
HAL Id: hal-01868414
https://hal.science/hal-01868414v1

Submitted on 5 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

New Initialisation Techniques for Multi-objective Local
Search

Aymeric Blot, Manuel López-Ibáñez, Marie-Éléonore Kessaci, Laetitia Jourdan

To cite this version:
Aymeric Blot, Manuel López-Ibáñez, Marie-Éléonore Kessaci, Laetitia Jourdan. New Initialisation
Techniques for Multi-objective Local Search. Parallel Problem Solving from Nature - PPSN XV, Sep
2018, Coimbra, Portugal. �10.1007/978-3-319-99253-2_26�. �hal-01868414�

https://hal.science/hal-01868414v1
https://hal.archives-ouvertes.fr

Archive-aware Scalarisation-based
Multi-Objective Local Search

For a Bi-objective Permutation Flowshop Problem

Aymeric Blot1, Manuel López-Ibáñez2,
Marie-Éléonore Kessaci1, and Laetitia Jourdan1

1 Université de Lille, CNRS, UMR 9189 – CRIStAL
{aymeric.blot,mkessaci,laetitia.jourdan}@univ-lille.fr

2 Alliance Manchester Business School, University of Manchester
manuel.lopez-ibanez@manchester.ac.uk

Abstract. Given the availability of high-performing local search (LS)
for single-objective (SO) optimisation problems, one successful approach
to tackle their multi-objective (MO) counterparts is scalarisation-based
local search (SBLS). SBLS strategies solve multiple scalarisations, i.e.,
aggregations of the multiple objectives into a single scalar value, with
varying weights. They have been shown to work specially well as the
initialisation phase of other types of multi-objective local search, such as
Pareto local search (PLS). A major drawback of existing SBLS strategies
is that the underlying SO optimiser is unaware of the MO nature of the
problem and only returns a single solution, discarding any intermediate
solutions that may be of interest.
We propose here two new SBLS strategies (ChangeRestart and Change-
Direction) that overcome this drawback by augmenting the underlying
SO-LS method with an archive of nondominated solutions that is used
to dynamically update the scalarisations. The new strategies produce
better results on the bi-objective permutation flowshop problem than
other five SBLS strategies from the literature, not only on their own but
also when used as the initialisation phase of PLS.

Keywords: Flowshop scheduling · Local search · Heuristics · Multi-
objective optimisation · Combinatorial optimisation.

1 Introduction

Multi-objective (MO) local search methods [11, 7, 5] are usually classified into
two types. Scalarisation-based local search (SBLS) strategies aggregate the mul-
tiple objectives into a single (scalar) one by means of weights, and use single-
objective (SO) local search to tackle each scalarised problem. Dominance-based
local search (DBLS) strategies search the neighbourhood of candidate solutions
for (Pareto) dominating or nondominated solutions. Successful algorithms for
MO combinatorial optimisation problems often hybridise both strategies by gen-
erating a set of high-quality solutions by means of SBLS, and further improving
this set by applying a DBLS method [3, 7, 8, 5].

2 A. Blot et al.

Various SBLS strategies have been proposed in the literature that mainly
differ in the sequence of weights explored during the search and the starting
solution for solving each scalarisation. The simplest method, henceforth called
Restart [10], uses a uniform set of weights and starts each scalarisation from a
randomly (or heuristically) generated solution. More advanced strategies, such as
AdaptiveAnytime [4], dynamically compute the next weight and choose a starting
solution among the best ones found so far with the goal of closing the largest
“gap” in the current Pareto front approximation.

First, we propose to augment the single-objective local search that solves
the scalarisations with an archive of nondominated solutions, such that they are
able to return more than one solution and make these solutions visible to the
overall SBLS strategy and to the other local search runs solving other scalar-
isations. Then, we propose two new SBLS strategies. With ChangeRestart, we
subdivide the time granted to solve each scalarisation in multiple steps, and
use intermediary solutions to restart each local search run when it falls behind.
With ChangeDirection, we further improve ChangeRestart by changing not only
the starting solution of a local search run, but also the weight that defines the
scalarisation being solved. As a case study, we focus on a bi-objective variant
of the permutation flowshop scheduling problem (PFSP), which has been used
previously as a benchmark for MO local search [3].

