Aymeric Blot
email: aymeric.blot@univ-lille.frme.kessaci

Marie-Éléonore Kessaci

Laetitia Jourdan
email: laetitia.jourdan@univ-lille1.fr

Patrick De Causmaecker
email: patrick.decausmaecker@kuleuven.be

Adaptive Multi-Objective Local Search Algorithms for the Permutation Flowshop Scheduling Problem

Automatic algorithm configuration (AAC) is an increasingly critical factor in the design of efficient metaheuristics. AAC was previously successfully applied to multi-objective local search (MOLS) algorithms using offline tools. However, offline approaches are usually very expensive, draw general recommendations regarding algorithm design for a given set of instances, and does generally not allow per-instance adaptation. Online techniques for automatic algorithm control are usually applied to single-objective evolutionary algorithms. In this work we investigate the impact of including control mechanisms to MOLS algorithms on a classical bi-objective permutation flowshop scheduling problem (PFSP), and demonstrate how even simple control mechanisms can complement traditional offline configuration techniques.

Introduction

Designing and tuning metaheuristics is a great challenge in the optimisation field. Offline configurators have been proposed to automatically configure optimisation algorithms according to a single indicator [?,?] and more recently, according to several indicators [?]. However, offline configuration requires a large amount of algorithm executions to test the different configurations and then, the output tuned algorithm is adapted to the training instances only. In this paper, we are interested in online configuration, also called parameter control, that adapts the algorithm during the execution [?,?,?].

Multi-objective local search (MOLS) algorithms are metaheuristics designed to solve multi-objective combinatorial optimisation problems. MOLS algorithms require the definition of several strategies such as the selection of the solution to explore, the exploration of the neighbourhood, the reference set to accept candidate neighbours, or the archive maintenance. They have successfully been used to tackle multi-objective permutation problems such as the travelling salesman problem, the quadratic assignment problem and the permutation flowshop scheduling problem [?,?,?,?]. Parameter control has mostly been applied to bioinspired algorithms for single objective optimisation. In this paper, we propose to control multi-objective local search algorithms to solve the bi-objective permutation flowshop scheduling problem.

This paper is organised as follows. First, a literature review on adaptive metaheuristics is presented. Section 3 details the static and the adaptive versions of the multi-objective local search algorithms. Section 4 presents the experimental setup and Section 5 gives and discusses the results. Finally, Section 6 concludes the paper and draws some perspectives.

Adaptive Metaheuristics

Parameter control mechanisms are generally classified between deterministic, adaptive and self-adaptive approaches [?]. In the following, we focus on adaptive approaches that are parameter and algorithm-independent.

Adaptive search

In their paper [?], Pisinger and Ropke describe a large neighbourhood search heuristic for a pick up and delivery problem which adapts during search through the selection probability of the neighbourhoods or "subheuristics" as the authors call them. The adaption strategy is steered by the history during the search and a reinforcement learning mechanism is employed to adjust the weight of each neighbourhood after a given number or a "segment" of iterations has been applied. The weight determines the probability of selecting a specific neighbourhood. Extra stochasticity is introduced through noise in some of the basic heuristics to create less deterministic behaviour and increase exploration.

An example of off-line learning can be found in [?] e.g., a multi-mode scheduling problem is approached through an automaton model. Reinforcement learning agents learn the decision functions for these automatons off-line through observation of the history. The result is a fast constructive heuristic adapted to the real world situation from which problem instances originate. Off-line learning has taken on recently resulting in very strong results and frameworks. [?,?,?,?,?,?] and recently, tuning the tuner, in [?]. On-line as well as off-line learning are extensively used in hyperheuristics, see [?] for an overview.

