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Abstract

In this paper we consider the problem of viscosity solution of integro-partial differential equa-
tion(IPDE in short) via the solution of backward stochastic differential equations(BSDE in short)
with jumps where Lévy’s measure is not necessarily finite. We mainly use the concavity of the gener-
ator at the level of its second variable to establish the existence and uniqueness of the solution with

non local terms.
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1 Introduction

We consider the following system of integro-partial differential equation, which is a function of (¢, x):

Vie{l,...,m},

=0 (t,x) — b(t,z) "Dyui(t,z) — Tr(oo T (t, 2)D2 u'(t, x)) — Ku'(t, z)
—hD (t, x,ul(t, x), (0T Dyul)(t, ), Biu(t,z)) =0, (t,x) € [0,T] x R¥; (1.1)
u (T, z) = g'(z);

where the operators B; and K, are defined as follows:
Biu'(t,z) = /Vi(t,x,e)(ui(t,x + Btz ) — ui(t, 2))A(de); (1.2)
E
Kiu'(t,r) = /(ui(t,x + B(t,z,e)) —ul(t,x) — B(t,z,e) Dyu'(t, z))A(de).
E

The resolution of (1.1) is in connection with the following system of backward stochastic differential

equations with jumps :

desi;tJ = _f(i)(sa X;’ma szi;t’ma Z;';t@a U;.;t’m)ds + Zg;t’mst + / U?t7z(e)ﬁ(dsa de)a s < T;
E

_ _ (1.3)
Vi = g (X3");
and
the following standard stochastic differential equation of diffusion-jump type:
X0 =g 4 / b(r, X2*) dr + / o(r, X" dB, + / / B(r, X5", e)fi(dr, de), (1.4)
t t t JE

for s € [t,T] and X* = x if s < .

Several authors have studied (1.1) by various and varied methods. Among others we can quote Barles
and al. [1], who use the theorem of comparison by supposition the monotony of the generator; Ouknine
and Hamadeéne [5] use the penalization method.

But recently Hamadéne does a relaxation on the hypothesis of monotony on the generator to introduce
a new class of functions(see [3] page 216) for the resolution of (1.1).

In this work we propose to solve (1.1) by relaxing the monotonicity of the generator and the class of
fonctions introduced in [3] and assuming that A = co and the concavity of the generator at the level of
its second variable. We recall that this technic was used in [8] for the resolution of BSDE.

Our paper is organized as follows: in the next section we give the notations and the assumptions; in
section 3 we recall a number of existing results; in section 4 we build estimates and properties for a good
resolution of our problem; section 5 is reserved to give our main result.

And at the end, classical definition of the concept of viscosity solution is put in appendix.



2 Notations and assumptions

Let (9, F, (Fi)i<T,P) be a stochastic basis such that Fy contains all P—null sets of F, and F; =
Fiy = Neso Ft+e, t > 0, and we suppose that the filtration is generated by the two mutually indepen-
dents processes:

(i) B := (B)¢>0 a d-dimensional Brownian motion and,

(ii) a Poisson random measure 4 on R* x E where E := R — {0} is equipped with its Borel field £ (¢ > 1).
The compensator v(dt,de) = dtA(de) is such that {z([0,t] x A) = (u— N)([0,¢] X A)}+>0 is a martingale
for all A € & satisfying M(A) < oo. We also assume that X is a o-finite measure on (F, £), integrates the
function (1A | e |?) and A(E) = oo.

Let’s now introduce the following spaces:

(iii) P (resp. P) the field on [0, 7] x § of Fi<p-progressively measurable (resp. predictable) sets.

(iv) For £ > 1, L2()\) the space of Borel measurable functions ¢ := (¢(e))ecr from E into R such that
H‘l"”ﬂ%i(k) = /E |<p(e)|i A(de) < oo; L2(\) will be simply denoted by L2(\);

(v) S%(R*) the space of RCLL (for right continuous with left limits) P-measurable and R*-valued pro-
cesses such that E[sup,<r [Y.)?] < oo;

(vi) H2(R%*4) the space of processes Z := (Z;)s<r which are P-measurable, R**?-valued and satisfying

T
E / |Z)? ds| < oo;
0

(vii) H2(ILZ (X)) the space of processes U := (Us)s<7 which are P-measurable, L2 (\)-valued and satisfying

T
E/o ||Us(w>|n243(x)d5]<00;

(viii) TI, the set of deterministics functions

w: (t,z) € [0,T] x R® — w(t,z) € R of polynomial growth, i.e., for which there exists two non-negative

constants C' and p such that for any (¢,z) € [0, T] x R,
lw(t,z)| < C(1+ [z]").

The subspace of II; of continuous functions will be denoted by 1Ig;
(ix) M the class of functions which satisfy the p-order Mao condition in z i.e. If f € M then there exists
a nondecreasing, continuous and concave function p(-) : R* — R* with p(0) = 0, p(u) > 0, for u > 0 and

d /
/ e +00, such that dP x dt—a.e., Vo, € R* and Vp > 2,
o+ p(u)

|f(t,$,y, Z, q) - f(ta 1.,7y, Z, q)| S pE (|:C - 1.’|p);
(x) For any process 0 := (65)s<r and t € (0,T], 6, = lims » 0, and

A =0 —0;_.

