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Abstract. Automatic algorithm configuration (AAC) is an increasingly
critical factor in the design of efficient metaheuristics. AAC was previ-
ously successfully applied to multi-objective local search (MOLS) algo-
rithms using offline tools. However, offline approaches are usually very
expensive, draw general recommendations regarding algorithm design
for a given set of instances, and does generally not allow per-instance
adaptation. Online techniques for automatic algorithm control are usu-
ally applied to single-objective evolutionary algorithms. In this work we
investigate the impact of including control mechanisms to MOLS algo-
rithms on a classical bi-objective permutation flowshop scheduling prob-
lem (PFSP), and demonstrate how even simple control mechanisms can
complement traditional offline configuration techniques.

1 Introduction

Designing and tuning metaheuristics is a great challenge in the optimisation field.
Offline configurators have been proposed to automatically configure optimisation
algorithms according to a single indicator [?,?] and more recently, according to
several indicators [?]. However, offline configuration requires a large amount of
algorithm executions to test the different configurations and then, the output
tuned algorithm is adapted to the training instances only. In this paper, we are
interested in online configuration, also called parameter control, that adapts the
algorithm during the execution [?,?,?].

Multi-objective local search (MOLS) algorithms are metaheuristics designed
to solve multi-objective combinatorial optimisation problems. MOLS algorithms
require the definition of several strategies such as the selection of the solution
to explore, the exploration of the neighbourhood, the reference set to accept
candidate neighbours, or the archive maintenance. They have successfully been
used to tackle multi-objective permutation problems such as the travelling sales-
man problem, the quadratic assignment problem and the permutation flowshop



scheduling problem [?,?,?,?]. Parameter control has mostly been applied to bio-
inspired algorithms for single objective optimisation. In this paper, we propose
to control multi-objective local search algorithms to solve the bi-objective per-
mutation flowshop scheduling problem.

This paper is organised as follows. First, a literature review on adaptive meta-
heuristics is presented. Section 3 details the static and the adaptive versions of
the multi-objective local search algorithms. Section 4 presents the experimental
setup and Section 5 gives and discusses the results. Finally, Section 6 concludes
the paper and draws some perspectives.

2 Adaptive Metaheuristics

Parameter control mechanisms are generally classified between deterministic,
adaptive and self-adaptive approaches [?]. In the following, we focus on adaptive
approaches that are parameter and algorithm-independent.

2.1 Adaptive search

In their paper [?], Pisinger and Ropke describe a large neighbourhood search
heuristic for a pick up and delivery problem which adapts during search through
the selection probability of the neighbourhoods or “subheuristics” as the authors
call them. The adaption strategy is steered by the history during the search and a
reinforcement learning mechanism is employed to adjust the weight of each neigh-
bourhood after a given number or a “segment” of iterations has been applied.
The weight determines the probability of selecting a specific neighbourhood. Ex-
tra stochasticity is introduced through noise in some of the basic heuristics to
create less deterministic behaviour and increase exploration.

An example of off-line learning can be found in [?] e.g., a multi-mode schedul-
ing problem is approached through an automaton model. Reinforcement learning
agents learn the decision functions for these automatons off-line through obser-
vation of the history. The result is a fast constructive heuristic adapted to the
real world situation from which problem instances originate. Off-line learning has
taken on recently resulting in very strong results and frameworks. [?,?,?,?,?,?]
and recently, tuning the tuner, in [?]. On-line as well as off-line learning are
extensively used in hyperheuristics, see [?] for an overview.

2.2 Multi Armed Bandit

A good introduction on the subject of multi armed bandits (MAB), with the
right balance between fundamental understanding and practical understanding,
and without any unnecessary detail, can be found in [?]. MAB’s, metaphorically
referring to the infamous gambling machines, model a decision problem where
the only (or main in some versions) source of information is history of previous
selections. The only decision to be taken is which arm to pull next. The aim
is to maximise the expected outcome of a finite series of decisions. This has



been the subject of a fascinating piece of research leading to a large number
of convergence results for various policies and their variations. In an adaptive
local search setting, multi armed bandits can be used to model the decisions
to be taken on which subalgorithm or neighbourhood to select in the next step
given the history of the current search. MAB’s have been applied in evolutionary
algorithms, see e.g. [?] as well as in evolution based hyperheuristic settings [?].
An early example of an application to combinatorial optimisation in networks is
[?]. The design of algorithms using MAB’s was studied in [?,?].

