavelength [17]. 

The DD-MZM is schematically reported in Fig 1 (c). 2-mm 

long phase-shifters are embedded in both arms of a symmetric 

Mach-Zehnder structure. MMI couplers are used as 

input/output splitter and combiner. Metallic heaters form 

low-speed/high-efficiency static phase-shifters that are used to 

bias the interferometer by tuning the DC phase-shift Φ 

between both arms, as reported in Fig 1 (d). The modulator 

was fabricated using the 300-mm DAPHNE technological 

platform from STMicroelectronics [24]. The on-chip losses of 

the modulator are estimated below 3.8 dB, corresponding to 

2.6 dB for the 2-mm-long active region, while losses below 

0.6 dB are estimated for each MMI couplers. Radio-frequency 

(RF) signals are applied to each phase-shifter independently, 

using GSGSG coplanar waveguides. 

The device bandwidth has been characterized by applying 

an RF signal to one arm of the modulator, the obtained 

electro-optical response is shown in Fig. 2. It can be seen that 

the 3dB electro-optical bandwidth is 5 GHz, while the 6-dB 

bandwidth is 15 GHz. In comparison the RC cut-off frequency 

was estimated to be 21 GHz [17]. This result indicates that the 

electrical/optical signal velocity matching and impedance 

matching could be further improved. Due to this limitation we 

decided to focus the QPSK operation at 10 Gbaud. However, 

this device has the potential to operate at higher speeds of 

25 Gbaud, either by improving the RF electrode design, or by 

slightly reducing the phase-shifter length, which would 

increase the bandwidth, at the expense of a reduction of the 

phase shift per applied voltage. 

III. EXPERIMENTAL SET-UP AND QPSK GENERATION 

To generate a QPSK signal with a single DD-MZM [20], two 

independent binary modulating signals are applied to each of 

the phase-shifters in order to achieve a peak-to-peak phase 

modulation of π in each arm. At the same time, the phase-shift 

introduced by the heater is adjusted to operate the DD-MZM 

in the quadrature point (Φ=π/2). Compared to conventional 

QPSK transmitters based on IQ modulator architecture, the 

DD-MZM only required one constant phase-shift and a π 

phase modulation, hence an applied voltage of V, for each 

phase-shifter. On the other hand, the IQ modulator requires 

three constant phase-shifts, two for biasing the two MZMs to 

the null transmission point and another to set the phase 

between the two MZMs to quadrature. Furthermore, the IQ 

modulator requires peak-to-peak voltage differences of 2V to 

be applied to each nested MZM in order to implement the 

required π phase modulation. This in turns requires 

peak-to-peak voltages of V to be applied to the four phase-

shifters for proper push-pull operation. Differential logic (data 

and inverted data) electrical data signals with proper timing 

 
Fig. 1.  Cross section of the silicon phase-shifter: (a) schematic and (b) SEM 

image. Architecture of a DD-MZM: (a) schematic and (b) actual layout. 

  

 
Fig. 2.  Normalized small signal electro-optical response as a function of the 

applied frequency. 
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alignment are also required. Finally, it can be noted that in the 

case of the DD-MZM, an applied peak-to-peak voltage below 

V will affect the shape of the constellation diagram while in 

the case of the IQ modulator, a reduced peak-to-peak voltage 

will be responsible for an increase of the optical loss. 

Theoretical QPSK eye and constellation diagrams obtained 

with IQ and DD-MZM modulators are represented in Fig. 3(a) 

and (b), respectively. It can be seen that the signal generated 

by the DD-MZM exhibits more intensity ripples than that of 

the IQ modulator, which are linked to symbol transitions. The 

areas where the intensity is constant, and which are therefore 

suited for sampling and phase recovery are represented in grey 

in the eye diagrams of Fig. 3. It can be seen how the temporal 

opening of the signal generated by the DD-MZM is reduced 

compared to the signal generated by the IQ modulator, making 

the DD-MZM more sensitive to symbol transitions. However, 

these drawbacks are compensated by a very much simpler 

hardware architecture and reduced driving voltages. 

The experimental set-up used for QPSK modulation 

characterization is reported in Fig. 4. TE-polarized light from 

an O-band external cavity laser followed by a fiber 

polarization controller is coupled to the photonic integrated 

circuit using a single-polarization grating coupler (GC) with 

typical transmission around -6 dB. The same GC is used to 

couple the light out of the photonic circuit. Total fiber-to-fiber 

losses, including coupling and on-chip losses, are thus 

estimated around 17 dB. The laser source output power was 

kept to 14 dBm for all the experiments. Two 215−1 long de-

correlated pseudo random binary sequences (PRBSs) at 

10 Gb/s are used and amplified to reach a swing voltage Vpp of 

7 V with DC bias of 4V. GSGSG probes were used at the 

input to apply the RF signals and at the output of the coplanar 

waveguide to connect 50-ohm terminations. DC tips were used 

to connect the heater and adjust the constant phase shift to bias 

the interferometer at a quadrature point (Φ=π/2). The 

modulated optical signal is then sent to a coherent receiver 

through a variable optical attenuator in order to adjust the 

received power. For the purpose of this first demonstration, 

the same laser was used at the transmitter and as local 

oscillator (LO) at the receiver, thus implementing homodyne 

detection. A semiconductor optical amplifier (SOA) was used 

to amplify the LO signal. The I/Q signals of the receiver were 

fed to a 40-GSps digital sampling oscilloscope (DOS) with 

16-GHz electrical bandwidth. Blocks of 105 symbols were 

acquired and then processed offline. An adaptive finite 

impulse response (FIR) filter with decision-directed least 

mean square (DD-LMS) tracking was used as digital signal 

processing. The processed samples were used to obtain the 

constellation diagrams and to compute the bit-error-rate 

(BER). The BER was evaluated over five blocks of 105 

symbols. 