Now let b and o be the following functions:

b: (t,x) €[0,T] x R = b(t,z) € RF;



o:(t,x) € 0,T] x R* s o(t,z) € R¥*4,
We assume that b and o belong to M (2.5)

Let 8 : (t,x,e) € [0,T] x R¥ x E + B(t,x,e) € R* be a measurable function such that for some real
constant C, and for all e € E,

(1) (B, e)] < C(LAe]); (2.6)
(1i) B belongs to M;

(i43) the mapping (t,z) € [0,T] x R¥ — B(t,z,e) € R is continuous for any e € E.
The functions (g%)i=1.m and (h(V),—1 ,, be two functions defined as follows: for i = 1,...,m,
g RE — R™
z — g'(x)
and

h(z) . [O,T] % Rk+m+d+1 o R

(t7 x?y’ Z’ q) '—> h(l)(t’ :L" y? Z7 Q>'
Moreover we assume they satisfy:
(H1): For any i € {1,...,m}, the function g* belongs to M.
(H2): For any i € {1,...,m},

(¢)  the function R is Lipschitz in (y, z,q) uniformly in (¢, z), i.e., there exists a real constant
C such that for any (¢,z) € [0,T] x R¥, (y, 2, q) and (y/, 2/, ¢’) elements of R™*4+1
’h’(Z) (tv'rvya 2 q) - h’(Z) (ta xz, y/a Z/a q/) < C(|y - y/| =+ |Z - Z/| + |q - q/|)’ (27)

(1)  the (t,z) — h(® (t,x,y, z,q), for fixed (y,z,q) € R™T 41 belongs uniformly to M,
Next let 4%, i = 1,...,m be Borel measurable functions defined from [0, 7] x R* x E into R and satisfying:

(@) |yt z,e)f < COAAle]);
(ii) ~" belongs to M; (2.8)

197) the mapping t € |0, |—>7' ,x,e) € R is continuous for any (x,e) € x E.
i) th ing t €0, T i(t R f RF x E

Finally we introduce the following functions (f®);=1, defined by:

V(t,2,y,2,¢) € [0, T]xRM™ T2 (N), fOt,2,y,2¢) = h" (txyz / ﬂt,x,e)ae»(de)). (2.9)
E

The functions (f),—1 ., enjoy the two following properties:

(a)  The function @ is Lipschitz in (y, z,¢) uniformly in (¢,z), i.e., there exists a real constant



C such that

‘f(l)(ta T, Y, %, g) - f(Z) (tvxvylv Z/, C/) < C(|y - y/| + |Z - ZI| + ||C - C/H]L2(/\)); (210)

since h? is uniformly Lipschitz in (y,2,q) and ' verifies (2.8)-(1);

(b)  The function (¢,z) € [0,T] x RF — f@(¢,2,0,0,0) belongs to Ig;

and then E

< Q.

T ) 2
/ ‘f@)(r,xﬁz,o,o,())‘ dr
0

3 Some results in backward stochastic differential equation with
jumps

3.1 A class of diffusion processes with jumps

Let (t,z) € [0,7] x R? and (X%%)s<7 be the stochastic process solution of (1.4). Under assumptions
(2.5)-(2.6) the solution of Equation (1.4) exists and is unique (see [2] for more details). We state some

properties of the process {(X?*), s € [0,7]} which can found in [2].

Proposition 3.1 For each t > 0, there exists a version of {(X5*), s € [t,T|} such that s — X! is a

C?(R%)-valued rcll process. Moreover it satisfies the following estimates: Vp > 2, x, 2’ € R? and s > t,

E[ sup |Xp7 —a|’] < My(s—t)(1+[af");
t<r<s

’ p
B[ sup |X1*— X[ — (e - x’)p‘ | < My(s—t)(jz — 2/ |P); (3.11)

for some constant M.

3.2 Existence and uniqueness for BSDE with jumps

Let (t,7) € [0,T] x R? and we consider the following m-dimensional BSDE with jumps:

(’L) }_/'t,m = (Yi’t"z)izl,m c SQ(Rm), Zt,ac = (Zi"t’x)izl,m c HQ(Rde), Ut,ac = (Ui7t"z)i:1,m c H2(Lfn()\)),
(i1) dYBH® = — f) (s, XL Yibe zite Uite)ds 4 Z562dB, 4 / ULhe (e)i(ds, de), s <T;
E
(iti) Y7 = g'(X7");
(3.12)
where for any i € {1,...,m}, Y5 is the ith row of Y Z%% is the ith component of Z1® and UZH%*

is the ith component of U%*.

Proposition 3.2 Assume that assumptions (H1) and (H2) hold. Then for any (t,z) € [0,T] x RY, the
BSDFE (8.12) has an unique solution (}%*I,Zt’m, Uhe).

For proof of this proposition we can see [1].



3.3 Viscosity solutions of integro-differential partial equation

Proposition 3.3 (see, [1]) Assume that (H1), (H2), are fulfilled. Then there exists deterministic con-
tinuous functions (u'(t,x))i=1,m which belong to 11, such that for any (t,z) € [0,T] x R¥, the solution of
the BSDE (3.12) verifies:

Vie{1,...,m}, Vs € [t,T], Y5b* = ui(s, X17). (3.13)
Moreover if for any i € {1,...,m},
(i) =0
(i3)  for any fized (t,x,7,2) € [0,T] x RET™F 4 the mapping

(g €R) — h(® (t,x,7,2,q) € R is non-decreasing.

The function (u');=1,m is a continuous viscosity solution (in Barles and al. ’s sense, see Definition 5.3 in

the Appendix) of (1.1). The solution (u’);—1, of (1.1) is unique in the class 115

Remark 1 (see, [1]) Under the assumptions (H1), (H2), there exists a unique viscosity solution of (1.1)

in the class of functions satisfying

lim  |u(t, z)| e~ Aloe(I=D” — ¢ (3.14)

|z|—+o00

uniformly for t € [0,T], for some A>o0.

4 Estimates and properties

In this section, we will establish a priori estimates concerning solutions of BSDE (3.12), which will

play an important role in the proof of our main results.

