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ROBUST EIGENSTRUCTURE CLUSTERING BY NONSMOOTH
OPTIMIZATION

Minh Ngoc Dao∗,†, Dominikus Noll∗, and Pierre Apkarian‡

Abstract. We extend classical eigenstructure assignment to more realistic problems
where additional performance and robustness specifications arise. Our aim is to combine
time-domain constraints, as reflected by pole location and eigenvector structure, with
frequency-domain objectives such as theH2, H∞ or Hankel norms. Using pole clustering,
we allow poles to move in polydisks of prescribed size around their nominal values, driven
by optimization. Eigenelements, that is poles and eigenvectors, are allowed to move
simultaneously and serve as decision variables in a specialized nonsmooth optimization
technique. Two aerospace applications illustrate the power of the new method.

Keywords. Structured feedback control · eigenstructure assignment · modal shaping ·
nonsmooth optimization · frequency-domain · robust design

1. Introduction

Since its introduction by Wonham [1] and Moore [2], eigenstructure assignment has
developed into a powerful controller design tool in the aerospace sector and in other high
technology fields. Eigenstructure assignment aims at shaping the responses of the closed-
loop system to certain input signals by way of two mechanisms. The placement of closed-
loop modes to stabilize and achieve satisfactory transients, and eigenvector structure to
decouple responses to specific initial conditions. In this paper we are concerned with the
design of output feedback control laws, where only partial eigenstructure assignment or
pole placement can be expected. In that case the standard approach to first selecting
a partial set of closed-loop modes λ1, . . . , λp, and then using the remaining degrees of
freedom to shape the corresponding closed-loop eigenvectors (vi, wi), is prone to failure
to stabilize the system, as the remaining closed-loop modes cannot be influenced directly.

As a remedy we propose to assign the eigenelements (λi, vi, wi) simultaneously. We allow
eigenelements (λi, vi, wi) to move in the neighborhood of their nominal values (λ0i , v

0
i , w

0
i )

in such a way that closed-loop stability and performance can be further improved. The
price for this gain of flexibility is that eigenelement assignment can no longer be achieved
by linear algebra methods alone. Instead, a combination of nonlinear optimization and
linear algebra is required.

Over the years there have already been attempts to enhance eigenspace control using
off-the-shelf optimization. An early approach is Sobel and Shapiro [3], where hand-tuning
of eigenvalues was shown to improve stability margins of the controlled system. In [4]
the same authors elaborate on this idea and suggest a first-order gradient method. In
[5, 6], a sequential quadratic programming (SQP) technique with finite-difference gradients
was used to improve µ robustness indicators, with eigenvalues and some eigenvectors
as decision variables. In [7], Patton and Liu make full use of the freedom offered by
eigenstructure assignment to improve the frequency-domain sensitivities functions S and
KS. They use a genetic algorithm in tandem with gradient-based techniques. The same
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idea is applied to a variety of problems in their monograph [8]. In the same vein, reference
[9] exploits the Nelder-Mead direct search method to optimize assignable eigenvalues
and eigenvectors, while safeguarding stability of unassigned eigenvalues via constraints.
In [10], eigenstructure assignment with dynamic compensators and linear programming
(LP) or quadratic programming (QP) are used to achieve stability and performance for an
entire family of plants. Merits of these approaches have been demonstrated in numerous
applications. See [8] and references therein.

In this work, we suggest a novel approach to eigenstructure assignment based on a
nonsmooth optimization technique, which has the following features:

• Unassigned poles are constrained to be stable, which secures stability of the closed-
loop system.
• Additional performance or robustness requirements such as H2 or H∞ are handled
rigorously by accounting for their nonsmoothness.

Nonsmoothness arises due to the spectral abscissa, and via H∞-norm or Hankel norm
based requirements, but also when max-function of differentiable functions such as the
H2-norm are built. The key observation is that disregarding nonsmoothness is a serious
source of numerical trouble. Avoiding this pitfall is a central motivation of this work. Our
investigation leads to a theoretically justified nonsmooth method with local convergence
certificate, which has good performance in practical applications. The focus of this paper
is on control aspects. A thorough convergence analysis of the proposed algorithm is given
in [11, 12, 13, 14] for the interested readers.

The structure of the paper is as follows. Section 2 recalls the basics of eigenstructure
assignment using static output feedback and its variation as pole clustering, where poles
are allowed to move in small polydisks around their nominal values. Section 3 extends
the pole clustering problem to a variety of performance or robustness criteria and gives a
pseudo-code of our algorithmic approach to those problems. Overdetermined and under-
determined eigenproblems are discussed in Section 4. Section 5 shows how subgradients
are computed for typical design requirements. Our nonsmooth solver, along with its con-
vergence properties, is presented in Section 6. Sections 7 and 8 illustrate our approach.
We design a launcher and an aircraft control system, two cases where poles and eigenvector
structure play an important role.

2. Partial eigenstructure assignment

Consider a linear time-invariant system described by the equations

(1) ẋ = Ax+Bu
y = Cx

with x ∈ Rn, u ∈ Rm and y ∈ Rp. Given a self-conjugate set Λ = {λ1, . . . , λp} ⊂ C−,
partial pole placement consists in computing a static output feedback control law u = Ky
for (1) such that λ1, . . . , λp become eigenvalues of the closed-loop system

ẋ = (A+BKC)x.

As is well-known [2], solving the set of linear equations
[
A− λiIn B

] [ vi
wi

]
= 0,

with vi ∈ Cn, wi ∈ Cm, i = 1, . . . , p leads to a (static) control law

(2) K = [w1, . . . , wp] (C [v1, . . . , vp])
−1 ∈ Rm×p

with the desired closed-loop modes, provided the vi are chosen in such a way that the p×p
matrix C [v1, . . . , vp] is invertible, i.e., if span{v1, . . . , vp} ∩ ker(C) = {0}. Note that the
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outlined technique is readily specialized to state-feedback C = I and extended to nonzero
feedthrough D 6= 0 and to dynamic compensators through a preliminary augmentation of
the plant [15].