IV. RESULTS AND DISCUSSION 

High-speed measurements of the DD-MZM silicon 

modulator were performed using the described setup. In order 

to benchmark its performance, the same characterizations 

were also performed with a commercial 28-GHz LiNbO3 

DD-MZM as well as a 25-GHz LiNbO3 IQ modulator. 

The raw received constellation diagrams of the 20 Gb/s 

QPSK signals generated with the three modulators are 

represented on the left column of Fig.5. The raw constellation 

diagram of the signal generated by the silicon DD-MZM is 

shown in Fig. 5 (a), whereas Fig. 5 (b) and (c) correspond to 

LiNbO3 DD-MZM and IQ modulator, respectively. The 

constellations were obtained for a receiver input power of 

-22 dBm from 20000 samples after resampling, decimation to 

the baud rate, but without digital equalization. Four group of 

samples can be observed, which correspond to the four phase 

states of the QPSK signal. The particular shape of the 

constellations generated by the silicon and LiNbO3 DD-MZMs 

is due to the inherent trajectories in the complex plane 

between the four modulation states, which result in intensity 

ripples between consecutive symbols, in QPSK generation 

based on DD-MZMs. Therefore, the measured raw 

 
Fig. 3.  Eye and constellation diagrams of a QPSK signal generated with (a) 

an IQ modulator and (b) a DD-MZM. 
  

 
Fig. 4.  Experimental set-up for QPSK operation of the DD-MZM. 
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constellation diagrams have the expected shape predicted in 

Fig. 3 (b). Furthermore, the electro-optical bandwidth 

limitation of the silicon modulator is responsible for further 

fluctuations since the phase-shifters directly map residual 

voltage fluctuations to phase fluctuations. Thanks to its less 

complicated trajectories of symbol transitions, the raw 

constellation diagram obtained with the IQ modulator is 

cleaner. After DSP, classical QPSK constellation diagrams 

were obtained in the three cases, as represented in the right-

side column of Fig. 5. The measured error vector magnitude 

(EVM) was 18% for the LiNbO3 IQ modulator, whereas for 

the silicon and LiNbO3 DD-MZMs, EVMs of 33% and 28% 

were obtained, respectively. The small EVM degradation 

observed in the silicon DD-MZM with respect to its LiNbO3 

counterpart is related to intensity ripples induced by its lower 

electro optical bandwidth (15-GHz) compared to the LiNbO3 

modulator (28-GHz) and by the intensity modulation 

associated to the free-carrier dispersion effect. 

The measured BER performance of the three modulators is 

shown in Fig. 6 as a function of the receiver input power. It 

can be seen that a penalty of 5 dB occurs between the LiNbO3 

IQ modulator and the LiNbO3 DD-MZM for a BER of 10-3. 

This power penalty is linked to the presence of intensity 

ripples that are inherent to this generation scheme, as 

explained previously. The silicon DD-MZM presents an 

outstanding low 1.5-dB extra penalty with respect to its 

LiNbO3 counterpart. This power penalty, as explained 

previously, is linked to the lower electro optical bandwidth of 

the silicon DD-MZM with respect to the LiNbO3 and to the 

small intensity modulation present on the silicon DD-MZM. 

V. CONCLUSIONS 

We have reported the first use of a silicon DD-MZM to 

generate QPSK signals in the O-band. This modulation 

scheme has been evaluated first on a LiNbO3 dual-drive 

modulator. A power penalty of 5 dB is obtained when 

compared with standard IQ modulation, linked to the presence 

of intensity ripples when generating the signal. Interestingly 

the additional power penalty when using the silicon dual-drive 

modulator is only 1.5 dB, due to a reduced electro-optical 

bandwidth of the tested device in comparison with the LiNbO3 

modulator. Such penalty could be further decreased thanks to 

pre-emphasis of the electrical drive voltages or with an optical 

pulse carver [21,25]. Future works will be focused on 

improvement of the RF design to exceed the 6-dB 

electro-optical bandwidth of 15-GHz. 25-Gbaud (i.e. 50-Gb/s) 

QPSK modulation can thus be expected in the short term. 

As a main advantage, this modulator scheme allows using 

only a single Mach-Zehnder interferometer, with 2×Vπ peak-

to-peak voltage instead of 4×Vπ in a standard IQ modulator. 

Such reduction of the global power consumption to generate 

the QPSK signal, can be a key advantage for future short 

distance applications. 
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