This paper is organised as follows. Section 2 describes classical SBLS strate-
gies, together with the PFSP variant on which they have been previously applied.
Section 3 proposes to augment single-objective local search with a nondominated
archive to be used within SBLS strategies; and Section 4 proposes two new SBLS
strategies. The experimental setup is then detailed in Section 5, whose results
are discussed in Section 6. Section 7 summarises the main conclusions.

2 Background

2.1 Scalarisation-based Local Search (SBLS)

In multi-objective combinatorial optimisation problems, we have a set of feasible
solutions S, where each solution may be evaluated according to a vector of M
objectives f(s) = (f1(s), . . . , fM (s)). Without a priori information, candidate
solutions are usually compared in terms of Pareto dominance: s1 dominates s2
iff ∀i = 1, . . . ,M , fi(s1) ≤ fi(s2) and ∃j, fj(s1) < fj(s2). The goal becomes to
find, or approximate as well as possible, the Pareto-optimal set, i.e., the set of
solutions S∗ ⊂ S that are not dominated by any other solution in S. The image
of the Pareto-optimal set in the objective space is called the Pareto front.

A MO problem can be transformed into a SO one by scalarising it, for
example, by means of weighted sum. For simplicity, we will focus on the bi-
objective (M = 2) case in the following. Given a problem with two objectives
f(s) = (f1(s), f2(s)) and a normalised weight vector λ = (λ, 1 − λ), where
λ ∈ [0, 1] ⊂ R, the corresponding scalarised problem (scalarisation) is computed
as fλ(s) = λ · f1(s) + (1−λ) · f2(s). An optimal solution of this SO scalarisation

Archive-aware Scalarisation-based Multi-Objective Local Search 3

is a Pareto-optimal solution of the MO problem, thus multiple Pareto-optimal
solutions (although maybe not all) may be obtained by solving multiple scalarisa-
tions with different weights. The main advantage of solving scalarisations instead
of the original MO problem is that, very often, highly effective and efficient lo-
cal search algorithms exist for the single-objective case. SBLS approaches are
conceptually related to decomposition-based algorithms (e.g., MOEA/D [14]).

Literature SBLS strategies differ in how weights are generated and which
solution is used as the starting point of each local search run LSλ solving fλ.

Perhaps the simplest restarting strategy consists in generating a set of uni-
formly distributed weights and start each LSλ run from a randomly or heuristi-
cally generated solution.

TPLS. In the simplest version of TPLS [10], one high-quality solution is
generated by optimising just the first objective. On a second phase, a sequence
of scalarisations of the problem, with weights that increasingly favours the second
objective, are tackled by running LSλ, thus generating solutions along the Pareto
frontier from the first to the second objective. Moreover, each run of LSλ starts
from the best solution found for the previous scalarisation. This strategy is called
1to2 or 2to1 depending on which objective is optimised in the first phase. The
1to2 and 2to1 strategies tend to produce better solutions towards the starting
objective. In order to avoid this bias, an alternative strategy (Double) uses half
of the weights for 1to2 and the other half for 2to1 [10, 4]

AdaptiveAnytime. The above TPLS strategies can lead to uneven explo-
ration of the objective space and poorly distributed approximation of the Pareto
front if the problem is not fairly regular in terms of difficulty and the Pareto front
is roughly symmetric for all scalarising directions. Similar poor results will also
be obtained if the algorithm is terminated before tackling the predefined number
of scalarisations. The adaptive anytime TPLS (AdaptiveAnytime) strategy was
proposed to address these issues [4]. Similar to TPLS, a first phase generates
one high-quality solution for each individual objective (like in Double) and a sec-
ond phase solves a sequence of scalarisations. AdaptiveAnytime maintains a set
G of “gaps” in the current approximation to the Pareto front, where each gap
is a pair of solutions that are neighbours in the objective space, i.e., no other
solution exists within the hyper-cube defined by them, and the size of the gap is
the volume of this hyper-cube. The most successful variant of AdaptiveAnytime
solves two scalarisations at each step, by first finding the largest gap in G, e.g.,
(s1, s2), with f1(s1) < f1(s2), then computing:{

λ1 = λ− θ · λ
λ2 = λ+ θ · (1− λ)

where λ =
f2(s1)− f2(s2)

f2(s1)− f2(s2) + f1(s2)− f1(s1)
(1)

and θ ∈ [0, 1] is a parameter that biases λ1 towards the first objective and λ2
towards the second objective; and, finally, solving fλ1 starting from s1 and fλ2

starting from s2. The solution returned by solving each scalarisation is used to
update G, by removing any dominated solutions and updating the corresponding
gaps. Thus, each step of the AdaptiveAnytime strategy tries to reduce the size of
the largest gap and adapt the weights to the shape of the current front.