In the case m > 1, it is possible to achieve more. One may then additionally shape
the vi, or wi, e.g. by arranging vij = 0 or wik = 0 for certain j, k. Formally this can be
expressed by linear equations

(3)
[
A− λiIn B
Mi Ni

] [
vi
wi

]
=

[
0
ri

]
,

with suitable Mi ∈ Cmi×n, Ni ∈ Cmi×m, ri ∈ Cmi , mi > 0, i = 1, . . . , p, leaving at least
one degree of freedom in each triplet (λi, vi, wi) ∈ C1+n+m. This is usually referred to
as partial eigenstructure assignment. Typical choices of Mi, Ni, ri can be found in our
experimental Sections 7 and 8.

The traditional approach to eigenstructure assignment consists in first choosing the set
Λ ⊂ C−, then introducing the desired structural constraints on the eigenvectors vi, wi
via the matrices Mi, Ni and the vector ri, using the remaining degrees of freedom, and
then computing vi, wi accordingly. Unfortunately, fixing the λi may be too restrictive,
because partial eigenvalue placement does not guarantee stability in closed-loop, so that
some post-processing based on trial-and-error is often required. Greater flexibility in the
design is achieved by moving (λi, vi, wi) simultaneously.

What we have in mind is to interpret the eigenstructure equations (3) as mathemat-
ical programming constraints and then optimize closed-loop stability subject to these
constraints. With the definition α(A) := max{Reλ : λ eigenvalue of A} of the spectral
abscissa, this leads us to an optimization program of the form

(4)

minimize α(A+BKC)

subject to
[
A− λiIn B
Mi Ni

] [
vi
wi

]
=

[
0
ri

]
for i = 1, . . . , p

|Reλi − Reλ0i | 6 δi, | Imλi − Imλ0i | 6 δi, i = 1, . . . , p
K = W (CV )−1 as in (2).

Here the λ0i ∈ C− are nominal closed-loop poles, and the δi are tolerances which allow
the poles to move around their nominal values. As soon as K with α(A + BKC) < 0 is
reached, the optimization of (4) can be stopped with an internally stabilizing solution of
the partial eigenstructure assignment procedure.

3. Including performance criteria

While (4) is a natural approach to optimize closed-loop stability in partial eigenstructure
assignment, it seems even more attractive to include also closed-loop performance or
robustness criteria into the set-up. Given a linear time-invariant plant P in standard
form

(5) P :




ẋ = Ax + B1w + Bu
z = C1x + D11w + D12u
y = Cx + D21w

where x ∈ Rn is the state vector, u ∈ Rm the vector of control inputs, w ∈ Rm1 the vector
of exogenous inputs, y ∈ Rp the vector of measurements and z ∈ Rp1 the controlled or
performance vector, let u = Ky be a static output feedback control law for (5). Then the
closed-loop performance channel w → z has the state-space representation

Tw→z(K) :

{
ẋ = (A+BKC)x + (B1 +BKD21)w
z = (C1 +D12KC)x + (D11 +D12KD21)w.



4 M. N. DAO, D. NOLL, AND P. APKARIAN

Note the slight abuse of notation in (5) because the state-space data of P may include
filters, weightings or other dynamic elements that are not present in (1). We assume the
distinction will be clear from the context.

Given a self-conjugate eigenvalue set Λ0 = {λ01, . . . , λ0p} ⊂ C− and tolerances δi, we now
consider the following extension of (4):

(6)

minimize ‖Tw→z (K) ‖

subject to
[
A− λiIn B
Mi Ni

] [
vi
wi

]
=

[
0
ri

]
for i = 1, . . . , p

|Reλi − Reλ0i | 6 δi, | Imλi − Imλ0i | 6 δi, i = 1, . . . , p
K = K(λ, v, w) as in (2)

where λ0i are nominal closed-loop pole positions, and (3) again conveys additional struc-
tural constraints on v, w. As compared to (4), the cost function ‖Tw→z(K)‖ in (6) may
now be used to enhance stability and to achieve additional performance or robustness
specifications of the design.

Standard choices of ‖ · ‖ include the H∞-norm ‖ · ‖∞, the H2-norm ‖ · ‖2, or the Hankel
norm ‖·‖H . One generally expects that ‖Tw→z(K)‖ <∞ implies closed-loop stability, but
should this fail, it is possible to add a stability constraint c(λ, v, w) = α(A+BKC)+ε 6 0
to the cast (6), where ε > 0 is some small threshold. Altogether we propose the following

Algorithm 1. Optimized partial eigenstructure assignment

Input: Nominal modal set Λ0 = {λ01, . . . , λ0p} with distinct λ0i .
Output: Optimal modal set Λ = {λ1, . . . , λp}, vi, wi, K∗.
. Step 1 (Nominal assignment). Perform standard eigenstructure assignment based
on Λ0 and structural constraints Mi, Ni, ri. Obtain nominal eigenvectors v0i , w0

i ,
i = 1, . . . , p. Assure that C[v01, . . . , v

0
p] is invertible and obtain nominal K0 =

W 0(CV 0)−1.
� Step 2 (Stability and performance). If K0 assures closed-loop stability and good
performance ‖Tw→z(K0)‖, stop the algorithm. Otherwise, goto step 3.

. Step 3 (Tolerances). Allow tolerances |Reλi − Reλ0i | 6 δi, | Imλi − Imλ0i | 6 δi,
i = 1, . . . , p.

. Step 4 (Parametric clustering). Solve the optimization program (6) using a non-
smooth descent algorithm with (λ0, v0, w0) as initial seed.

. Step 5 (Synthesis). Return optimal Λ = {λ1, . . . , λp}, v, w, and K∗.

4. Structure of eigenproblems

In this section we discuss practical ways to deal with the general nonlinear constraint
(3) in (6). We assume that (A,B) is controllable, which is equivalent to [A − λIn B]
having full row rank n for all λ in C (see, e.g., [16, Theorem 3.1]). To deal with (3), we
observe that the mi’s can be distinct and the possibility mi = 0 is not excluded. We now
distinguish two cases.