2.3 ε-greedy

MAB’s, having only history to learn from, need to make decisions that both
optimise the immediate result and optimise the lessons learned for better future
results. Handling this exploitation/exploration dilemma is what makes a strat-
egy for a MAB. A simple strategy is to pick the decision that has delivered the
best result on average in the past. The MAB can then eventually start with an
exploration phase where every handle is tried once or a predetermined number
of times, after which the greedy strategy is used, adjusting the averages after
every decision. In dynamical situations, the average may be weighted to intro-
duce a bias towards recent history. These approaches are termed “greedy”. In
a slightly more explorative approach, a probability is introduced to allow for
random selection of an arm, independently of its average success rate. This kind
of approaches are called ε-greedy, see e.g. [?]. One possibility is to select at time
t+ 1 the best performing arm with a probability of (1− ε), leaving a probability
of ε to uniformly select an arm at random (Eq. ??).

pi(t+ 1) =

{
(1− ε) + ε/N, if i = arg maxj rj(t)

ε/N, otherwise
(1)

2.4 Random

The most simple random control mechanism is based on uniform distribution
of arms. However, other random approaches exist, such as Softmax algorithms,
that use a specific distribution to select the next arm. Arms with better results
on average in the past are assigned a higher probability to be selected. One
possibility is to use a Boltzman distribution with the probability to select arm i at
time t+1 is given in terms of the average rewards ri(t) at time t as [?,?] (Eq. ??).

pi(t+ 1) =
eri(t)/τ∑

arms j

erj(t)/τ
, for all arms i (2)

where τ is a temperature parameter that can be taken constant or decreasing
[?,?,?,?].



2.5 Adaptive pursuit

Pursuit algorithms relate to classical techniques from machine learning in that
the probability to select any arm is adjusted after each selection of a specific
arm. Given a learning rate β, the probabilities at t + 1 are adapted after t as
[?,?,?] (Eq. ??).

pi(t+ 1) =

{
pi(t) + β(1− pi(t)), if i = arg maxj rj(t)

pi(t) + β(0− pi(t)), otherwise
(3)

The probabilities at t = 0 are all equal. This works well for static systems, with
convergence to one for the probability of selecting the best actions. It does not
work well for dynamic systems exactly because of this convergence property. In
order to alleviate this situation, adaptive pursuit was conceived [?]. In adaptive
pursuit, a minimum and a maximum (Pmin and Pmax) for the probabilities pi
is introduced to leave room for exploration (Eq. ??).

pi(t+ 1) =

{
pi(t) + β(Pmax − pi(t)), if i = arg maxj rj(t)

pi(t) + β(Pmin − pi(t)), otherwise
(4)

Often, this is combined with a weighted average for the expected performances
ri coping better with dynamic situations.

2.6 Other approaches

Other approaches are reinforcement comparison [?,?] and upper confidence bound
[?]. These approaches offer more possibilities or a better behaviour in case of un-
certainty at the cost of somewhat higher complexity.

In the following we will concentrate on the simpler methods mentioned above.
These result in acceptable behaviour at a relatively low implementation cost
which is important for local search algorithms.

3 Adaptive Multi-Objective Local Search Algorithms

In this paper, we consider and solve multi-objective combinatorial optimisation
(MOCO) problems using the Pareto dominance to compare two solutions s and
s′: s is said to dominate s′ if and only if s is better or equal to s according to
all criteria, and s is strictly better than s′ at least for one criterion. If neither
s dominates s′ nor s′ dominates s, both solutions are called incomparable. In
order to handle the Pareto dominance, multi-objective metaheuristics, such as
bio-inspired algorithms and multi-objective local search algorithms, can be ap-
plied to solve MOCO problems. The last ones have shown very good performance
on multi-objective permutation problems such as the travelling salesman prob-
lem, the quadratic assignment problem and the permutation flowshop scheduling



problem [?,?,?]. Therefore, we decided to focus on multi-objective local search
algorithms in the rest of the paper. We present first a static version of multi-
objective local search algorithms that will be used in the experiments, and then
an adaptive version in which control mechanisms have been integrated into.