Multi Armed Bandit

A good introduction on the subject of multi armed bandits (MAB), with the right balance between fundamental understanding and practical understanding, and without any unnecessary detail, can be found in [?]. MAB's, metaphorically referring to the infamous gambling machines, model a decision problem where the only (or main in some versions) source of information is history of previous selections. The only decision to be taken is which arm to pull next. The aim is to maximise the expected outcome of a finite series of decisions. This has been the subject of a fascinating piece of research leading to a large number of convergence results for various policies and their variations. In an adaptive local search setting, multi armed bandits can be used to model the decisions to be taken on which subalgorithm or neighbourhood to select in the next step given the history of the current search. MAB's have been applied in evolutionary algorithms, see e.g. [?] as well as in evolution based hyperheuristic settings [?]. An early example of an application to combinatorial optimisation in networks is [?]. The design of algorithms using MAB's was studied in [?,?].

-greedy

MAB's, having only history to learn from, need to make decisions that both optimise the immediate result and optimise the lessons learned for better future results. Handling this exploitation/exploration dilemma is what makes a strategy for a MAB. A simple strategy is to pick the decision that has delivered the best result on average in the past. The MAB can then eventually start with an exploration phase where every handle is tried once or a predetermined number of times, after which the greedy strategy is used, adjusting the averages after every decision. In dynamical situations, the average may be weighted to introduce a bias towards recent history. These approaches are termed "greedy". In a slightly more explorative approach, a probability is introduced to allow for random selection of an arm, independently of its average success rate. This kind of approaches are called -greedy, see e.g. [?]. One possibility is to select at time t + 1 the best performing arm with a probability of (1 -ε), leaving a probability of ε to uniformly select an arm at random (Eq. ??).

p i (t + 1) = (1 -ε) + ε/N, if i = arg max j r j (t) ε/N, otherwise (1)

Random

The most simple random control mechanism is based on uniform distribution of arms. However, other random approaches exist, such as Softmax algorithms, that use a specific distribution to select the next arm. Arms with better results on average in the past are assigned a higher probability to be selected. One possibility is to use a Boltzman distribution with the probability to select arm i at time t+1 is given in terms of the average rewards r i (t) at time t as [?,?] (Eq. ??).

p i (t + 1) = e ri(t)/τ arms j e rj (t)/τ , for all arms i

where τ is a temperature parameter that can be taken constant or decreasing [?,?,?,?].

Adaptive pursuit

Pursuit algorithms relate to classical techniques from machine learning in that the probability to select any arm is adjusted after each selection of a specific arm. Given a learning rate β, the probabilities at t + 1 are adapted after t as [?,?,?] (Eq. ??).

p i (t + 1) = p i (t) + β(1 -p i (t)), if i = arg max j r j (t) p i (t) + β(0 -p i (t)), otherwise (3)
The probabilities at t = 0 are all equal. This works well for static systems, with convergence to one for the probability of selecting the best actions. It does not work well for dynamic systems exactly because of this convergence property. In order to alleviate this situation, adaptive pursuit was conceived [?]. In adaptive pursuit, a minimum and a maximum (P min and P max) for the probabilities p i is introduced to leave room for exploration (Eq. ??).

p i (t + 1) = p i (t) + β(P max -p i (t)), if i = arg max j r j (t) p i (t) + β(P min -p i (t)), otherwise (4)
Often, this is combined with a weighted average for the expected performances r i coping better with dynamic situations.

Other approaches

Other approaches are reinforcement comparison [?,?] and upper confidence bound [?]. These approaches offer more possibilities or a better behaviour in case of uncertainty at the cost of somewhat higher complexity.

In the following we will concentrate on the simpler methods mentioned above. These result in acceptable behaviour at a relatively low implementation cost which is important for local search algorithms.