Lemma 4.1 (see, [3]) Under assumption (H1), (H2), for any p > 2 there exists two non-negative
constants C' and § such that,

E {/OTds (/E‘Ust’z(e)f)\(de))} =E {/OTds||U§’I||]2L%L(/\)} gc(1+|:c|‘5). (4.15)

Proposition 4.2 For anyi=1,...,m, there exist C > 0, k > 0 such that, V = and 2’ elements of R*

Wl
Wl

(@) = ' ()2 < p (Male = @' (14 o = 2')) [C(1+ [2]")]

Proof. Let z and 2’ be elements of R*. Let (Y%, Zt% %) (resp. (Y, Zt=" ")) be the solution
of the BSDE with jumps (3.12) associated with (f(s, X:%, y,n,¢), g(X5"))
P

(resp. f(s, X1%" y,m, §),g(X%z/)). Applying Ité formula to ’}7” — Yt | between s and T, we have




Gt Gt
}/Sa _5/57

2 T -
+/ AZ P dr+ ) (AT (4.16)

s<r<T

= |o(x5) — (X3

2 T . o
+2/ < (Vi = V) Af(r) > dr

92 /ST /E (Yt ,ﬁt,z') (AU, (e)) fi(dr, de) — 2 /T (i’“x 7}7:@') (AZ)) dB,;

S

and taking expectation we obtain: Vs € [t, T,

— — ’ 2 T T
E ’yst,z,yst,x +/ IAZ,|? dr+/ JAU, 125 dr (4.17)
2 T - S
<E ’g(X;z) — g(X;I )|+ 2/ < (Y:I —Yh® ) JAf(r) > dr

where the processes AX,., AY,., Af(r), AZ, and AU, are defined as follows: Vr € [t, T,

AF(r) = (AFOr))imim = (fO (r, Xiito, Vor, Zite, Uita)— pO) (p, Xt Yita! zite! gitat)) o,
AX, = Xb% = XU AY(r) = Vi - Pl = (vt gty

AZ, = Zb% — Zb% and AU, = Ub* — Ub* (< -,- > is the usual scalar product on R™). Now we will
give an estimation of each three terms of the second member of inequality (4.17).

e As for any i € {1,...,m} g* belongs to M ( for p = 2); therefore

t,x t,x’ 2 t,x L$'2
E ’Q(XT)_Q(XT ) < Efp||Xr — X7
12
< p (IE [ X5F — Xp" ]) (by Jensen’s inequality)
, 2
< o(B |5 - X - -t @)

and by subsequently using the triangle inequality, the relation (3.11) of proposition 3.1 and the fact that
(a+b)P < 2P71(aP + bP).
t,x t,x’ 2 712 7112
E|oxi) = g | <p (Mafo =/ (14 o= o)), (4.18)

T
e To complete our estimation of (4.17) we need to deal with E l2/ < (}_}S” - }_}St’z/) JAf(r) > dr] .

S

Taking into account the expression of f(*) given by (2.9) we then split Af(r) in the follows way: for
r<T,

Af(r) = (Af())im1m = A1(r) + Da(r) + As(r) + Aa(r) = (A} (r) + A5 (r) + A5(r) + A(r))i=1,m,



where for any i =1,...,m,

al0) = 10 (rxen gzt [ Xt Ui @)
O (roxe Tzt [ Xt Ui ) )

Ay(r) = KW (T,Xi’I’,W’I,Zi;t’””,/EVZ'(T,X?””,6)Ui;t’””(6)>\(d€))
0 (i T2 20, [ X U o) )

Ay = 0O (rxp Tz, [ i e i)
~ht) ( X Y 2 /E 7, X:*z,e>U:';“<e>A<de>) :

8 = KO (rox 7 2 [ Xt oo
—p® (r,Xﬁ’wl,ﬁt’wl,Z}ﬁt’l/, /E vi(r,Xﬁ’wl,e)Uﬁ;t’wl(e))\(de)).

By Cauchy-Schwartz inequality, the inequality 2ab < ea?+1b?, (H2)-(ii), the estimate (3.11) and Jensen’s

inequality we have:

T
E l2/ <AY(T),A1(T)>dT1

IN

E

e T ‘
E/ \AY(T)|2d7‘+6/ P (lX,th — X,tfm |2) dr

1 /7
—/ |AY(7“)|2 dr
€ S

IN

E +ep (M2 z — ') (1 + |$—x’|2)). (4.19)

Besides since h(*) is Lipschitz w.r.t. (y, z,q) then,

T
E 2/ < AY(r),Asz(r) > dr| <2CE

T
RIS dr] , (4.20)
and

€ s

E [2 /T < AY(r),Ag(r) > dr

<E ll /T|AY(T)|2dr+CQe/T|AZ(r)|2dr] : (4.21)

It remains to obtain a control of the last term. But for any s € [¢,T] we have,

E

2/T < AY (r), Ag(r) > dr] (4.22)

] |

/T |AY ()| dr x

S

< 2CE

[ (Xt e e) = 5 X0 U () M)

Next by splitting the crossing terms as follows y(r, X1%, e)Ub* (e)—~(r, X1*', e)UL* (e) = AU (e)y(s, X1%, e)+

U (V(S,Xi’””,e) - v(s,Xﬁ’m',e))
and setting Avs(e) := (7(3, Xt e) — (s, X0, e)),

we obtain,
T T

E [2/ < AY(r), Ay(r) > dr] < 2CE / |AaY (r)|x (/ (Uﬁvw'(e)A'yT(e)+|AUT(e)’y(r,Xﬁvw,e))A(de)) dr‘|
s s E




< %E /ST|AY(r)|2dr + C%E /ST (/E(|Uﬁ’””/(e)A%(e)P\(de))2dr}
+C%E / ' ( [E (|AUT(e)7(r,Xﬁ’I,e)|)\(de))2 dr| . (4.23)

By Cauchy-Schwartz inequality, (2.8)-(ii), Jensen’s inequality and (3.11), and the result of Lemma 4.1 it

holds:

E l/T (/E(|U;5,w'(e)A%(e)P\(de))2 dr] < E /ST dr (/E|Uﬁ’ml(e)|2)\(de)> ([Em%(e)mwe)ﬂ
< p (M2 2 — 2P (1+ |z — x/|2)) x E /ST dr (/E |Uﬁ’””/(e)|2/\(de))]
< Op (M2 lz— 2 (1+ |zfx’|2)) 1+ |z]"). (4.24)

On the other hand using once more Cauchy-Schwartz inequality and (2.8)-(i) we get

E [/ST </E(AUr(e)V(T,Xﬁ’w,e)M(de))2 dr] E [/ST dr (/E(|AUT(6)|2/\(de)> </E (7, Xﬁ’m,e)|2)\(de))1
/ST dr (/E(|AUT(6)|2)\(de))] . (4.25)

IN

IN

CE

From (4.19) to (4.25) it follows that:

— — /2 T T
E|[Fre _ g +/ AZ,|? dr+/ IAU £z ) dr
/2 T .’
<E |[o(x) - g(x5™) +2/ < (Ve =ve) g > dr

. 4
< p(lex—x’|2(1+|x—x’|2)) [C(1+ |z|") + 1+ e+eC?] + (;+2C)E

/ST i (/E(lAUT(e)|2)\(de))

By choosing € such that {e + 2 + ¢(2C% + C?) + 2C < 1} we deduce the existence of a constant C' > 0

/ST |AY (r)]? dr]

/ST |AY (r)]? dr}

T
+C? R / |AZ(r)|? dr| + C3E

S

such that for any s € [t,T],

E[AY(5)P] < p (Malo =2 (14 |o ') [CQ+ [2])] + E

and by Gronwall lemma this implies that for any s € [t, T,

E[AY (5)12] < p (Malo— ' (14 |z = o)) [C1 + Jo])] .

Finally in taking s = ¢ and considering (3.13) we obtain the desired result.

Now we start a point which giving difference of definition viscosity solution between [1] and [3].
It should also be noted that in this part will appear our first contribution after of course the first corre-
sponding to the proposition 4.2. It will be mainly about the use of the M class and the Bihari inequality

as in [8].



Proposition 4.3 For anyi=1,...,m, (t,x) € [0,T] x R¥,
Uit (e) = u'(s, X1" + B(s, X107, €)) —u'(s, X"), dP@ds®@d\— a.e. on Qx [t,T] x E.  (4.26)
Proof. Step 1: Truncation of the Lévy measure

For any k > 1, let us first introduce a new Poisson random measure py (obtained from the truncation of

w) and its associated compensator vy as follows:
pie(ds, de) = 1go>1yp(ds, de) and vi(ds, de) = 1¢>1yv(ds, de).

Which means that, as usual, ux(ds, de) := (ur, —vi)(ds, de), is the associated random martingale measure.

The main point to notice is that
Ak(E) = / Ak(de) = / L{je|> 1y Alde)
E E
= / A(de)
{lel>#}
1

= A{lel > E}> < 00. (4.27)

As in [3], let us introduce the process ¥ X** solving the following standard SDE of jump-diffusion type:
FXLT = x—l—/ b(r,kXﬁ’””)dr—i—/ o(r)f X1*)dB,
t t

S
+/ / B(rk Xﬁf,e)ﬁk (dr,de), t<s<T; X' =zxifs<t.
t JE
(4.28)
Note that thanks to the assumptions on b, o, § the process *X*® exists and is unique. Moreover it
satisfies the same estimates as in (3.11) since Ay is just a truncation at the origin of A which integrates

(LA le[)eck-

On the other hand let us consider the following Markovian BSDE with jumps

(i) E

T T
2
Supgs<r ’k)st’mf + / ’kziz} dr + / Hkbﬁ’IHEQ(Ak) dr] < 00

(i4) kyte . (kyi,t,z)izl,m c SQ(Rm), kogte . (kzi,t,x)izl,m c HQ(Rmxd),
UL = (PO )iz € HP (LT, (W) 4.29)
() 51 = X8 [ X7 R 2 ) i *

- / ' {’“Zi’x dB, + / {FUP*(e)} ik (dr, de)}, s < T;
(iv) F¥i = (X5, )

Finally let us introduce the following functions (f(*);—1,,, defined by: V(t,x,y, z,¢) € [0, T] x RF x R™ x
Rmx*d x Lgn()\k),

nwww%o(ﬁma%%@mAM:(M”@L%zéﬁmaamaM@ﬂ>

i=1,m

10



First let us emphasize that this latter BSDE is related to the filtration (F¥)s<7 generated by the Brownian
motion and the independent random measure u;. However this point does not raise major issues since
for any s < T, F¥ C F, and thanks to the relationship between u and j.

Next by the properties of the functions b, o, 8 and by the same opinions of proposition 3.2 and proposition
3.3, there exists an unique quadriple (kYt’””,k Z4® F U5 solving (4.29) and there also exists a function

u* from [0,7] x R* into R™ of II¢ such that
Vs € [t,T], "Y' :=u"(s,fF X"7), P— a.s. (4.30)

Moreover as in proposition 4.2, there exists positive constants C' and k wich do not depend on k such
that:
vta,a!, ikt e) = a2 < p (Mo — ' (14 Jo = o/P)) (OO + Jo])]. (4.31)

Finally as )y, is finite then we have the following relationship between the process *U** := (*U GhTY
and the deterministics functions u® := (u¥);=1 ., (see [4]): Vi =1,...,m;
kyrist,x _ k yt,x k vtz k vt
Uite(e) = ulf(s,* X0" + B(s,F X0 e)) —ul(s,F X17), dP @ ds ® d\y — a.e. on Q x [t,T] x E.

s—

This is mainly due to the fact that ¥U%* belongs to L' N1L2(ds ® dP ® d\y) since A\ (E) < co and then

we can split the stochastic integral w.r.t. fiy in (4.29). Therefore for all i = 1,...,m,

kU;';t, (e )1{‘e|>1} = (u} ( kXt erﬂ( 5_76))—uf(57k X;f))l{‘e|2%}, dPRds®dAp—a.e. on Qx[t, T|x E.