The first case is when mi > m. Here pole assignment is ensured by pre-solving for vi
in (3). We get

vi = (λiI − A)−1Bwi .

In this case eigenvector decoupling is only possible in the least-square sense by minimizing
the Euclidean norm of Mivi + Niwi − ri. Upon defining the transfer function Fi(λ) :=
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Mi(λI − A)−1B + Ni, and assuming for simplicity that Fi(λ) has full-column rank for λ
in the neighborhood of the nominal λ0, we have

wi = Fi(λi)
†ri ,

where Fi(λi)† denotes the Moore-Penrose inverse or left-inverse of Fi at λi. Altogether we
have derived the expression

(7)
[
vi
wi

]
=

[
(λiI − A)−1B

I

]
Fi(λi)

†ri .

Vectors vi and wi are now defined explicitly as functions of λi. It follows that a
parametrization of the control law (2) in the sense of structured synthesis introduced
in [17] has been obtained. Tunable variables in this parametrization are the desired as-
signable eigenvalues Λ = {λ1, . . . , λp}.

The rationale in this first case is as follows. We want to gain some flexibility in the
assignment by allowing λi to move in a neighborhood of the nominal λ0i . Now if the (v0i , w

0
i )

are computed from (7) for the nominal value λ0i , the (vi, wi), depending continuously on
λi via (7), will move in a neighborhood of the nominal (v0i , w

0
i ), so that optimization may

decrease the cost function and thereby enhance stability and performance. The outlined
approach therefore generalizes eigenstructure assignment with approximate decoupling as
discussed in [15].

If Fi(λ) is not guaranteed to have full-column rank in the neighborhood λ0, the cast in
(6) could be modified as follows:

(8)

minimize max

{
‖Tw→z (K) ‖, µ max

i=1,...,p
‖Fi(λi)wi − ri‖2

}

subject to |Reλi − Reλ0i | 6 δi, | Imλi − Imλ0i | 6 δi, i = 1, . . . , p.

K = [w1, . . . , wp] (C [v1, . . . , vp])
−1

K closed-loop stabilizing

where µ is a penalty parameter used to weigh the relative importance of robustness or
performance as expressed through ‖Tw→z (K) ‖ against eigenvector shaping. Here the
objective becomes a max-function which is truly nonsmooth and thus requires special
handling.

The second case is when mi < m. Here we partition

B = [Bi Qi], Ni = [Pi Ri], wi =

[
ui
ti

]
,

such that Bi, Pi have mi columns and ui ∈ Cmi . Then (3) becomes
[
A− λiIn Bi

Mi Pi

] [
vi
ui

]
=

[
0
ri

]
−
[
Qi

Ri

]
ti.

Assuming that the matrix

Ai(λi) =

[
A− λiIn Bi

Mi Pi

]
∈ C(n+mi)×(n+mi)

is invertible in a neighborhood of the nominal λ0i , we get the parametrization

vi = vi(λi, ti), ui = ui(λi, ti),

which in explicit form is

(9)
[
vi
ui

]
= Ai(λi)

−1
[
−Qiti
ri −Riti

]
.
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The idea is now the same as in the first case. Allow λi to move around their nominal values
λ0i , and ti ∈ Cm−mi around the nominal t0i . That also allows the dependent variables vi, ui
to move in a neighborhood of their nominal values v0i , u0i , and optimization uses this to
enhance stability and robustness. In this second case we have enough degrees of freedom
to achieve true decoupling of some of the channels by satisfying Mivi +Niwi = ri exactly.

In order to apply nonlinear and nonsmooth optimization techniques to programs of the
form (6) it is necessary to provide derivative information at acceptable cost. As we shall
see, this may be implemented by simple linear algebra techniques. We have the following
propositions with proofs given in the Appendix.
Proposition 1 (Over-specified eigenstructure). Let K = W (CV )−1 with W = [w1 . . . wp]
and V = [v1 . . . vp]. If mi > m then

(10)
∂K

∂λi
=

[
0 · · · ∂wi

∂λi
−KC ∂vi

∂λi
· · · 0

]
(CV )−1,

where vi, wi are given in (7) and

(11)




∂vi
∂λi
∂wi
∂λi


 =

[
(λiI − A)−1BFi(λi)

†Mi − I
Fi(λi)

†Mi

]
(λiI − A)−2BFi(λi)

†ri .

Proof. See Appendix. �

Proposition 2 (Under-specified eigenstructure). Let K = W (CV )−1 withW = [w1 . . . wp]

and V = [v1 . . . vp]. Suppose mi < m, partitioning wi =

[
ui
ti

]
with ui ∈ Cmi and

ti = [t1i, . . . , t(m−mi)i]
> ∈ Cm−mi, then

∂K

∂λi
=

[
0 · · ·

∣∣∣∣
∂ui
∂λi

0

∣∣∣∣−KC
∂vi
∂λi
· · · 0

]
(CV )−1,

∂K

∂tki
=

[
0 · · ·

∣∣∣∣
∂ui
∂tki

eki

∣∣∣∣−KC
∂vi
∂tki
· · · 0

]
(CV )−1,

(12)

where eki ∈ Rm−mi is the vector all of whose components are zero, except the kth compo-
nent which is one, and

(13)



∂vi
∂λi

∂vi
∂tki

∂ui
∂λi

∂ui
∂tki


 =

[
In 0n×mi

0mi×n Imi

]
Ai(λi)

−1
[

vi
0
−sik

]
,

with sik the kth column of
[
Qi

Ri

]
.