Adaptive Multi-Objective Local Search Algorithms

In this paper, we consider and solve multi-objective combinatorial optimisation (MOCO) problems using the Pareto dominance to compare two solutions s and s : s is said to dominate s if and only if s is better or equal to s according to all criteria, and s is strictly better than s at least for one criterion. If neither s dominates s nor s dominates s, both solutions are called incomparable. In order to handle the Pareto dominance, multi-objective metaheuristics, such as bio-inspired algorithms and multi-objective local search algorithms, can be applied to solve MOCO problems. The last ones have shown very good performance on multi-objective permutation problems such as the travelling salesman problem, the quadratic assignment problem and the permutation flowshop scheduling problem [?,?,?]. Therefore, we decided to focus on multi-objective local search algorithms in the rest of the paper. We present first a static version of multiobjective local search algorithms that will be used in the experiments, and then an adaptive version in which control mechanisms have been integrated into.

Static Multi-Objective Local Search Algorithms

Multi-objective local search (MOLS) algorithms are originally adapted from stochastic local search algorithms [?] where the neighbourhood of a solution is explored to successively move to better and better solutions of the search space. Contrary to the single-objective case where a single current solution is considered only, an archive of solutions is maintained to store solutions found during the search. This archive is generally a set of Pareto solutions i.e., all the solutions of the archive are incomparable. In the literature, many variants of multi-objective local search algorithms were proposed, such as PLS [?] and its numerous variants, iterated PLS [?], the stochastic PLS [?], and the anytime PLS [?]; or the DMLS [?].

The variants differ by several aspects: the selection strategy, the neighbourhood exploration strategy and the set of candidate neighbours to enter in the archive. Indeed, one, or several, or even all solutions of the archive can be explored according to the selection strategy. The neighbourhood of each solution selected in the previous phase can be fully or partially explored following the exploration strategy where a reference is used to compare the neighbours with the solution being explored. This reference is generally either the solution being explored or the entire archive. During the exploration, a policy can be used to accept neighbours as candidate solutions. This policy may be different from the termination of the neighbourhood exploration. For example, when the exploration is stopped as soon as a dominating neighbour has been found, both this neighbour and all the incomparable neighbours visited can be candidates.

Following the literature review presented in Section ??, the on-line adaptation of an algorithm is mainly done by changing one or two strategies only during the execution contrary to off-line adaptation where thousand combinations can be tested. In this paper, we limit our study to three different termination conditions in the neighbourhood exploration and fix the other strategies. Only one solution is randomly selected in the archive to be explored. The neighbourhood exploration of the selected solution stops when one neighbour verifies the condition where the reference is fixed being the entire archive. Three strategies will be considered in this study: imp, stops when the visited neighbour dominates one of the solutions of the archive; this neighbour only is candidate, imp ndom, stops when the visited neighbour dominates one of the solutions of the archive; this neighbour and all the visited neighbours not dominated by the solutions of the archive are candidates, ndom, stops when the visited neighbour is not dominated by the solutions of the archive; this neighbour only is candidate. Finally, through the combine() function, all the candidate solutions are added to the archive, and only the incomparable solutions of the two sets are kept in the archive for the next iteration. Algorithm ?? outlines the basic multi-objective described above. The termination criterion of the algorithm can be an allocated time or number of evaluations for example.

The main drawback of the stochastic local search is they focus their search in a small part of the search space, and then mechanisms have to be integrated to enable them to visit several parts the search space. The iterated local search (ILS) algorithm [?] gives a way to do that for single-objective optimisation by adding a phase to perturb the current solution and so, diversify the search, and accept or not the new solution found. We give in Algorithm ?? a way to iterate a MOLS in this study, using a static exploration strategy and an initial archive. The final archive will contain the best Pareto solutions of the execution. The kick 1() function perturbs the execution of the mols: it randomly selects one solution from the final archive and it applies three random moves. Then, the algorithm has a chance to visit a new part of the search space. The combine() function merges the archive returned by the basic MOLS and the final archive of s-mols to keep the best Pareto solutions only. This MOLS is called static since all strategies are fixed before the execution.