(4.32)
Step 2: Convergence of the auxiliary processes
Let’s now prove the following convergence result;
E |sup [y =% vie | / |ztw —k Zte|? ds+/ ds/ (de) ’U” P UL (e)1g)> k5 4o00;
s<T
(4.33)

where (Y%, Z5® UH%) is solution of the BSDE with jumps (3.12).
It should be noted that this convergence (4.33) requires as the technique used in (4.2) the following

convergence:

E [sup | x5 —* X;f@ﬂ k1000, (4.34)
s<T

Proof. [of 4.34]

xte bt = [l X0 b0t X dr+ [ (o X07) = o X1) aB,
0

// rXoTe) = B(r X, e) 14y ik (dr, de).
(4.35)

Next let € [0,T]. Since |a + b+ ¢|*> < 3(|a]? + |b|> + |c|?) for any real constants a, b and ¢ and by the

Cauchy-Schwartz and Burkholder-Davis-Gundy inequalities we have:

11



E [ sup |X1* —k Xﬁjzﬂ

0<s<n
s 2 s 2
< 3E[sup /(b(r,X,t_’I)—b(r,ka’z))dr + sup /(O’(T,Xﬁ’z)70’(T,kX:’z>>dBr
0<s<n [JO 0<s<n |JO
2
+ sup / / TXtI 7ﬂ(rka:7—zve)1{\e|>l})ﬁk(drade) ‘|
0<r<n =k
"
< CE { / sup {|<b<r,X;ivf>b(r,kxﬁﬁz>>|2+\<a<r,Xivm>a(r,kx:ivm»f}dr}
0

0<n<r

n
+CE [/ / sup ’6(7‘, X" e) — B(rk X:’f,e)f A (de)dr
0o JE

0<r<n

n
+/ / sup ‘ﬂ(r,Xﬁf,e)fl{eKi})\(de)dr]
0 E 0<r<n
(4.36)

Since b, o and 8 belong to M, then we have: Vr € [0,T],
sup {[(b(r, X17) = b(r XEN)[* + (0, X27) — o0 F X2))| "} < Cp(| X0 —F xL2") (437)
0<r<r

and

z z 2 z z|2
/ sup ‘B(Ta XﬁL ) 6) - B(Tak XﬁL ) €)| Ak (de) < Cp(‘th_’ —F X’fj ‘ ) (438)
E

0<r<n

Plug now those two last inequalities in the previous one to obtain: Vn € [0, T],

"
E [ sup | X7 —F Xﬁ’mﬂ < CE / (| XL -k Xﬁ@f)dr +/ (1A le|*) Mde)
0<s<n {lel<%}
< C/ ‘X” kX”‘ })dr—l—CE / (1/\|e|2))\(de)1 (by Jensen),
{lel<#}
By Bihari’s inequality (see [8] page 171 and [9]) and the fact of/ (1A ]e]*) M(de)r—57 000; we obtain
{lel<%}

our result the (4.34).

We now focus on (4.33). Note that we can apply Ito’s formula, even if the BSDEs are related to filtrations
and Poisson random measures which are not the same, since:

(i) F¥ c F,, Vs < T;

(ii) for any s < T, /S /k UsH ()i (dr, de) = /S /k Ui?t’””(e)lﬂe‘z%}ﬁ(dr, de) and then the first
(FE)s<r—martingale isoalsi an (.Fs)ng—martingale.OVsEE [0, 7],

/ ’Ztl kzt m’ ds + Z Arﬁt,m)Q

s<r<T

T
— lgx5) g X w2 [ (T R vie) <k ardr

T . T . .
f2/ / (}/Tt,z _k }/Tt,z) (kAUT((B)) ﬁ(d?", de) o 2/ (}/Tt,z _k }/Tt,z) (kAZT) dBT;
s E s

2
_k Y'St,z

12



and taking expectation we obtain: Vs € [t, T,

2 T
+/ {‘Zﬁ’m - Zﬁ’mf*/ U Uy
0 E B

T
o057 — o 2 [ (T =) < a g dr] ;

—

t,x _kytx
yir by

S

E

’ )\(de)} ds]

(4.39)

where the processes *AX,., FAY,, *Af(r), *AZ, and ¥AU, are defined as follows: Vr € [0, T],

kAf(T) = ((kAf(i) (T>>i:1,m = (f(i) (7’, X1§7I’ }7’:@, Z};;t’z’ Ui;t,x) - fIgZ) (r’k X:’z’k Yrt’zvk Zﬁﬁz’k Urt’z»i:l,mv
kAXT — Xﬁ,z _k Xﬁ,x7 kAY(T) — }_/;t,ac _k Yrt,m — (}/Tj;t,ac _k }/»,‘j;t7x)j:1,m; kAZT — Z;‘,‘,x _k Zﬁ,x and
kAUT = Ui’z —k U§7Z1{|e‘2%}

Next let us set for r < T,

where for any ¢ = 1,.

z) kth Ytac Zztz /’yi(T,Xﬁ’z,€>U:;t’z(€>>\(d€>>> :
E i=1,m

)

A(r) = (h@( Xr Y gt / yi(r,Xﬁ’I,e)Uﬁ;t’I(e))\(de)>
E

B(r) = ( W (rf Xbe Yo zite /7(r X0, )Ui't’“(e)/\(de))

z) (rkth kyt:n Zztx

)

m\

XU N)) )