Proof. See Appendix. �

Remark 1. As derivatives have to be evaluated repeatedly in minimization programs, it
is desirable to pre-calculate as many elements as possible in (10) and (12). This is what
we discuss next. Substantial speed-up can be achieved in the under-specified case mi < m
since Ai(λi) is a reduced rank modification of a constant matrix, that is, not depending
on λi. We therefore pre-compute

[
A Bi

Mi Pi

]−1
=

[
Pi

11 Pi
12

Pi
21 Pi

22

]
,
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where Pi
11 and Pi

22 are of size n × n and mi × mi, respectively. Using the Sherman-
Woodbury-Morrison formula [18] for

Ai(λi) =

[
A Bi

Mi Pi

]
+

[
−I
0

]
(λiI)

[
I 0

]

gives

Ai(λi)
−1 =

[
(In − λiPi

11)
−1Pi

11 (In − λiPi
11)
−1Pi

12

Pi
21(In − λiPi

11)
−1 Pi

22 + Pi
21λi(In − λiPi

11)
−1Pi

12

]
.

As a consequence, there is only need to compute the inverse of the smaller matrix (In −
λiP

i
11) to get the entries in (13).

Remark 2. Our algorithm can be extended to include nonlinear constraints on vi. We
just add those to program (6). Note also that the algorithm will return the standard
nominal modal set λ0 = {λ01, . . . , λ0p} if we choose δi = 0, i = 1, . . . , p, so we present a
genuine extension of the traditional assignment procedure. �

5. System norms and their subdifferential in closed-loop

To solve program (6) algorithmically, we have to compute function values and subgra-
dients of the cost function f(x) := ‖Tw→z (K(x)) ‖2, where ‖·‖ is the H∞-norm ‖·‖∞, the
H2-norm ‖ · ‖2 or the Hankel norm ‖ · ‖H , and where x represents the decision variables.
Here x regroups λi if mi > m, and (λi, ti) if mi < m, i = 1, . . . , p. The gradients given
in (10), respectively (12), are generally complex gradients. Algorithmic implementation
requires passing from complex to real gradients. This is done using Wirtinger formulas
[19, Section 2.3]. For a complex variable z, we have that

∂K/∂ Re z = ∂K/∂z + ∂K/∂z̄ = 2 Re(∂K/∂z),
∂K/∂ Im z = (∂K/∂z − ∂K/∂z̄) = −2 Im(∂K/∂z).

For simplicity of the notation, it is assumed from now on that x is a real q-dimensional
vector regrouping real and imaginary parts of all free parameters (λi, ti). Partial deriva-
tives with respect to x will be denoted Ki(x) := ∂K(x)/∂xi in the sequel of the paper.
In consequence it now remains to compute Clarke subgradients of ‖Tw→z(K)‖2 with re-
spect to K. By the generalized chain rule [20], this requires subgradients of the norm in
question, and the derivative of the transfer function Tw→z(K) with respect to K.

Concerning the closed-loop, and to prepare the following, by setting

Acl = A+BKC, Bcl = B1 +BKD21,
Ccl = C1 +D12KC, Dcl = D11 +D12KD21,

the controllability Gramian X and the observability Gramian Y can be obtained from the
Lyapunov equations [16]

AclX +XA>cl +BclB
>
cl = 0,(14)

A>clY + Y Acl + C>clCcl = 0.(15)

5.1. The H∞-norm. Consider a stable LTI system

G :

{
ẋ = Ax+Bw
z = Cx+Dw

with state x ∈ Rn, input w ∈ Rm, and output z ∈ Rp. It is well-known that the H∞-norm
of G is defined as

‖G‖∞ = sup
ω∈R

σmax(G(jω)) = sup
ω∈R

√
λmax(G(jω)HG(jω)),
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where σmax denotes the maximum singular value of a matrix, and λmax denotes the max-
imum eigenvalue of a matrix. We now replace G by Tw→z(K) and rewrite

f(K) = ‖Tw→z(K)‖2∞ = sup
ω∈R

f(K,ω),

with f(K,ω) := λmax

(
Tw→z(K, ω)HTw→z(K, ω)

)
. Using the notation

[
Tw→z(K, s) G12(K, s)
G21(K, s) ∗

]
=

[
Ccl
C

]
(sI − Acl)−1

[
Bcl B

]
+

[
Dcl D12

D21 ∗

]
,

and following [21, Lemma 1], closed-loop stability implies that either f(K) = f(K,ω) for
all ω or f(K) = f(K,ω) for a finite number of active frequencies ω1, . . . , ωq. From [17,
Section IV] we now obtain the Clarke subgradients of f at K as

ΦU = 2

q∑

k=1

Re
(
G21(K, ωk)Tw→z(K, ωk)

HRkUkR
H
k G12(K,ωk)

)>
,

where Rk is a matrix whose columns form an orthonormal basis of the eigenspace of
dimension rk ∈ N associated with λmax

(
Tw→z(K, ωk)

HTw→z(K, ωk)
)
, and where Uk ∈

Srk , Uk � 0,
∑q

k=1 Tr(Uk) = 1. The symbol Sm stands for the space of m×m symmetric
or Hermitian matrices, and Tr(M) denotes the trace of M . By the application of the
chain rule in [20], we deduce that the Clarke subdifferential of f at x is the set

∂f(x) =
{(

Tr(K1(x)>ΦU), . . . ,Tr(Kq(x)>ΦU)
)>

: ΦU ∈ ∂f(K)
}
.

5.2. The H2-norm. The H2-norm of a system G of the form

(16) G :

{
ẋ = Ax+Bw
z = Cx

is defined as

‖G‖2 =

(
1

2π

∫ +∞

−∞
Tr(G(jω)HG(jω))dω

)1/2

.

Suppose Dcl does not explicitly depend on K, which is e.g. the case for D12 = 0 or
D21 = 0. Then it is reasonable to assess the closed-loop system via the H2-norm of
(Acl, Bcl, Ccl, 0). We have

f(K) = ‖Tw→z(K)‖22 = Tr(B>clY Bcl) = Tr(CclXC
>
cl ).

Using (14) and (15), it follows from [22, Theorem 3.2] that f is differentiable at each
closed-loop stabilizing K, and

∇f(K) = 2
(
B>Y +D>12Ccl

)
XC> + 2B>Y BclD

>
21.