Control in Multi-Objective Local Search Algorithms

In this paper, we are interested in an adaptive version of the previous static multi-objective local search where mechanisms are added to modify the exploration strategies during the execution. These mechanisms aim at adapting the exploration strategies of the MOLS during the execution. From the static MOLS algorithm, we designed an adaptive MOLS where a control arm method and an update rewards method to compute the rewards associated to each strategy are added. First, the rewards of each strategy have to be initialized: each exploration strategy is tested. Then, at each iteration of the MOLS, the control arm Algorithm 2: Static MOLS (s-mols) method defines the exploration strategy for the next execution of the mols. The kick 1() and combine() functions are the same one as defined in s-mols. At the end of the iteration, the rewards of the exploration strategies are updated.

Experimental Setup

In this section, we present the bi-objective permutation optimisation problem tackled in this work, and detail the experimental protocol.

Permutation Flowshop Scheduling Problem

The Permutation Flowshop Scheduling Problem (PFSP) is a classical permutation problem which involves scheduling a set of N jobs {J 1 , . . . , J N } on a set of M machines {M 1 , . . . , M M }. Each job J i is processed sequentially on each of the M machines, with fixed processing times {p i,1 , . . . , p i,M }; machines can only process one job at a time. The sequencing of jobs is identical on every machine, so that a solution may be represented by a permutation of size N . In the following, we consider the bi-objective PFSP (bPFSP), minimising two widely studied objectives, the makespan C max (Eq. ??), i.e., the total completion time of the schedule, and the flowtime F T (Eq. ??), i.e., the sum of the individual completion times C i of the N jobs.

C max := max i∈{1,...,N } C i (5)
F T := N i=1 C i (6)
Classical permutation neighbourhoods include the exchange neighbourhood, where the positions of two jobs are exchanged, and the insertion neighbourhood, where one job is reinserted at another position in the permutation. In this study, we consider the hybrid neighbourhood defined as the union of the exchange and insertion neighbourhoods, which is known for the bPFSP to lead to better performance than considering each neighbourhood independently [?].

We use the classical PFSP Taillard instances [?], widely used in the literature. They span numbers of jobs N ∈ {20, 50, 100, 200, 500} and numbers of machines M ∈ {5, 10, 20}. There are 12 valid (N, M) combinations, with 10 available instances each, for a total of 120 instances. In this study, we limit the initialisation of the MOLS algorithms to the use of a simple single-objective greedy algorithm on the two objectives independently. Indeed, using smarter initialisation procedures, the starting solutions would be too close to the optimal Pareto front, which is undoubtedly detrimental to the current study since we aim to emphasise the impact of the control mechanisms over the algorithm itself. To obtain two solutions of reasonable quality, we have chosen the NEH procedure [?] for the two objectives independently. It is often used to seed state-of-the-art bPFSP initialisation procedures (e.g., the 2-phase local search algorithm [?]).

MOLS Algorithms and Control Mechanisms

Section ?? presented the static and the adaptive versions of a MOLS algorithm where only exploration strategies can be set. Indeed, all other strategies are fixed since earlier work [?,?] has shown that the exploration strategy is the most impactful MOLS component for the bPFSP.

In the experiments, we compare the three deterministic instantiations of Algorithm ??, each using a single exploration strategy (denoted simply by imp, imp ndom, and ndom, respectively), to two adaptive algorithms (see Algorithm ??), using a basic random control mechanism or a ε-greedy control mechanism respectively. While many other more sophisticated mechanisms could have been compared (e.g., see [?,?]), they would likely be similar because only three arms were considered, which considerably limits the number of dissimilar decision strategies.

In the random control mechanism decisions are uniformly taken at random, without any feedback from the search, in contrary to the ε-greedy control mechanism that uses feedback to take decisions. This feedback is computed every iteration using the hypervolume difference between the hypervolume of the new archive and the one of the previous iteration. It is then used to update the reward associated to the current strategy using a learning rate α = 0.8 (Eq. ??, with r i the reward of the arm i, and f (t) the feedback obtained using the current arm).

r i (t + 1) = r i (t) + α(f (t) -r i (t)), if i the current arm r i (t), otherwise (7)
In this study, we set ε = 0.1 so that the best performing strategy (i.e., the arm arg max i r i (t)) is chosen with 90% probability, either strategy being selected uniformly at random otherwise.