C(r) ( K" (r,kX“”kY”Z”I/Ev (r, X0", e) U (e ))\(de))
—ht (r,kXt”” Ry bzt /Evi(r, Xﬁ’””,e)Uf“”(e)A(de))) ;
i=1,m
D(r) (h(l) (r,k Xh* e VA e ZZ it,e /Evi(r, Xhr e)Uf*t’z(e)A(de))
_p® ( kXt z kyt z kZztz / ,yi(r’k Xﬁ,z’e)kUZ;t,z(e))\k(de)))
E

1=1m

Since g belongs to M and by (4.34) we have,

E[\g( ) 9" X m)ﬂ ol (4.40)

Now we will interest to E

T
/ (}7;” —F YTM) x® Af(r) dr] for found (4.33).
y (2.7), we have: Vr € [0,T]

A2 < p(| X" =k x|,

13



B0 100 < O[T v+ |z k2|,

(4.41)
Now let us deal with D(r) which is more involved. First note that D(r) = (D;(r))i=1,m where
Dir) = 1 (mexi iy i, [ i ouite @)
E
_h(i) (T,k Xﬁ,z’k Y;}E,z,k Zﬁ;t,z’/ ,yi(r,k Xﬁ,z,e)kUﬁ;t,z(e))\k(de)) )
E
But as A" is Lipschitz w.r.t to the last component ¢ and by the relation (2.8) then ,
2
2 i z it ) z it
DO < c{ 7, X5, )UEE (e) — 47 (15 XE%, )T (€)1 101511 A(de>}
< cf{[ bt -t ol o) o
H{ [ b of (@) = UE 01 o | Ao | }
< cpxm =+ ey { [ oo ae |
. 2
+C/ (1 A le])*A(de) x / ‘U“W e) —F Urt®(e)lge>1y| Ade), (4.42)

By using the majorations obtain in (4.41) and in (4.42) and Cauchy-Schwartz inequality;

2 T 2
+/ {]Zi’x - Zﬁ*z]Q—i—/ ‘Uj,’”” P UL o> 1 )\(de)} ds
0 E -
T T
/ o o [
T 2
JrC’\/E[ sup p (|th kXﬁz|2)} x |E (/ /‘Uﬁ*t’x(e)f)\(de)dr>
s<r<T s E
g k
t,x t,x
/ /’U o
t JE

For C'e < 1 and the Gronwall’s lemma going through the dominated convergence theorem, the continuity

IE{:’

and in taking s = ¢t we obtain uk(t,x)*];_%i’)x) As (t,) € [0,T] x R* is arbitrary then u*; 7Y%

ot.x kv tx
B |[7e -ty

x |2 2t . 2
<E “g(XtT )_g(kX? )’ } +C.E Yte _kyt,

+CeE

’ A(de) ds] (4.43)

of g and p and the lemma 4.1, then

_k }/St,z

k— o0

2} — 0 (4.44)

pointwisely.

Taking the same arguments as when getting (4.44); we once again add Lebesgue’s dominated convergence

t,x t,x
El/ /’U U o> 1y
t E

14

theorem to have,

k—-+oo

A(de) ds] — 0. (4.45)



Step 3: Conclusion
First note that by (4.31) and the pointwise convergence of (u*); to u, if (zx)x is a sequence of R¥ which
converges to = then ((u¥(t,z1))x) converges to u(t,x).

Now let us consider a subsequence which we still denote by {k} such that sup ., ’X e _k xte 2 IH—}FO%,

P-a.s. (and then ’Xﬁf —k xb* — 0 since ’X;f —Fk Xﬁf’ < sup,op | X0T —F X§7I‘2). By (4.34), this

sS— | k—+oo

subsequence exists. As the mapping x — 8(t, z, e) is Lipschitz then the sequence

(kUﬁ@(e)l{‘elZ%})k - ((uf(s,k X4 B(s,F XD e)) — uk(s)F Xﬁf))1{‘6|2%})k>l ko100
(ui(s, X2" + B(s, X0",€)) —ui(s, X1")), dP®@ds®@d\—a.e. on Qx[t,T]x E (4.46)
for any ¢ = 1,...,m. Finally from (4.45) we deduce that
Ub®(e) = (ui(s, X1 + B(s, X0", €)) —ui(s, X17)), on Qx [t,T] x E (4.47)

which is the desired result.

5 The main result

Unlike Barles and al.[1] our result on viscosity solutions is established for the following definition.

Definition 5.1 We say that a family of deterministics functions u = (u%);=1m which belongs to M Vi €
{1,...,m} is a viscosity sub-solution (resp. super-solution) of the IPDE (1.1) if:

(i) Vo € RF ui(x,T) < g'(x) (resp. u'(x,T) > g'(x));

(ii) For any (t,x) € [0,T] x R¥ and any function ¢ of class C*2([0,T] x R¥) such that (t,x) is a global

mazimum point of u' — ¢ (resp. global minimum point of u* — ¢) and (u’ — ¢)(t,x) =0 one has
7at¢(t7 :C) - £X¢(t7 :C) - h’i(ta €T, (uj (t5 z))j:17m7 UT(ta z))DI¢(t7 SC), Bluz(tv .CC)) < 0 (548)

(resp.