Therefore,
∇f(x) =

(
Tr(K1(x)>∇f(K)), . . . ,Tr(Kq(x)>∇f(K))

)>

for all x for which K(x) is closed-loop stabilizing.

5.3. The Hankel norm. For a stable system G of the form (16), we think of w(t) as
an excitation at the input which acts over the time period 0 6 t 6 T . Then the ring of
the system G after the excitation has stopped at time T is z(t) for t > T . If signals are
measured in the energy norm, this leads to the Hankel norm of G defined as

‖G‖H = sup
T>0

{(∫ ∞

T

z>zdt

)1/2

: z = Gw,

∫ T

0

w>wdt 6 1, w(t) = 0 for t > T

}
.

The Hankel norm [23, 14] can be understood as measuring the tendency of a system to
store energy, which is later retrieved to produce undesired noise effects known as system
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ring. Minimizing the Hankel norm ‖Tw→z(K)‖H therefore reduces ringing in the closed-
loop channel w → z.

If we assume as above that Dcl does not explicitly depend on K, it is reasonable to
assess the channel w → z via the objective

f(K) = ‖Tw→z(K)‖2H = λmax(XY ),

where X and Y are the closed-loop Gramians (14) and (15); see also [14, Lemma 1]. Due
to positive semidefiniteness of BclB

>
cl and C>clCcl, closed-loop stability assures positive

semidefiniteness of X and Y in (14) and (15). Therefore, although the product XY need
not be symmetric, we have

λmax(XY ) = λmax(X
1
2Y X

1
2 ) = λmax(Y

1
2XY

1
2 ),

which brings us back to the realm of eigenvalue theory for symmetric matrices. Let
Z := X

1
2Y X

1
2 and take R to be a matrix whose columns form an orthonormal basis of

the eigenspace of Z of dimension r ∈ N associated with λmax(Z). We write Mi(x) :=

∂M(x)/∂xi as before, and M
1
2
i short for (M

1
2 )i, i = 1, . . . , q. Then according to [14,

Proposition 1], the Clarke subdifferential of f at x is

∂f(x) = {(Tr(RUR>Z1(x)), . . . ,Tr(RUR>Zq(x)))> : U ∈ Sr, U � 0,Tr(U) = 1},
with

(17) Zi(x) = X
1
2
i (x)Y X

1
2 +X

1
2Yi(x)X

1
2 +X

1
2Y X

1
2
i (x).

Here Xi(x), Yi(x) and X
1
2
i (x) are the solutions of the following Lyapunov equations

AclXi(x) +Xi(x)A>cl = −BKi(x)CX −X(BKi(x)C)>(18)

−BKi(x)D21B
>
cl −Bcl(BKi(x)D21)

>,

A>clYi(x) + Yi(x)Acl = −(BKi(x)C)>Y − Y BKi(x)C(19)

− (D12Ki(x)C)>Ccl − C>clD12Ki(x)C,

X
1
2X

1
2
i (x) +X

1
2
i (x)X

1
2 = Xi(x).(20)

6. Nonsmooth solver

Step 4 of our main Algorithm 1 requires a subroutine to solve (6). Here we use a
nonsmooth descent algorithm, presented as Algorithm 2, which we now discuss briefly.
To extend the scope, we consider a constrained optimization programs of the more abstract
form

(21)
minimize f(x)
subject to h(x) 6 0

Ax 6 b

where x ∈ Rq is the decision variable, and f and h are potentially nonsmooth and
nonconvex. This covers program (6), where f(x) = ‖Tw→z (K(x)) ‖2 for one of the
norms discussed in Section 5, while h(x) 6 0 could represent the stability constraint
α(A+BKC) + ε ≤ 0. The polydisk constraints |Reλi−Reλ0i | 6 δi, | Imλi− Imλ0i | 6 δi
in (6) can easily be converted to the form Ax 6 b. According to the cases discussed in
Section 4, the decision variable x regroups either the λi with (7), or (λi, ti) as in (9). The
cast (8) is also covered by (21).

To solve (21) we use a progress function at the current iterate x,

F (·,x) = max{f(·)− f(x)− νh(x)+, h(·)− h(x)+},
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for some fixed parameter ν > 0, which is successively minimized subject to the linear
constraints. Antecedents of this idea can for instance be found in Polak [24, Section 2.2.2]
in the smooth case, or Polak and Wardi [25] in a nonsmooth setting, and in our own
contributions [26, 13, 14], where more details and convergence proofs can be found.

Algorithm 2. Nonsmooth optimization subroutine
Parameters: 0 < γ < γ̃ < 1, 0 < γ < Γ < 1, 0 < q <∞, q < T <∞.
. Step 1 (Initialize outer loop). Choose initial iterate x1 with Ax1 6 b and
matrix Q1 = Q>1 with −qI � Q1 � qI. Initialize memory control parameter τ ]1 > 0

such that Q1 + τ ]1I � 0. Put outer loop counter j = 1.
� Step 2 (Stopping test). At outer loop counter j, stop if xj is a KKT-point or a
critical point of constraint violation. Otherwise, goto inner loop.

. Step 3 (Initialize inner loop). Put inner loop counter k = 1 and initialize
τ1 = τ ]j . Build initial working model

Φ1(·,xj) = g>0j(· − xj) + 1
2
(· − xj)>Qj(· − xj),

where g0j ∈ ∂1F (xj,xj).
. Step 4 (Trial step generation). At inner loop counter k find solution yk of the
tangent program

minimize Φk(y,x
j) + τk

2
‖y − xj‖2

subject to Ay 6 b,y ∈ Rn.

� Step 5 (Acceptance test). If

ρk =
F (yk,xj)

Φk(yk,xj)
> γ,

put xj+1 = yk (serious step), quit inner loop and goto step 8. Otherwise (null step),
continue inner loop with step 6.