4 A. Blot et al.

2.2 Bi-objective Permutation Flowshop Scheduling

The above SBLS strategies have been tested on various bi-objective permutation
flowshop scheduling problems (PFSP) [4] and AdaptiveAnytime was later used as
the initialisation phase of the state-of-the-art MO local search [3].

The PFSP is among the best-known problems in the scheduling literature,
since it models several typical problems in manufacturing. Given a set of n jobs
to be processed sequentially on m machines, where each job requires a different
processing time on each machine, the goal is to find a permutation of the jobs
that optimises particular objectives, such that all the jobs are processed in the
same order on all machines, and the order of the machines is the same for all jobs.
In this paper, we focus on the bi-objective variant (bPFSP) that minimises the
makespan, that is, the completion time of the last job, and the total flowtime,
that is, the sum of completion times of all jobs.

3 Archive-aware SBLS Strategies

Traditional SBLS strategies, such as the ones described above (Restart, 1to2,
2to1, Double and AdaptiveAnytime), use a SO local search to find a new solution
optimised for a given scalarisation. Each local search run (LSλ) starts from a
given solution and returns the single best solution found for that particular
scalarisation. Any other solution found during the run is usually discarded, even
those solutions that are not dominated by the solution returned.

We propose to augment the SO local search with an archive that keeps track
of nondominated solutions found while solving a scalarisation, in order to pre-
serve solutions that may be optimal for the MO problem, even if they are not for
the particular scalarisation. Since such intermediary solutions are fully evaluated
to compute their scalarised value, keeping an archive of these solutions only adds
the computational overhead of updating the archive. In practice, adding every
solution evaluated to the archive would require too much time. Instead, we only
update the archive when a new solution replaces the current one.

As an example of SO local search, let us consider iterated greedy (IG) [12].
At each iteration of IG, the current solution π is randomly destructed (e.g, by
removing some jobs from it), heuristically reconstructed (e.g., by re-inserting the
jobs in new positions), and the resulting solution may be further improved by
another local search. An acceptance criterion replaces the current solution (π)
with the new one if the latter is better or some other condition is met. In any
case, if the new solution improves the best-so-far one (π?), the latter is replaced.
The algorithm returns π? once it terminates.

Our proposed archive-aware IG adds an archive of nondominated solutions
(A) that is updated every time a better current solution is found, and returns
the archive in addition to the best solution found. Any other SO local search
used within SBLS strategies can be made archive-aware in a similar manner.

We propose straight-forward variants of the classical SBLS strategies that
make use of such archive-aware SO local search and we denote such variants

Archive-aware Scalarisation-based Multi-Objective Local Search 5

with the suffix “arch”. In Restartarch, 1to2arch, 2to1arch and Doublearch, each local
search run produces an archive instead of a single solution. The resulting N scalar

archives are independent of each other until merged into a final archive. Thus,
the search trajectory of these archive-aware SBLS variants is the same as their
original counterparts, except for the overhead incurred by updating the archives.
In the case of AdaptiveAnytimearch, the archive returned by each local search run
is immediately merged with the overall archive so that all solutions returned by
the local search are used for computing the next largest gap.

4 New SBLS Strategies: ChangeRestart, ChangeDirection

In this section, we propose two new SBLS strategies that make use of interme-
diate solutions found while solving the scalarised problems, and that may also
use an archive-aware single-objective local search.