For both control strategies, we consider four different variants, that differ by the subset of exploration strategies that are available. First, the three exploration strategies are available for both adaptive algorithms (rand 3, greedy 3). Note that it is already known that the imp strategy leads to poorer results on the bPFSP. But, we still decide to make available this bad strategy in order to evaluate the control mechanism without any a priori knowledge. Secondly, we use this expertise and only make available the two strategies imp ndom and ndom for both adaptive algorithms (rand 2, greedy 2). Finally, the last two variants introduce a long-term learning scheme, beginning with the three strategies but switching to only use the two best strategies during the search. Two possibilities are evaluated: either after half the total running time of both adaptive algorithms (rand ltl 50, greedy ltl 50), or after twenty percent of the total running time (rand ltl 20, greedy ltl 20).

The termination criterion of the three static algorithms and the eight variants of the adaptive algorithm is a total running time fixed to n 2 m/500 seconds. The termination criterion of the inner MOLS (see Algorithm ??) is a combination of either n 2 solution evaluations or n iterations without improvement. This criterion is well adapted to the bPFSP since it enables a sufficient number of iterations of both the inner algorithm and the control mechanism. In the following experiments, about 1600 executions of the inner MOLS for instances with 20 jobs have been done, then about 750, 400, 250 and 100 iterations for instances with 50, 100, 200 and 500 jobs, respectively. This decrease of the number of executions when the number of jobs increases is explained by the exploration step that becomes more and more long and challenging as the size of the neighbourhood quickly grows.

Experimental Protocol

In this work, we propose to compare the performance of using traditional deterministic mechanisms (through three static algorithms) with different control mechanisms (through eight adaptive algorithms). Experiments are conducted across all classical bPFSP Taillard instances, separated in twelve benchmarks of 10 instances sharing the same number of jobs and machines. The experimental protocol is reduced to the exhaustive comparison of all approaches on all benchmark instances. Because of the stochasticity of both the algorithm and the control mechanisms, all approaches are run 20 times on each instance, using a given set of 20 random seeds.

In total, eleven approaches are compared, in 4 successive steps, as detailed in Table ??. First, we compare the three deterministic approaches with the two adaptive approaches that use all three explorations strategies. Then, we focus on the two best strategies, and compare the respective two deterministic approaches with the two adaptive approaches that use them only. Finally, we investigate the potential of a long-term learning scheme for the two control mechanisms independently, first by switching from three arms to two arms after half of the runtime has passed (rand ltl 50, greedy ltl 50), then after only twenty percent of the runtime (rand ltl 20, greedy ltl 20).

Experimental Results

Table ?? presents the rankings resulting of the four steps presented in the experimental protocol (see Section ??) for the 12 instance sizes together with the resulting average ranks. For each instance size, the ranking is computed using pairwise Wilcoxon signed rank tests and the Friedman test post hoc analysis checks the statistical equivalence between algorithms ranked 1, and their difference with the others.

First, we focus on the 3-arm adaptive approaches, rand 3 and greedy 3, comparing them to the three respective deterministic approaches imp, imp ndom and ndom. As shown on Table ??, the imp and ndom approaches always perform very poorly and very well, respectively. Meanwhile, the imp ndom approach performs rather poorly in small instances, but achieves very good results on the largest ones. Surprisingly, the two adaptive approaches (rand 3 and greedy 3) equivalently perform. More precisely, they perform very well on the first eight instances (rank 1), but their performance are more debatable on the four largest ones. Indeed, for instances with 100 jobs and 20 machines, they are outperformed by the deterministic approach ndom and equivalently perform with the imp ndom approach. But, for instances with 200 and 500 jobs, they are also outperformed by this latter approach. In these cases, they are still better than the imp approach. This results show that the imp approach affects more the adaptive algorithms when the problem gets harder. Then, in the second step, the imp approach is discarded and we focus on the 2-arm adaptive approaches (rand 2 and greedy 2) that have only the choice between the imp ndom and ndom exploration strategies. Once again, the two adaptive approaches equivalently perform. However, they are rank 1 for all the instances except for the 100-jobs 20-instances (rank 2). Considering only the well performing exploration strategies largely improves the adaptive approaches for the largest instances.