3.1 Static Multi-Objective Local Search Algorithms

Multi-objective local search (MOLS) algorithms are originally adapted from
stochastic local search algorithms [?] where the neighbourhood of a solution
is explored to successively move to better and better solutions of the search
space. Contrary to the single-objective case where a single current solution is
considered only, an archive of solutions is maintained to store solutions found
during the search. This archive is generally a set of Pareto solutions i.e., all the
solutions of the archive are incomparable. In the literature, many variants of
multi-objective local search algorithms were proposed, such as PLS [?] and its
numerous variants, iterated PLS [?], the stochastic PLS [?], and the anytime
PLS [?]; or the DMLS [?].

The variants differ by several aspects: the selection strategy, the neighbour-
hood exploration strategy and the set of candidate neighbours to enter in the
archive. Indeed, one, or several, or even all solutions of the archive can be ex-
plored according to the selection strategy. The neighbourhood of each solution
selected in the previous phase can be fully or partially explored following the
exploration strategy where a reference is used to compare the neighbours with
the solution being explored. This reference is generally either the solution being
explored or the entire archive. During the exploration, a policy can be used to
accept neighbours as candidate solutions. This policy may be different from the
termination of the neighbourhood exploration. For example, when the explo-
ration is stopped as soon as a dominating neighbour has been found, both this
neighbour and all the incomparable neighbours visited can be candidates.

Following the literature review presented in Section ??, the on-line adapta-
tion of an algorithm is mainly done by changing one or two strategies only during
the execution contrary to off-line adaptation where thousand combinations can
be tested. In this paper, we limit our study to three different termination con-
ditions in the neighbourhood exploration and fix the other strategies. Only one
solution is randomly selected in the archive to be explored. The neighbourhood
exploration of the selected solution stops when one neighbour verifies the con-
dition where the reference is fixed being the entire archive. Three strategies will
be considered in this study:

imp, stops when the visited neighbour dominates one of the solutions of the
archive; this neighbour only is candidate,

imp ndom, stops when the visited neighbour dominates one of the solutions of
the archive; this neighbour and all the visited neighbours not dominated by
the solutions of the archive are candidates,

ndom, stops when the visited neighbour is not dominated by the solutions of the
archive; this neighbour only is candidate.



Algorithm 1: Basic Multi-Objective Local Search (mols)

Input: A set of solutions, an exploration strategy
Output: A set of solutions

archive ← initial set of solutions;
until termination criterion is met do

/* Select a random solution */

selected ← select 1 rand (archive);
/* Apply the given exploration strategy */

reference ← archive;
accepted ← exploration strat (current, reference);
/* Update the archive with the accepted neighbours */

archive ← bounded pareto (archive, accepted);

return archive ;

Finally, through the combine() function, all the candidate solutions are added
to the archive, and only the incomparable solutions of the two sets are kept in the
archive for the next iteration. Algorithm ?? outlines the basic multi-objective
described above. The termination criterion of the algorithm can be an allocated
time or number of evaluations for example.

The main drawback of the stochastic local search is they focus their search
in a small part of the search space, and then mechanisms have to be integrated
to enable them to visit several parts the search space. The iterated local search
(ILS) algorithm [?] gives a way to do that for single-objective optimisation by
adding a phase to perturb the current solution and so, diversify the search, and
accept or not the new solution found. We give in Algorithm ?? a way to iterate
a MOLS in this study, using a static exploration strategy and an initial archive.
The final archive will contain the best Pareto solutions of the execution. The
kick 1() function perturbs the execution of the mols: it randomly selects one
solution from the final archive and it applies three random moves. Then, the
algorithm has a chance to visit a new part of the search space. The combine()

function merges the archive returned by the basic MOLS and the final archive of
s-mols to keep the best Pareto solutions only. This MOLS is called static since
all strategies are fixed before the execution.