4.1 ChangeRestart

We observed that the sub-spaces searched by running the SO local search for
different values of λ often overlap, thus the best-so-far solution found for one
scalarisation may be worse than the best-so-far solution found for another, when
the latter solution is evaluated on the former scalarisation. Thus, the main idea
behind ChangeRestart is to divide each local search run (LSλ) into smaller steps
and, at each step, decide to either continue the run until the next step or restart
it from a new solution. When interrupted, LSλ returns its best-so-far solution
(π?λ). Then, for each weight, we calculate the scalarised value of all solutions
in the current nondominated archive A. If the best-so-far solution by a given
scalarised run is actually worse than the best-so-far solution found by a different
scalarised run, when the latter solution is evaluated on the scalarised problem
being solved by the former run, then this former run restarts its search from
the latter solution. By reducing the number of steps (N steps), we can limit the
computational overhead of recalculating the scalarised values of each solution
in A for all weights. In particular, the time limit assigned to each LSλ run is
divided by N steps. When N steps = 1, ChangeRestart is identical to Restart.

In the archive-aware variant ChangeRestartarch, each run of LSλ returns a
nondominated archive that is merged with the overall archive A.

Figure 1 shows possible executions of ChangeRestart and ChangeRestartarch for
two scalarisations and three steps (N steps = 3). Blue points () and red triangles
() show the initial solutions and the best solutions found after each step. These
solutions are connected with arrows to show the trajectory followed by each
run of LSλ. Unfilled points () and triangles () show intermediary solutions in
the archive after each step. For ChangeRestart (left), after the second step, the
solution (a) found for λ = 1 has a worse value in the first objective than the
solution (b) found for λ = 0.5. Thus, the local search for λ = 1 re-starts from
solution b instead of a. For ChangeRestartarch (right), the local search re-starts
instead from solution (c), as it has an even better value regarding objective f1.

6 A. Blot et al.

a

b

f1

f2 λ = 1.0

λ = 0.5

a

b

c

f1

f2 λ = 1.0

λ = 0.5

Fig. 1. Example runs of ChangeRestart (left) and ChangeRestartarch (right) (N steps = 3).

4.2 ChangeDirection

The second SBLS strategy proposed here is ChangeDirection. While ChangeRe-
start is an extension of Restart, ChangeDirection is inspired by the more advanced
AdaptiveAnytime. In AdaptiveAnytime, scalarisation weights are dynamically cho-
sen according to the gaps in the current overall archive (A), in order to focus the
search in the direction which will most improve the current approximation to the
Pareto front. In ChangeDirection, as in ChangeRestart, the runs of LSλ are also
divided in a number of steps and, after each step, solutions from different scalar-
isations are merged into an overall archive A. However, instead of only updating
the starting solution of each LSλ run, the scalarisation weight λ is also updated.
In other words, in addition to speeding up an LSλ run by re-starting from a bet-
ter initial solution, the scalarisation direction of LSλ may be changed to focus on
the largest gap in the current approximation front. In particular, a scalarisation
weight λ is replaced by another weight whenever the best-so-far of LSλ is worse,
according to fλ, than a solution returned by another local search run. In that
case, the computational resources allocated to searching in the direction given
by λ could be better used in searching on a different direction.

ChangeDirection only differs from ChangeRestart in the deletion and replace-
ment of scalarisation directions. Thus, we will only explain those novel parts.
First, we delete those scalarisation weights for which the best solution found
in the last run of LSλ is worse, according to the same scalarisation fλ, than a
solution in A. Then, following the strategy of AdaptiveAnytime explained ear-
lier, the gaps in the current approximation front are computed and new weights
are generated from the largest gap to replace the deleted ones. In particular,
two weights are generated from each gap (Eq. 1) until all deleted weights are
replaced. When only one additional weight is needed, it is chosen randomly be-
tween the two weights produced by the gap. The new scalarisations then start
from the solutions constituting the sides of the gap. If all gaps are used and addi-
tional weights are needed, they are drawn uniformly at random within [0, 1] and
initial solutions are taken uniformly at random from A. Finally, as in Change-
Restart, each LSλ either re-starts from a new initial solution if its scalarisation
was introduced in this step, or continues from its current solution, otherwise.
As previously, in the archive-aware variant ChangeDirectionarch, each run of LSλ
returns a nondominated archive that is merged with the overall archive A.