Having validated that the imp arm should not be used on larger machines instances, we finally investigate a long-term learning scheme where arms can be discarded if they are worse than the others. Two approaches have been tested: the discard of the worst strategy is done after either fifty percent (rand ltl 50, greedy ltl 50) or twenty percent (rand ltl 20, greedy ltl 20) of the total running time. In order to effectively analyse this long-term learning scheme, the two adaptive approaches are investigated and ranked separately. Unsurprisingly, the 2-arm versions of both adaptive approaches always statistically outperform their respective 3-arm versions and so for the versions using the long-term learning. Introducing long-term learning to only keep well-performing arms is efficient. The ranking between the two control mechanisms rand and greedy are not the same size by size, but the average ranks show that it is more efficient to discard an arm sooner since rand ltl 20 and greedy ltl 20 are better ranked than rand ltl 50 and greedy ltl 50 respectively. These results demonstrate how control mechanisms can effectively identify and evaluate the performance of strategies during the search.

Table ?? summarises all experiments and shows the overall ranking of the eleven approaches on each instance size and shows the final average ranks. Regarding the three deterministic approaches, the imp approach is always ranked last; the ndom approach is almost always ranked first, only beaten on the 20jobs 20-machines instance where it is outperformed by all adaptive approaches. Regarding the adaptive approaches, both the 2-arm approaches rand 2 and greedy 2 are the best performing, then are ranked the ltl 20 ones and the ltl 50 ones. The approaches using the random control mechanism generally perform worse than the ones using the ε-greedy mechanism, especially for the 3-arm variants and the long-term learning variants. Interestingly, even the random adaptive approach performs really well when considering the two imp ndom and ndom arms, potentially meaning that the adaptive algorithms will achieve very good results as long as there is no critically bad performing arm available. However, the long-term learning variants show that it is possible to identify, remove and recover in such event.

Conclusion

In this paper we presented an adaptive version of MOLS algorithms by introducing control mechanisms. If many control mechanisms can be found in the literature, they have mostly been applied to single objective bio-inspired algorithms; we investigated here their impact on a multi-objective iterative local search algorithm on the classical bi-objective bPFSP. We restrained the control on a single parameter, the exploration strategy, using two different types of control mechanisms: one uniform random and one feedback-based.

Our results show that on the studied problem, taken individually, the three considered explorations strategies performs very differently, and that adaptive approaches can achieve results statistically equivalent to the best strategy. We verified that identifying the best performing strategy before the search, using for example an offline automatic algorithm configurator, can lead to substantial improvement of the algorithm performance. Moreover, we show that very basic control mechanisms can achieve similar outcomes as long as the worst performing strategies are quickly discarded. Identification of the arm qualities continues to critically impact the performance of the overall algorithm, but the long-term learning approaches show that it is possible to introduce this knowledge during the search instead. It means that if a preliminary offline configuration of the algorithm results on multiple high performing mechanisms, it should be possible to simply postpone the decision and to adaptively decide during the search for each tackled instance.

In future work, it would be necessary to first investigate the addition of more possible arms to the MOLS structure, for example by differentiating the exploration reference, in order to compare more complex and potentially more efficient control mechanisms. Moreover, it would be helpful not to fix strategies a priori. Therefore, we would investigate the potential of control mechanisms to simultaneously manage different strategies. Finally, a single bi-objective problem was considered in this paper, in which the performance of each exploration strategy did not vary much. As MOLS algorithms have also been applied to other problems such as the travelling salesman problem or the quadratic assignment problem, for which the optimal MOLS configurations differs, it would be interesting to investigate adaptive MOLS on these problems.