3.2 Control in Multi-Objective Local Search Algorithms

In this paper, we are interested in an adaptive version of the previous static
multi-objective local search where mechanisms are added to modify the explo-
ration strategies during the execution. These mechanisms aim at adapting the
exploration strategies of the MOLS during the execution. From the static MOLS
algorithm, we designed an adaptive MOLS where a control arm method and
an update rewards method to compute the rewards associated to each strategy
are added. First, the rewards of each strategy have to be initialized: each explo-
ration strategy is tested. Then, at each iteration of the MOLS, the control arm



Algorithm 2: Static MOLS (s-mols)

Output: A set of solutions

archive ← initialisation ();
until termination criterion is met do

/* Perturb and apply the MOLS algorithm */

current ← perturb (best archive);
current ← mols (current, exploration);
/* Merge resulting archive */

archive ← pareto (archive
⋃

current);

return archive ;

Algorithm 3: Adaptive MOLS (a-mols)

Output: A set of solutions

archive ← initialisation ();
until termination criterion is met do

/* Select exploration strategy */

exploration ← control arm ();
/* Perturb and apply the MOLS algorithm */

current ← perturb (best archive);
current ← mols (current, exploration);
/* Merge resulting archive and update rewards */

tmp ← pareto (archive
⋃

current);
update rewards (exploration, archive, tmp);
archive ← tmp;

return archive ;

method defines the exploration strategy for the next execution of the mols. The
kick 1() and combine() functions are the same one as defined in s-mols. At
the end of the iteration, the rewards of the exploration strategies are updated.

4 Experimental Setup

In this section, we present the bi-objective permutation optimisation problem
tackled in this work, and detail the experimental protocol.

4.1 Permutation Flowshop Scheduling Problem

The Permutation Flowshop Scheduling Problem (PFSP) is a classical permuta-
tion problem which involves scheduling a set of N jobs {J1, . . . , JN} on a set
of M machines {M1, . . . ,MM}. Each job Ji is processed sequentially on each
of the M machines, with fixed processing times {pi,1, . . . , pi,M}; machines can
only process one job at a time. The sequencing of jobs is identical on every ma-
chine, so that a solution may be represented by a permutation of size N . In the



following, we consider the bi-objective PFSP (bPFSP), minimising two widely
studied objectives, the makespan Cmax (Eq. ??), i.e., the total completion time
of the schedule, and the flowtime FT (Eq. ??), i.e., the sum of the individual
completion times Ci of the N jobs.

Cmax := max
i∈{1,...,N}

Ci (5)

FT :=

N∑
i=1

Ci (6)

Classical permutation neighbourhoods include the exchange neighbourhood,
where the positions of two jobs are exchanged, and the insertion neighbourhood,
where one job is reinserted at another position in the permutation. In this study,
we consider the hybrid neighbourhood defined as the union of the exchange
and insertion neighbourhoods, which is known for the bPFSP to lead to better
performance than considering each neighbourhood independently [?].

We use the classical PFSP Taillard instances [?], widely used in the literature.
They span numbers of jobs N ∈ {20, 50, 100, 200, 500} and numbers of machines
M ∈ {5, 10, 20}. There are 12 valid (N,M) combinations, with 10 available
instances each, for a total of 120 instances.

In this study, we limit the initialisation of the MOLS algorithms to the use of
a simple single-objective greedy algorithm on the two objectives independently.
Indeed, using smarter initialisation procedures, the starting solutions would be
too close to the optimal Pareto front, which is undoubtedly detrimental to the
current study since we aim to emphasise the impact of the control mechanisms
over the algorithm itself. To obtain two solutions of reasonable quality, we have
chosen the NEH procedure [?] for the two objectives independently. It is often
used to seed state-of-the-art bPFSP initialisation procedures (e.g., the 2-phase
local search algorithm [?]).