Archive-aware Scalarisation-based Multi-Objective Local Search 7

5 Experimental Setup

We wish to investigate not only whether the new proposed SBLS strategies work
well on their own, but also if they provide a good initial set for a dominance-
based local search (DBLS) algorithm. Thus, we use the various SBLS strategies
as the initialisation phase of a hybrid of SBLS+DBLS algorithm, where a SBLS
strategy generates an initial approximation front that is further improved by a
DBLS strategy, in our case, an iterated variant of Pareto local search (IPLS). We
use IG as the single-objective local search (LSλ) and the algorithms are evaluated
on the bi-objective PFSP (bPFSP). In this section, we explain the details of the
our experimental setup.

bPFSP Instances. As a benchmark, we consider the well-known Taillard
instances [13]. In the following, we focus on 80 instances with 20, 50, 100 and 200
jobs, and 10 and 20 machines, 10 instances being used for each valid combination.

Iterated Greedy (IG). The single-objective local search used by the SBLS
strategies is Iterative greedy (IG) [12], which is a state-of-the-art algorithm for
the single-objective PFSP. The particular IG variant and parameter settings
are directly taken from the bPFSP literature [3]. For the archive-aware SBLS
strategies, we augment this IG variant with an archive as explained in Section 3.

Iterated Pareto Local Search (IPLS). As the DBLS component of our
hybrid SBLS+DBLS algorithm, we consider an iterated variant of Pareto local
search (PLS) [9], as it was shown that even simple perturbations could benefit
PLS algorithms [2]. Our iterated PLS (IPLS) extends the PLS used in [3] by per-
turbing the archive when the latter converges to a Pareto local optimal set, using
the generalised framework of [1]. The perturbation used creates a new archive
by taking every current solution and replacing it with one of its neighbours,
taken uniformly at random, three times in a row; dominated solutions from this
new set are then filtered. As the neighbourhood of PLS, we use the union of the
exchange and insertion neighbourhoods [6], in which two positions of two jobs
are swapped and one job is reinserted at another position, respectively.

Termination criteria. The termination criterion of algorithms applied to
the bPFSP is usually set as maximum running time proportional to the instance
size. While previous works have used a linear proportion of both the number
of jobs n and the number of machines m (e.g., 0.1 · n · m CPU seconds [3]),
we use a maximum running time for the hybrid SBLS+IPLS of 0.002 · n2 · m
CPU seconds. Indeed, the total number of solutions grows exponentially and the
typical size of permutation neighbourhoods grows quadratically, making a linear
running time less relevant. The coefficient 0.002 was chosen to match the linear
formula for n = 50 and m = 20. As for the termination criterion PLS itself,
we use the number of successive iterations without improvement, set here to n,
before forcing a perturbation of the archive.

The SBLS strategies are limited to 25% of the total running time of the
hybrid SBLS+IPLS, and the remaining 75% is allocated to IPLS. The main pa-
rameter of the SBLS strategies is the number of scalarisations (N scalar), that is,
the number of runs of IG executed in addition to two individual runs for each
of the two single objectives. Following [3], we perform longer runs of IG for the

8 A. Blot et al.

two single objectives (IG{1,2}) than for the other scalarisations (IGλ), with the
time assigned to IG{1,2} being 1.5 times the time assigned to IGλ. As more time
is allocated to IG{1,2} than to IGΛ, their respective running time budgets are

1.5/(N scalar+3) and 1/(N scalar+3) of the total time assigned to the SBLS strat-
egy. In the case of ChangeRestart and ChangeDirection, the maximum runtime of
each IG is further divided by N steps.

The following experiments are separated in three successive phases. First,
we analyse the effect of using an archive-aware IG on the five SBLS strategies
from the literature (Restart, 1to2, 2to1, Double, and AdaptiveAnytime). Second,
we compare all these SBLS variants with the new SBLS strategies proposed
here (ChangeRestart and ChangeDirection), including their archive-aware coun-
terparts. Finally, we analyse other possible setting for the parameters N scalar

and N steps. Unless stated otherwise, ChangeRestart and ChangeDirection use
N steps = 20; all SBLS strategies use a fixed value of N scalar = 12; and both
AdaptiveAnytime and ChangeDirection use θ = 0.25 for Eq. 1 [3].