 Algorithm 1: Basic Multi-Objective Local Search (mols)

	Input: A set of solutions, an exploration strategy
	Output: A set of solutions
	archive ← initial set of solutions;
	until termination criterion is met do
	/* Select a random solution */
	selected ← select 1 rand (archive);
	/* Apply the given exploration strategy */
	reference ← archive;
	accepted ← exploration strat (current, reference);
	/* Update the archive with the accepted neighbours */
	archive ← bounded pareto (archive, accepted);
	return archive ;

Table 1 .

 1 Experimentations summary

	Type	Approach 3 arms 2 arms LTL
	Deterministic	imp
	Deterministic	imp ndom
	Deterministic	ndom
	Random	rand 3
	Random	rand 2
	Random	rand ltl 50
	Random	rand ltl 20
	ε-greedy	greedy 3
	ε-greedy	greedy 2
	ε-greedy	greedy ltl 50
	ε-greedy	greedy ltl 20

Table 2 .

 2 Experimental ranking

	Instance			3 arms			2 arms		LTL rand	LTL ε-greedy
	N M	imp	imp ndom	ndom	rand 3	greedy 3	imp ndom	ndom	rand 2	greedy 2	rand 3	rand 2	rand ltl 50	rand ltl 20	greedy 3	greedy 2	greedy ltl 50	greedy ltl 20
	20 5	5 4 1 1 1	4 1 1 1	4 1 3 1	1 1 1 1
	20 10	5 4 1 1 1	4 1 1 1	4 1 1 1	1 1 1 1
	20 20	5 3 3 1 1	3 3 1 1	2 1 2 2	1 1 1 1
	50 5	5 4 1 1 1	4 1 1 1	4 1 1 1	1 1 1 1
	50 10	5 4 1 1 1	4 1 1 1	4 1 1 1	4 1 1 3
	50 20	5 4 1 1 1	4 1 1 1	4 1 1 1	4 1 1 1
	100 5	5 4 1 1 1	4 1 1 1	4 1 3 1	4 1 3 1
	100 10	5 1 1 1 1	4 1 1 1	4 1 3 1	4 1 3 1
	100 20	5 2 1 2 2	4 1 2 2	4 1 3 1	4 1 3 1
	200 10	5 1 1 3 3	4 1 1 1	4 1 2 2	4 1 3 1
	200 20	5 2 1 3 3	4 1 1 1	4 1 3 2	4 1 2 2
	500 20	5 1 1 3 3	1 1 1 1	3 1 3 2	3 1 2 3
	average	5 2.8 1.2 1.6 1.6	3.7 1.2 1.1 1.1	3.8 1 2.2 1.3	2.9 1 1.8 1.4

Table 3 .

 3 Complete ranking

	Instance											
	N M	imp	imp ndom	ndom	rand 3	rand 2	rand ltl 50	rand ltl 20	greedy 3	greedy 2	greedy ltl 50	greedy ltl 20
	20 5	11 10 1 9 1 8 1 1 1 1	1
	20 10	11 10 1 9 1 1 1 1 1 1	1
	20 20	11 9 9 6 1 6 6 1 1 1	1
	50 5	11 10 1 9 1 1 1 1 1 1	1
	50 10	11 10 1 9 1 5 5 8 1 1	5
	50 20	11 10 1 7 1 1 1 9 1 7	1
	100 5	11 9 1 10 1 7 5 8 1 5	1
	100 10	11 7 1 10 1 7 1 9 1 6	1
	100 20	11 6 1 9 2 6 2 9 2 8	2
	200 10	11 4 1 9 1 6 6 9 1 6	4
	200 20	11 7 1 10 1 7 1 9 1 6	1
	500 20	11 6 1 9 2 6 2 9 2 8	2
	average	11 8.2 1.7 8.8 1.2 5.1 2.7 6.2 1.2 4.3 1.75