—Op(t,x) — Equ(t,x) — hi(t,x, (uj(t,x))jzl,m, ol (t,2))D.o(t, ), Biui(t, x)) > O) . (5.49)
The family u = (u')i=1m s a viscosity solution of (1.1) if it is both a viscosity sub-solution and viscosity
super-solution.
Note that LX¢(t,x) = b(t,z) " Dyg(t,x) + 1 Tr(o0 " (¢, 2)D2,¢(t, x)) + Ko(t, x);
where Ko(t, x) = /(qﬁ(t, z+ B(t,x,e)) — d(t,z) — B(t,z,e) Dyo(t, z))\(de).
E

Theorem 5.2 Under assumptions (H1) and (H2), the IPDE (1.1) has unique solution which is the
m-tuple of functions (u")i=1,m defined in proposition 3.3 by (5.13).
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Proof. Step 1: Existence
Assume that assumptions (H1) and (H2) are fulfilled, then the following multi-dimensional BSDEs with

jumps
= (L)l € SAR™), 207 = (270 g € HER™XD), UM 1= (UH)y € HR(L2, (V)
(i1) Y = gi(X0") — / ! Z5dB, — / ! /E Ust(e)pi(dr, de).

+f U RO Xt Y g, [ A (0 X0 B0, X)) — w0, X)) N

s E
(i) Y3 = g (X5,

(5.50)
has unique solution (Y, Z,U). Next as for any i = 1,...,m, u’ belongs to M, then by proposition 3.3
the (3.13), there exists a family of deterministics continuous functions of polynomial growth (u')i—1 .,

that fact for any (t,x) € [0,T] x R¥,
VseltT],  YET = ui(s, X10).
Such that by the same proposition, the family (u’);=1,m is a viscosity solution of the following system:

—Ow(t,z) — b(t, ) " Dyul(t, ) — $Tr(oo ' (¢, x)D2 u'(t, z))
~Ku' (t,z) — b (t, 2, (! (t,2))j=1,m, (0T Dpr) (t,x), Biu'(t,2)) =0, (t,x) € [0,T] x R¥;

(T, ) = gi(a).
(5.51)

Now we have the family (u');=1 ,, is a viscosity solution, our main objective is to found relation between
(u')i=1.m and (u*);j=1,m which is defined in (3.13).
For this, let us consider the system of BSDE with jumps

(Z) ?t,x = (Yi;t’z)izl,m c SZ(Rm), Zt,:n = (Zi;t7x)i:1,m c HQ(Rde),
U o= (US7)jm1,m € B (L7, (V)

T T
(i) vitr = g (xy) — [ zeam, - [ [ o). (5.52)
b [ 0 v 2, [ X U M)
S E

(iii) Y5 = g(X5").
By uniqueness of the solution of the BSDEs with jumps (5.49), that for any s € [t,T] and Vi € {1...,m},
Yi?t@ — Yi;t,x.
Therefore u* = u’, such that by (4.45) we obtain Ub*(e) = (u;(s, X" +8(s, X0, e))—ui(s, X1¥)), on Qx
[t,T] x E, which give the viscosity solution in the sense of definition 5.1 (see [3]) by pluging (4.46) in h(¥)
of (5.51).

Step 2: Uniqueness

For uniqueness, let (7');—1,, be another family of M which is solution viscosity of the system (1.1)
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in the sense of definition 5.1 and we consider BSDE with jumps defined with @’.

=tz t,x —i;t, x> t,x —ist, T

OY =Y “mes2(Rm)_* = (Z") iz € HR(R™¥4), T = (T

(i) Yo" = . (X””)f/s 4B, f/ / T2 (e)7i(dr, de).

+/ W (r, X" Yzm,Zi’t’mv/vz(t,Xﬁ“, e) (@i (s, X2+ Bs, X0 e)) — Wils, X)) Ade))drs
s E

—it,x

(i) Y& = g(X%I).

1t
)

Ji=1,m € H*(LZ,(N));

(5.53)
By Feynman Kac formula 7' (s, X1%) = Y35 where Y% satisfies the BSDE with jumps (1.3) associated
to IPDE (1.1).
Since that the BSDE with jumps (5.51) has solution and it is unique by assumed that (H1) and (H2)
are verified. By proposition 3.3 the (3.13), there exists a family of deterministic continuous functions of

polynomial growth (v%);—1,, that fact for any (¢,z) € [0,7] x R¥,

i;t,T
s

Vs € [t, T, Y. =0'(s, X5T).

Such that by the same proposition, the family (v');—1 ,, is a viscosity solution of the following system:

—0w'(t,x) — b(t,z) " Dyvi(t,z) — 3 Tr(oo ' (t, 2)D2 v (t, z))
~Kvi(t,x) — WO (t, 2, (v (t,2)) j=1.m, (0 Dpv?) (L, x), Bi@ (t,x)) =0, (t,z) € [0,T] x R¥;
u(T,z) = g ().
(5.54)
By uniqueness of solution of (5.52) @' is viscosity solution of (5.53); and by proposition 3.3 v’ = @’
Vie{l,...,m}.
Now for completing our proof we show that on Q x [t,T] X E, ds @ dP ® d\ —a.e. Vi e {1,...,m};

—i;t,x

Us™ (e) (v' (s, X222 + B(s Xifa e) —v'(s, X))

= (i(s, X027+ B(s, X% €)) —Wi(s, X)), (5.55)

By Remark 3.4 in [3]; let us considere (zj)x>1 a sequence of R¥ which converges to x € R* and the two

following BSDE with jumps (adaptation is w.r.t. F*):

=ktx —ik,t,x k,t,x —isk,t,x

DY =i € S2R™), 2V = (Z )il € HERTXD), TN = (T

(”> ?i;k,t,z:gi(Xéi’t,m)i/ zktde 7/ / zktz dT de)
T s
+/ h(i)(ertxylktI7Zktz

T I

—k,t,x —i;k,t,x

Ji=1,m € H*(ILZ,(N));

/E W, XBbee o) (w;(s, XEPT 4 B(s, X0 e)) Ei(s,Xf’_t’zk))/\(de)) dr;

(i) Vi o™ = g(xhton),

(5.56)
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and

k.twi, k,t,xy

DY = ()l € S2R™), Z0 = (2P, € HE(RMXD),
Th = (T i=1,m € H?(L2,(N));