In all cases, we run the hybrid SBLS+IPLS and we save the archive returned
by the SBLS strategies (before IPLS) and the final archive (after IPLS). Each
experiment is repeated 5 times, using independent random seeds, on each of the
80 Taillard instances. All replications use the same seeds on the same instances.
All the experiments have been conducted on Intel Xeon E5-2687W V4 CPUs
(3.0GHz, 30MB cache, 64GB RAM).

Results are evaluated according to both the hypervolume and the additive-
ε indicators [15]. Indicator values have been computed independently on every
instance aggregating all results generated for the instance and scaling both ob-
jectives to a 0–1 scale in which 0 (1) corresponds to the minimum (maximum)
objective value reached by any solution. The hypervolume variant 1−HV is used,
with 0 corresponding to the maximum hypervolume, so that both indicators are
to be minimised. The reference point used for computing the hypervolume indi-
cator is (1.0001, 1.0001). The reference set for computing additive-ε indicator is
the set of nondominated solutions from all aggregated results for each instance.

6 Experimental Results

6.1 Known SBLS strategies vs. their archive-aware variants

First, we compare the five SBLS strategies from the literature with their archive-
aware variants. Figure 2 shows the mean hypervolume and additive-ε values
obtained by each strategy before and after running IPLS. Averages are computed
on the indicator values over all 80 bPFSP instances.

For both indicators, all the proposed archive-aware variants (in red) lead to
improved quality before IPLS. After results are improved by IPLS, all archive-
aware variants produce again better results than their original counter-parts,
with the exception of AdaptiveAnytime. This is somewhat surprising and fur-
ther analysis is needed to understand this behaviour. Interestingly, some of the
archive-aware variants are able to outperform AdaptiveAnytime when their orig-
inal variants are not.

Archive-aware Scalarisation-based Multi-Objective Local Search 9

0.25 0.3

0.16

0.17

1−HV before IPLS

1
−
H
V

a
ft

er
IP
L
S

0.16 0.18 0.2 0.22 0.24

0.095

0.1

0.105

ε before IPLS

ε
a
ft

er
IP
L
S

Restart Restartarch 1to2 1to2arch
2to1 2to1arch Double Doublearch

AdaptiveAnytime AdaptiveAnytimearch ChangeRestart ChangeRestartarch
ChangeDirection ChangeDirectionarch

Fig. 2. Comparison of all SBLS strategies according to (left) mean hypervolume and
(right) mean additive-ε.

6.2 Performance of Two New SBLS strategies

We now compare the newly proposed SBLS strategies (ChangeRestart and Change-
Direction) to the ones from the literature as well as their archive-aware variants.

In terms of hypervolume, all four new strategies achieve in average much
better results than the strategies from the literature, with ChangeRestartarch
achieving the best results both on its own and when further improved by IPLS.
However, in terms of additive-ε, the non-archive-aware ChangeRestart strategy
performs much worse than the three other new strategies, but still better than
most strategies from the literature. Overall, the best strategy according to both
indicators appears to be the archive-aware ChangeRestart strategy.

To validate these observations, Table 1 shows the results of a statistical anal-
ysis comparing all approaches, without averaging over benchmarks, for both
hypervolume (top) and additive ε (bottom). For each benchmark set, and for all
possible pairs of strategies, we conducted a statistical Wilcoxon test comparing
their final quality (after IPLS) paired on 50 runs. A (3) in the table indicates
strategies for which there was no other strategy performing statistically better
(with 95% confidence). In other words, within each row, all strategies with 3are
not statistically better to each other, while for those strategies without a 3,
there was at least one other strategy statistically better. As shown in the Table,
the SBLS strategies from the literature are often outperformed by some other
strategy, whereas their archive-aware variants are less often so, in particular on
the smaller instances with 20 and 50 jobs. Finally, ChangeRestartarch and both
variants of ChangeDirection are almost never outperformed, even on the largest
instances, validating our previous observations.