. Step 6 (Update working model). Generate a cutting plane mk(·,xj) = ak + g>k (· −
xj) at null step yk and counter k using downshifted tangents. Compute aggregate
planem∗k(·,xj) = a∗k+g∗>k (·−xj) at yk, and then build new working model Φk+1(·,xj)
by including cutting plane and aggregate plane.
� Step 7 (Update proximity control parameter). Compute secondary control pa-
rameter

ρ̃k =
Φk+1(y

k,xj)

Φk(yk,xj)
and put

τk+1 =

{
τk if ρ̃k < γ̃,

2τk if ρ̃k > γ̃.

Increase inner loop counter k and loop back to step 4.
� Step 8 (Update Qj and memory element). Update matrix Qj → Qj+1 respecting
Qj+1 = Q>j+1 and −qI � Qj+1 � qI. Then store new memory element

τ ]j+1 =

{
τk if ρk < Γ,
1
2
τk if ρk > Γ.

Increase τ ]j+1 if necessary to ensure Qj+1+τ ]j+1I � 0. If τ ]j+1 > T then re-set τ ]j+1 = T .
Increase outer loop counter j and loop back to step 2.
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Convergence theory of Algorithm 2 is discussed in [13, 14]. The following result is
slightly more general than the main convergence theorem in [13] or [14], but can be
obtained based essentially on the same convergence analysis:

Theorem 1. Suppose f and h in program (21) are lower-C1 functions in the sense of
[27] such that the following conditions hold:

(i) f is weakly coercive on the constraint set Ω = {x ∈ Rq : h(x) 6 0, Ax 6 b}, i.e.,
if xj ∈ Ω and ‖xj‖ → ∞, then f(xj) is not monotonically decreasing.

(ii) h is weakly coercive on P = {x ∈ Rq : Ax 6 b}, i.e., if xj ∈ P and ‖xj‖ → ∞,
then h(xj) is not monotonically decreasing.

Then the sequence of serious iterates xj ∈ P generated by Algorithm 2 is bounded, and
every accumulation point x∗ of the xj satisfies x∗ ∈ P and 0 ∈ ∂1F (x∗,x∗) + A>η∗ for
some multiplier η∗ > 0 with η∗>(Ax∗− b) = 0. In other words, x∗ is either a critical point
of constraint violation, or a Karush-Kuhn-Tucker point of program (21). �

Note that the functions f, h used in (6) are indeed lower-C1 functions, see [13, 14], so our
convergence theory applies. Convergence for even larger classes of nonsmooth functions
is discussed in [11, 12]. For additional insight into this type of nonconvex bundle method
see [26, 11, 12, 28].

7. Control of a launcher in atmospheric flight

We consider attitude control of a satellite launcher in atmospheric flight. The linear
model

ẋ = Ax+Bu

y = Cx

is specified as

A =




Zw Zq + U0 Zθ Zv 0 Zψ Zp Zφ
Mw Mq 0 0 Mr 0 Mp 0
0 Tq 0 0 Tr 0 0 0
Yw 0 Yθ Yv Yr Yψ Yp Yφ
0 Nq 0 Nv Nr 0 Np 0
0 Pq 0 0 Pr 0 0 0
0 Lq 0 0 Lr 0 Lp 0
0 Fq 0 0 Fr 0 1 0




,

B =



Zβz Mβz 0 0 0 0 0 0
0 0 0 Yβy Nβy 0 0 0
0 0 0 0 0 0 Lβr 0



>

.

The states and controls are defined in Tables 1 and 2, while the vector of measurements
is y = [q θ r ψ p φ]> ∈ R6. The model has been obtained from linearization of the
nonlinear equations [29] about a steady state flight point

U0 = 88.11 m/s, v0 = 0.678 m/s, w0 = −1.965 m/s,
p0 = −0.0006 rad/s, q0 = 0.0026 rad/s, r0 = 0.0046 rad/s,
θ0 = 8.38◦, ψ0 = 3.48◦, φ0 = 11.99◦,

the procedure being explained in [30]. Numerical data in A, B are gathered in Table 3.
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Table 1. States definitions

name meaning
w vertical velocity (m/s)
q pitch rate (deg/s)
θ pitch angle (deg)
v lateral velocity (m/s)
r yaw rate (deg/s)
ψ yaw angle (deg)
p roll rate (deg/s)
φ roll angle (deg)

Table 2. Controls definitions

name meaning
βz deflection of pitch nozzle actuator (deg)
βy deflection of yaw nozzle actuator (deg)
βr deflection of roll nozzle actuator (deg)

Table 3. Numerical coefficients at steady state flight point

Zw -0.0162 Mw 0.0022 Yw -6e-4 Nq 5e-4
Zq 87.9 - 88.11 Mq 0.0148 Yθ -2.11 Nv -Mw

Zθ -9.48 Mr -0.0005 Yv Zw Nr 0.0151
Zv 0.0006 Mp 0.0042 Yr -87.9 Np -0.0024
Zψ -2.013 Tq 0.98 Yψ 9.47 Pq 0.2078
Zp -0.687 Tr -0.2084 Yp -1.965 Pr 0.9782
Zφ 0.399 Lq 0 Yφ 1.3272 Fq 0.0704
Lr 0 Lp -0.0289 Lβr 25.89 Fr -0.015
Zβz 10.87 Mβz 4.08 Yβy -10.87 Nβy 4.08

7.1. Control law specifications. The control law specifications include
• Decoupling of the 3 axes (θ, q), (ψ, r), and (φ, p).
• Well-damped responses to set-points in θ, ψ, and φ, the selector outputs.
• Settling times around 2.5 seconds.

We use a set-point tracking control architecture with MIMO PI feedback as shown in
Figure 1. Tunable matrix gains are therefore KP and KI .

Tracking performance is incorporated into program (6) by minimizing the tracking error
transfer function Twref→e(K). Pole placement with integral action is easily formulated
using the augmented state-space matrices

Aa =

[
A 0
−HC 0

]
, Ba =

[
B
0

]
, Ca =

[
C 0
0 I3

]
,

where

H =




0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1


 .