(i) T = gi(xhton) / 77 ap, — / / ERLT () i(dr, de)

T
+/ h('b)( thxk Yl ikit,xk Zz,k,t,mk

i3k, t, Ty
)i

T )

/ ’yi(ta Xfﬁtyxkv 6)(ﬂi(8, Xfﬁ—tymk =+ ﬂ(S Xk bk )) - ﬂi(sv Xfy—tﬁzk» )\(d€>> dT;
E

(#i1) YZTk e _ g(Xth’m’“).
(5.57)
L. —ik,t,x =iktx s=isk,t,x —it,x =itz —it,x
By proof of step 2 of proposition 4.3, (Y . Z U 1{\6|Z%})k converge to (Y 7,277 U )

in S2(R) x H2(R*?) x H2(L2(N)).
Let ((vF_, .m))k>1 be the sequence of continuous deterministics functions such that for any ¢ < 7" and
s € [t,T],

ik, t,x

=t (s XY and Y,

— i3kt —k k t.xn .
Y =77 (s," X)) Vi=1,...,m

Such that we have respectively by proof of proposition 4.3 in step 1 and step 2:
@) T () = (vi(s,F X074+ B(s,F XE7 ) — vi(s,F XB7)), ds @ dP ® d-ae on [t,T] x Q x E;
(ii) the sequence ((vf_, ,,))k>1 converges to v'(t, z) by using (4.44).

So that xy —r = we take the following estimation which is obtaining by Ito’s formula and by the

T
i +/ {\vam — zhte|? +/ |Ukten — gkt Ak(de)} ds]
0 E

T
|g tzk) *g(kX;lm)ﬁ 4 2/ < (Y’Tk,t,xk B YTk,t,x) 7k Ah(i)(r) > dr]

properties of h(".

E Ysk,t,ack o Ysk,t,:n

<E

Using the same arguments as in proof (4.33), it follows that for s =¢; Vi=1,...,m

vf(t,xk) — ) U (t x).

Therefore by (i)-(ii) we have, for any i = 1,...,m,

T35 () = (vi(s, X254 B(s, X7, ) —vi (s, X1%))  ds@dP@dA—ae. in [t, T|xQxE, Vie{l,...,m}.
(5.58)
By this result we can replace (;(s, X:* + (s, X" e)) — wi(s, X1*)) by Ul’ “(e) in (5.55), we deduce
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that (Yt’x,7t’x,Ut’x) verifies: Vi € {1,...,m}

"z 1t t,z —it,x t,x —u;t,x

WY = (T, 1m682(Rm) 7" = (2", 1meH2(Rde) T = (U
Y

(i) ”””—g%x;w)—/s 7" b, ‘// e, do)

T .
+/ h(z)(r th Y”z,Zz’t’z,/'yZ(T,Xﬁ’z,e)Ui” A(de))dr;

T
E

Ji=1,m € H*(L7,(N));

—it,x

(i) Yy = ¢ (X7").

(5.59)
It follows that

Vi e {1,...,m}, Yi;t,z :Yi;t’ml

With the uniqueness of solution (5.53), we have u! = u' = v® which means that the solution of (1.1) in
the sense of Definition 5.1 is unique inside the class M.

In this paper we have shown the existence and uniqueness of viscosity solution through BSDE by weak-
ening the condition on the generator used in [3].

The question that arose now is to have the existence and uniqueness of viscosity solution through the
RBSDEs.
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Appendix

Barles and al.’s definition for viscosity solution of IPDE (1.1)

Definition 5.3 We say that a family of deterministics functions u = (u')i—1 ., which is continuous
Vie {l,...,m}, is a viscosity sub-solution (resp. super-solution) of the IPDE (1.1) if:

() VreRE, uie,T) < gi(z) (resp. w'(a,T) > gi(a));

(ii) For any (t,x) € [0,T] x R¥ and any function ¢ of class C*2([0,T] x R¥) such that (t,x) is a global

mazimum point of u' — ¢ (resp. global minimum point of u' — ¢) and (u' — ¢)(t,z) = 0, one has

min {u'(t, ) — {(t,2); =0 p(t,x) — LX(t,x) — hi(t, 2, (W (t,2))j=1,m, 0 (t,2))Dadp(t, ), Big(t,x))} <0
(resp.

min {u'(t, ) — £(t,2); O d(t,x) — LX(t, z) — h'(t,z, (W) (t,2))j=1,m,0 " (t,2))Dad(t, ), Bigp(t, x)(t, x))} 20) .

The family u = (u')i=1,m is a viscosity solution of (1.1) if it is both a viscosity sub-solution and viscosity
super-solution.
Note that LX¢(t,z) = b(t, ) 'Dyé(t, ) + 1 Tr(oo T (t,2)D2,¢(t,z)) + Ko(t, z);
where Ko(t, x) = /(d)(t, z+ B(t,x,e)) — o(t,x) — B(t,z,e) Dpg(t, z))A(de).
E

Another Mao condition

In this paper it was mainly a question of the p-order Mao condition, it is necessary to know that there
exists another condition of Mao which is mainly used in the case of monotony of the generator for apply

the comparison theorem at the viscosity solution.

Definition 5.4 f satisfies the p-order one-sided Mao condition in x i.e., there exists a nondecreasing,

d
concave function p(-) : RY — RY with p(0) = 0, p(u) > 0, for u > 0 and/ Ll

= 400, such that
o+ p(u)

dP x dt—a.e., Vz,z' € R* and Vp > 2,

z—2a

’ 1 /
< m]l|xfx’\;é03f(ta$ay7z7q) - f(t,l' ;ya27(Z) >< pp(|$ -z |p)

Remark 2 Applying Cauchy-Schwartz inequality for the p-order one-sided Mao condition, we deduce the

p-order Mao condition.
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