10 A. Blot et al.

Table 1. SBLS strategies not statistically outperformed by another strategy after IPLS
step, using paired Wilcoxon tests (left: hypervolume; right: additive-ε)

R
es
ta
rt

1
to
2

2
to
1

D
o
u
b
le

A
d
ap

ti
ve
A
n
yt
im

e
R
es
ta
rt

ar
ch

1
to
2
ar
ch

2
to
1
ar
ch

D
o
u
b
le

ar
ch

A
d
ap

ti
ve
A
n
yt
im

e a
rc
h

C
h
an

g
eR

es
ta
rt

C
h
an

g
eR

es
ta
rt

ar
ch

C
h
an

g
eD

ir
ec
ti
o
n

C
h
an

g
eD

ir
ec
ti
o
n
ar
ch

R
es
ta
rt

1
to
2

2
to
1

D
o
u
b
le

A
d
ap

ti
ve
A
n
yt
im

e
R
es
ta
rt

ar
ch

1
to
2
ar
ch

2
to
1
ar
ch

D
o
u
b
le

ar
ch

A
d
ap

ti
ve
A
n
yt
im

e a
rc
h

C
h
an

g
eR

es
ta
rt

C
h
an

g
eR

es
ta
rt

ar
ch

C
h
an

g
eD

ir
ec
ti
o
n

C
h
an

g
eD

ir
ec
ti
o
n
ar
ch

20× 10 3 3 3 3 3 3 3 3 3 3 3 3 3 3

20× 20 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

50× 10 3

50× 20 3

100× 10 3 3 3 3 3 3 3 3 3

100× 20 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

200× 10 3 3 3 3 3 3 3 3

200× 20 3 3 3 3 3 3 3 3

6.3 Analysis of Parameters N scalar and N steps

SBLS strategies strongly depends on the number of scalarisations they use. Our
choice of N scalar = 12 was motivated by previous studies claiming that few (10,
20) scalarisations should be preferred [3]. Figure 3 (left) shows for the 14 previous
strategies the final performance regarding both hypervolume and additive ε in-
dicators, for both parameter values of N scalar ∈ {6, 12} scalarisations, in order to
see the impact of archives-aware mechanisms when using very few scalarisations.

We can see that for all strategies, both with and without archiving, using 12
scalarisations improve in average significantly the performance regarding hyper-
volume and slightly the one regarding the ε indicator, hinting that even with
archiving a sufficient number of scalarisations are still required.

The number of steps, i.e. how many times we can restart the scalarisations,
is at the core of the two new SBLS strategies we propose. Figure 3 (right) shows
for all variants of the ChangeRestart and ChangeDirection strategies the impact
of the parameter N steps, for values of N steps = 1 (equivalent to Restart) and
N steps ∈ {2, 5, 10, 15, 20, 25}, using the final performance regarding both the
hypervolume and ε indicators. Marks indicate the value of N steps, while colours
indicate the strategy.

As the figure shows, at first increasing the number of steps from one largely
improves the quality of the results. Increasing the number of steps further spe-
cially benefits the archive-aware variants and in particular, ChangeDirectionarch.
However, for large values of N steps, the quality improvements stop or, in several
cases, worsen. Thus, it appears that even larger values would not improve the
results reported here.

Archive-aware Scalarisation-based Multi-Objective Local Search 11

0.16 0.17 0.18

0.095

0.1

0.105

0.11

1−HV after IPLS

ε
a
ft

er
IP
L
S

N scalar = 6 N scalar = 6 (arch)

N scalar = 12 N scalar = 12 (arch)

0.16 0.17
0.09

0.095

0.1

0.105

1−HV after IPLS

ε
a
ft

er
IP
L
S

1 2
5 10
15 20
25

ChangeRestart ChangeRestartarch
ChangeDirection ChangeDirectionarch

Restart

Fig. 3. Impact of the number of scalarisations (left) and the number of steps (right)

7 Conclusion

This paper proposes and evaluates two complementary ways of augmenting
scalarisation-based local search (SBLS) strategies by making the underlying
single-objective local search aware of the multi-objective nature of the prob-
lem. Our first proposal adds an archive of nondominated solutions to the single-
objective local search. Our results showed that these archive-aware SBLS vari-
ants always improve over their original counterparts when ran on their own.
Moreover, this improvement also shows for nearly all SBLS strategies when their
results are further improved by means of iterated Pareto local search (IPLS).