ROBUST EIGENSTRUCTURE CLUSTERING BY NONSMOOTH OPTIMIZATION 13

+

−

∫
KI G

launcher

KP

H

selector

yH

yce d +

−

wref

.

Figure 1. Launcher control architecture with MIMO PI-controller

The control law is structured conformably upon defining

W = [w1 . . . w9] , V = [v1 . . . v9] , [Aa − λiI11|Ba]

[
vi
wi

]
= 0.

Ka = W (CaV )−1, Ka = [−KP KI ] .

7.2. Study 1. In a first study we compare traditional and optimized partial pole place-
ment without shaping of eigenvectors. We start by choosing reference values ξ, ω to
achieve appropriate second-order system responses. We have chosen the desired damping
ξ =

√
2
2
, and natural frequencies

ω1 = 2.1, ω2 = 2.2, ω3 = 1.8,

which leads to the nominal modal set Λ = {λ01, . . . , λ09}, with
λ01 = −ω1

(
ξ + 

√
1− ξ2

)
, λ02 = −ω1

(
ξ − 

√
1− ξ2

)
,

λ03 = −ω2

(
ξ + 

√
1− ξ2

)
, λ04 = −ω2

(
ξ − 

√
1− ξ2

)
,

λ05 = −ω3

(
ξ + 

√
1− ξ2

)
, λ06 = −ω3

(
ξ − 

√
1− ξ2

)
,

λ07 = −3.5, λ08 = −4, λ09 = −4.5.

Classical pole placement now leads to the initial controller K0 in Algorithm 1. To find the
optimal controller K∗, we follow Algorithm 1 and minimize the tracking error wref → e
subject to the pole placement constraint in (6) via Algorithm 2, which returns the optimal
controller K∗.

Table 4. Launcher study 1. Cost for initial K0 and optimal K∗ controllers

Hankel H∞ H2

K0 66.7208 2.3714 45.3537
K∗ 0.7135 1.4058 3.0845

We have run program (6) with three different norms, the Hankel norm, theH∞-, and the
H2-norm. The improvements in the cost function can be seen in Table 4. The wandering
of the poles during optimization shown in Figure 3 corresponds to the case of the Hankel
norm. Figure 2 shows that decoupling is substantially improved in all three cases. Note
the sluggish responses for the initial controller are due to unassigned modes of classical
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Figure 2. Control of a launcher, study 1. Initial and final controllers
obtained respectively by standard and optimized eigenstructure assignment
in the case where eigenvectors are not structured (mi = 0). Decoupling is
improved for each norm

eigenstructure assignment. This is in contrast with the proposed approach in which
modes that are left unspecified are indirectly assigned to achieve additional performance
requirements.

7.3. Study 2. In our second study we compare standard and optimized eigenstructure
assignment. We achieve preliminary decoupling of the modes by choosing structural
constraints on eigenvectors vi. These constraints comply with decoupling requirements of
the launcher motion. The eigenvectors v1 and its complex conjugate v2 are chosen to have
zero entries in the rows corresponding to ψ and φ. The eigenvector v3 and its conjugate
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Figure 3. Control of launcher, study 1. Itineraries of closed-loop poles in
optimized eigenstructure assignment based on the Hankel program (6)

v4 have entries 0 relative to θ and φ. The eigenvectors v5 and its conjugate v6 have zero
entries in the rows associated with θ and ψ. For the real modes, the eigenvectors are
chosen as

v7 = [∗ ∗ 1 ∗ ∗ 0 ∗ 0 ∗ ∗ ∗]>,
v8 = [∗ ∗ 0 ∗ ∗ 1 ∗ 0 ∗ ∗ ∗]>,
v9 = [∗ ∗ 0 ∗ ∗ 0 ∗ 1 ∗ ∗ ∗]>.

These structural constraints define the matricesMi, Ni of (3) in each case. We have again
tested the Hankel, H∞ and H2-norms in the objective f of (6).

The optimal controller K∗ computed by Algorithm 1 for the Hankel norm gives the
value ‖T (Pperf , K

∗)‖H = 0.7360, while the initial controller K0 leads to ‖T (Pperf , K
0)‖H =

0.7787. Similar improvements are obtained for the other norms. The step responses are
shown in Figure 4.

In conclusion, the launcher application shows that decoupling can be significantly en-
hanced through optimization even without shaping of the vi (study 1) if the performance
channel Twref→e is used within optimization program (6). The second study shows that
even when 0’s are assigned to specific vik’s, the use of optimization is still useful, as it
significantly enhances decoupling as demonstrated by simulation.

8. Application to autopilot design for a civil aircraft

In this section, we consider the longitudinal dynamics for the robust civil aircraft model
(RCAM) at a nominal condition with the aircraft in its standard configuration: aircraft
air speed of 80 m/s, aircraft altitude of 305 m (1000 ft), aircraft mass of 120 tons, aircraft
centre of gravity at 23% horizontal MAC and 0% vertical MAC, flight path angle of 0◦
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Figure 4. Control of launcher, study 2. Initial and final controller ob-
tained respectively by standard and optimized eigenstructure assignment
based on Hankel program with mi = m or mi = m− 1

(level) and still air (no wind effects). The linear longitudinal model is given by

ẋ = Ax+Bu

y = Cx

where states are described in Table 5, the input vector is u = [δt δth]
> with δt the

tailplane deflection and δth the throttle position. The vector of measurements is y =
[q nz wV z Vc]

>, where nz is vertical acceleration, wV vertical velocity, and Vc the air
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Table 5. States of the longitudinal model

name meaning
q pitch rate
θ pitch angle
uB forward speed
wB upwards velocity
z altitude
xt the state corresponding to the first order tailplane model
xth the state corresponding to the first order engine model

speed. Data borrowed from [31] are given as

A =




−0.9825 0 −0.0007 −0.0161 0 −2.4379 0.5825
1 0 0 0 0 0

−2.1927 −9.7758 −0.0325 0.0743 0 0.1836 19.6200
77.3571 −0.7674 −0.2265 −0.6683 0 −6.4785 0

0 −79.8667 −0.0283 0.9996 0 0 0
0 0 0 0 0 −6.6667 0
0 0 0 0 0 0 −6.6667



,

B =

[
0 0 0 0 0 6.6667 0
0 0 0 0 0 0 6.6667

]>
,

C =




1 0 0 0 0 0 0
−0.2661 0 −0.0231 −0.0681 0 −0.6604 0

0 −79.8667 −0.0283 0.9996 0 0 0
0 0 0 0 1 0 0
0 0 0.9996 0.0290 0 0 0



.