4.2 MOLS Algorithms and Control Mechanisms

Section ?? presented the static and the adaptive versions of a MOLS algorithm
where only exploration strategies can be set. Indeed, all other strategies are
fixed since earlier work [?,?] has shown that the exploration strategy is the most
impactful MOLS component for the bPFSP.

In the experiments, we compare the three deterministic instantiations of Al-
gorithm ??, each using a single exploration strategy (denoted simply by imp,
imp ndom, and ndom, respectively), to two adaptive algorithms (see Algorithm ??),
using a basic random control mechanism or a ε-greedy control mechanism re-
spectively. While many other more sophisticated mechanisms could have been
compared (e.g., see [?,?]), they would likely be similar because only three arms
were considered, which considerably limits the number of dissimilar decision
strategies.



In the random control mechanism decisions are uniformly taken at random,
without any feedback from the search, in contrary to the ε-greedy control mech-
anism that uses feedback to take decisions. This feedback is computed every
iteration using the hypervolume difference between the hypervolume of the new
archive and the one of the previous iteration. It is then used to update the reward
associated to the current strategy using a learning rate α = 0.8 (Eq. ??, with ri
the reward of the arm i, and f(t) the feedback obtained using the current arm).

ri(t+ 1) =

{
ri(t) + α(f(t)− ri(t)), if i the current arm

ri(t), otherwise
(7)

In this study, we set ε = 0.1 so that the best performing strategy (i.e., the arm
arg maxi ri(t)) is chosen with 90% probability, either strategy being selected
uniformly at random otherwise.

For both control strategies, we consider four different variants, that differ by
the subset of exploration strategies that are available. First, the three exploration
strategies are available for both adaptive algorithms (rand 3, greedy 3). Note
that it is already known that the imp strategy leads to poorer results on the
bPFSP. But, we still decide to make available this bad strategy in order to
evaluate the control mechanism without any a priori knowledge. Secondly, we
use this expertise and only make available the two strategies imp ndom and ndom

for both adaptive algorithms (rand 2, greedy 2). Finally, the last two variants
introduce a long-term learning scheme, beginning with the three strategies but
switching to only use the two best strategies during the search. Two possibilities
are evaluated: either after half the total running time of both adaptive algorithms
(rand ltl 50, greedy ltl 50), or after twenty percent of the total running time
(rand ltl 20, greedy ltl 20).

The termination criterion of the three static algorithms and the eight vari-
ants of the adaptive algorithm is a total running time fixed to n2m/500 seconds.
The termination criterion of the inner MOLS (see Algorithm ??) is a combina-
tion of either n2 solution evaluations or n iterations without improvement. This
criterion is well adapted to the bPFSP since it enables a sufficient number of it-
erations of both the inner algorithm and the control mechanism. In the following
experiments, about 1600 executions of the inner MOLS for instances with 20 jobs
have been done, then about 750, 400, 250 and 100 iterations for instances with
50, 100, 200 and 500 jobs, respectively. This decrease of the number of execu-
tions when the number of jobs increases is explained by the exploration step that
becomes more and more long and challenging as the size of the neighbourhood
quickly grows.

4.3 Experimental Protocol

In this work, we propose to compare the performance of using traditional de-
terministic mechanisms (through three static algorithms) with different control
mechanisms (through eight adaptive algorithms). Experiments are conducted



Table 1. Experimentations summary

Type Approach 3 arms 2 arms LTL

Deterministic imp X
Deterministic imp ndom X X
Deterministic ndom X X
Random rand 3 X X
Random rand 2 X X
Random rand ltl 50 X
Random rand ltl 20 X
ε-greedy greedy 3 X X
ε-greedy greedy 2 X X
ε-greedy greedy ltl 50 X
ε-greedy greedy ltl 20 X

across all classical bPFSP Taillard instances, separated in twelve benchmarks of
10 instances sharing the same number of jobs and machines.