Our second proposal was to divide each run of the single-objective local
search into a number of smaller steps and, at each step, restart scalarisations
that produce poor results. We proposed two SBLS strategies that differ on what
is changed by the restart. In ChangeRestart, the local search for solving a scalar-
isation is restarted from the best-known solution for that scalarisation problem.
This solution was possibly generated when solving a different scalarisation. In
ChangeDirection, not only the starting solution, but also the weight that defines
the scalarisation problem itself being solved are both updated in order to re-focus
this particular run on the largest gap of the current approximation front.

Our experimental results show that these two new SBLS strategies outper-
form five classical SBLS strategies from the literature, even when the latter are
using and archive-aware local search. In particular, ChangeDirection produces
consistently the best results, either on its own or when used as the initialisation
phase of a hybrid SBLS+IPLS algorithm, which suggests that the new strategies
may lead to new state-of-the-art results for the bi-objective permutation flow-
shop [3], and other problems. An additional benefit of ChangeDirection is that it
maintains the adaptive behaviour of AdaptiveAnytime, while it also may perform
N scalar local search runs in parallel between steps.

12 A. Blot et al.

Future work will analyse in more detail the interaction between the new
SBLS strategies and the archive-aware SO local search. A more comprehensive
analysis of the effect of the N scalar and N steps parameters would be needed to
understand their interactions with problem features. We would also hope to
evaluate the new proposals in terms of their anytime behaviour [4]. Finally, a
further comparison, including various common speedups not included here as we
focused on archive-aware mechanisms, would be required for a fair comparison
with other state-of-the-art algorithms.

References

1. Blot, A., Jourdan, L., Kessaci-Marmion, M.E.: Automatic design of multi-objective
local search algorithms: case study on a bi-objective permutation flowshop schedul-
ing problem. GECCO 2017, pp. 227–234. ACM Press (2017).

2. Drugan, M.M., Thierens, D.: Path-guided mutation for stochastic Pareto local
search algorithms. In: PPSN XI, LNCS, vol. 6238, pp. 485–495. Springer (2010).

3. Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: A hybrid TP+PLS algorithm
for bi-objective flow-shop scheduling problems. COR 38(8), 1219–1236 (2011).

4. Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: Improving the anytime behavior
of two-phase local search. AMAI 61(2), 125–154 (2011).

5. Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: Combining two search
paradigms for multi-objective optimization: Two-Phase and Pareto local search.
In: Hybrid Metaheuristics, vol. 434, pp. 97–117. Springer Verlag (2013).

6. Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: Anytime Pareto local search.
EJOR 243(2), 369–385 (2015).

7. Liefooghe, A., Humeau, J., Mesmoudi, S., Jourdan, L., Talbi, E.G.: On dominance-
based multiobjective local search: design, implementation and experimental anal-
ysis on scheduling and traveling salesman problems. JOH 18(2), 317–352 (2011).

8. Lust, T., Teghem, J.: The multiobjective multidimensional knapsack problem: a
survey and a new approach. ITOR 19(4), 495–520 (2012).

9. Paquete, L., Chiarandini, M., Stützle, T.: Pareto local optimum sets in the biob-
jective traveling salesman problem: An experimental study. In: Metaheuristics for
Multiobjective Optimisation, LNMES, vol. 535, pp. 177–200. Springer (2004)

10. Paquete, L., Stützle, T.: A two-phase local search for the biobjective traveling
salesman problem. In: EMO 2003, LNCS, vol. 2632, pp. 479–493. Springer (2003)

11. Paquete, L., Stützle, T.: Stochastic local search algorithms for multiobjective com-
binatorial optimization: A review. In: Handbook of Approximation Algorithms and
Metaheuristics, pp. 29–1—29–15. Chapman & Hall/CRC (2007)

12. Ruiz, R., Stützle, T.: A simple and effective iterated greedy algorithm for the
permutation flowshop scheduling problem. EJOR 177(3), 2033–2049 (2007)

13. Taillard, É.D.: Benchmarks for basic scheduling problems. EJOR 64(2), 278–285
(1993)

14. Zhang, Q. and Li, H. (2007): MOEA/D: A multiobjective evolutionary algorithm
based on decomposition. IEEE TEC, 11(6):712–731.

15. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V.:
Performance assessment of multiobjective optimizers: an analysis and review. IEEE
TEC 7(2), 117–132 (2003)