The controller structure of the longitudinal autopilot with tunable gains KI , KP is
similar to the launcher structure given in Figure 1. The output is now y = [q nz wV z]T ,
and the selector produces yH = [z Vc]

T . We next design a closed-loop controller such that
altitude is decoupled from air speed command and conversely. This leads to decoupling
altitude and altitude-tracking modes from forward speed uB, and decoupling of the air
speed track mode from the upwards velocity wB. Other modes are also decoupled from
some states to reduce the mutual influence of the aircraft variables. Accordingly, we take
the nominal modes as follows:

λ01,2 = −0.8± 0.8,
λ03,4 = −0.15± 0.15,

λ05 = −0.3, λ06 = −0.4, λ07 = −0.5.

The corresponding desired eigenvectors are shaped as

v1,2 = [∗ ∗ 0 ∗ ∗ ∗ ∗ ∗ ∗]>,
v3,4 = [∗ ∗ ∗ 0 ∗ ∗ ∗ ∗ ∗]>,
v5 = [∗ ∗ 0 ∗ ∗ ∗ ∗ ∗ ∗]>,
v6 = [∗ ∗ ∗ 0 ∗ ∗ ∗ ∗ ∗]>,
v7 = [∗ ∗ 0 ∗ ∗ ∗ ∗ ∗ ∗]>,
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which defines the data Mi, Ni and ri in (3). The optimal controller K∗ computed by
Algorithm 1 gives ‖T (Pperf , K

∗)‖H = 0.6270, while the initial controller K0 obtained by
standard assignment had ‖T (Pperf , K

0)‖H = 1.5041. The closed-loop eigenvalues returned
by the algorithm are

λ1,2 = −0.8± 0.8,
λ3,4 = −0.35± 0.05,

λ5 = −0.3, λ6 = −0.05, λ7 = −0.37,

which shows that some of the poles took indeed the opportunity to wander away from
their nominal values once they were allowed to do so. Step responses are compared in
Figure 5. The interpretation of the results is that optimization is useful to further enhance
decoupling even when eigenvectors are already shaped.

−1

0

1
x 10

−3 From: z

T
o:

 q

−5

0

5
x 10

−3

T
o:

 n
z

−0.2

0

0.2

T
o:

 w
V

−2

0

2

T
o:

 z

0 10 20 30 40 50
−2

0

2

T
o:

 V
c

From: V
c

0 10 20 30 40 50
 

 

Step Response

Time (seconds)

A
m

pl
itu

de

Initial controller
Final controller

Figure 5. Aircraft attitude control. Responses to a step command in
altitude and in air speed. Optimal controller computed by optimized eigen-
structure assignment (mi = 1, m = 2) reduces coupling

9. Conclusion

We have presented a new approach to partial eigenstructure assignment in output feed-
back control in which the eigenelements (λ, v, w) are allowed to move simultaneously in a
neighborhood of their nominal values (λ0, v0, w0) obtained by standard partial assignment.
The flexibility gained in allowing this is apparent on two fronts. First, stability of unas-
signed modes is guaranteed, leading to an internally stable closed-loop system. Secondly,
criteria such as H∞, H2 and Hankel norms can be incorporated into our formulation to
improve performance and/or robustness of the controlled system. The efficiency of the
new approach was demonstrated on two aerospace applications, control of a launcher in
atmospheric flight, and attitude control of a civil aircraft.
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Appendix

Proof of Propositions 1 and 2. Let us start by discussing the case mi > m. Derivatives
of wi with respect to λi can be derived from the normal equations Fi(λi)HFi(λi)wi =
Fi(λi)

Hri or directly from the expression of wi in (7). Assuming Fi(λi) is full-column rank,
we rewrite Fi(λi)† = (Fi(λi)

HFi(λi))
−1Fi(λi)

H . The partial derivative of wi with respect
to λi is then readily derived by exploiting that for an invertible matrix M depending
smoothly on a parameter t, the derivative of its inverse is obtained as

∂M−1

∂t
= −M−1∂M

∂t
M−1 .

Also, ∂Fi(λi)H/∂λi is identically zero since ∂λHi /∂λi = 0. This gives

∂wi
∂λi

= −(Fi(λi)
HFi(λi))

−1Fi(λi)
H ∂Fi(λi)

∂λi
(Fi(λi)

HFi(λi))
−1Fi(λi)

Hri

= Fi(λi)
†Mi(λiI − A)−2BFi(λi)

†ri .

The derivative of vi is obtained in much the same way using the upper part of (7). Finally,
collecting the results for wi and vi leads to expression (11).

This allows us now to express the terms ∂K/∂λi where K = W (CV )−1. Using again
the derivative of a matrix inverse, we have

∂(CV )−1

∂λi
= −(CV )−1C

[
0 · · · 0 ∂vi

∂λi
0 · · · 0

]
(CV )−1.

Combining with
∂W

∂λi
=

[
0 · · · 0 ∂wi

∂λi
0 · · · 0

]

yields (10).
Next consider the under-specified casemi < m. We have that (9) yields (13) analogously

to the over-specified case. Finally, formulas for ∂K/∂λi and ∂K/∂tki in (12) are obtained
from the fact that K = W (CV )−1 with V = [v1 . . . vp] and

W =

[
w1 · · ·

∣∣∣∣
ui
ti

∣∣∣∣ · · ·wp
]
.

�
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