The experimental protocol is reduced to the exhaustive comparison of all
approaches on all benchmark instances. Because of the stochasticity of both the
algorithm and the control mechanisms, all approaches are run 20 times on each
instance, using a given set of 20 random seeds.

In total, eleven approaches are compared, in 4 successive steps, as detailed
in Table ??. First, we compare the three deterministic approaches with the
two adaptive approaches that use all three explorations strategies. Then, we
focus on the two best strategies, and compare the respective two deterministic
approaches with the two adaptive approaches that use them only. Finally, we
investigate the potential of a long-term learning scheme for the two control
mechanisms independently, first by switching from three arms to two arms after
half of the runtime has passed (rand ltl 50, greedy ltl 50), then after only
twenty percent of the runtime (rand ltl 20, greedy ltl 20).

5 Experimental Results

Table ?? presents the rankings resulting of the four steps presented in the ex-
perimental protocol (see Section ??) for the 12 instance sizes together with the
resulting average ranks. For each instance size, the ranking is computed using
pairwise Wilcoxon signed rank tests and the Friedman test post hoc analysis
checks the statistical equivalence between algorithms ranked 1, and their differ-
ence with the others.

First, we focus on the 3-arm adaptive approaches, rand 3 and greedy 3,
comparing them to the three respective deterministic approaches imp, imp ndom

and ndom. As shown on Table ??, the imp and ndom approaches always perform
very poorly and very well, respectively. Meanwhile, the imp ndom approach per-
forms rather poorly in small instances, but achieves very good results on the



Table 2. Experimental ranking

Instance 3 arms 2 arms LTL rand LTL ε-greedy
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20 5 5 4 1 1 1 4 1 1 1 4 1 3 1 1 1 1 1
20 10 5 4 1 1 1 4 1 1 1 4 1 1 1 1 1 1 1
20 20 5 3 3 1 1 3 3 1 1 2 1 2 2 1 1 1 1
50 5 5 4 1 1 1 4 1 1 1 4 1 1 1 1 1 1 1
50 10 5 4 1 1 1 4 1 1 1 4 1 1 1 4 1 1 3
50 20 5 4 1 1 1 4 1 1 1 4 1 1 1 4 1 1 1
100 5 5 4 1 1 1 4 1 1 1 4 1 3 1 4 1 3 1
100 10 5 1 1 1 1 4 1 1 1 4 1 3 1 4 1 3 1
100 20 5 2 1 2 2 4 1 2 2 4 1 3 1 4 1 3 1
200 10 5 1 1 3 3 4 1 1 1 4 1 2 2 4 1 3 1
200 20 5 2 1 3 3 4 1 1 1 4 1 3 2 4 1 2 2
500 20 5 1 1 3 3 1 1 1 1 3 1 3 2 3 1 2 3

average 5 2.8 1.2 1.6 1.6 3.7 1.2 1.1 1.1 3.8 1 2.2 1.3 2.9 1 1.8 1.4

largest ones. Surprisingly, the two adaptive approaches (rand 3 and greedy 3)
equivalently perform. More precisely, they perform very well on the first eight
instances (rank 1), but their performance are more debatable on the four largest
ones. Indeed, for instances with 100 jobs and 20 machines, they are outper-
formed by the deterministic approach ndom and equivalently perform with the
imp ndom approach. But, for instances with 200 and 500 jobs, they are also out-
performed by this latter approach. In these cases, they are still better than the
imp approach. This results show that the imp approach affects more the adaptive
algorithms when the problem gets harder.

Then, in the second step, the imp approach is discarded and we focus on
the 2-arm adaptive approaches (rand 2 and greedy 2) that have only the choice
between the imp ndom and ndom exploration strategies. Once again, the two
adaptive approaches equivalently perform. However, they are rank 1 for all the
instances except for the 100-jobs 20-instances (rank 2). Considering only the well
performing exploration strategies largely improves the adaptive approaches for
the largest instances.

Having validated that the imp arm should not be used on larger machines
instances, we finally investigate a long-term learning scheme where arms can be
discarded if they are worse than the others. Two approaches have been tested:
the discard of the worst strategy is done after either fifty percent (rand ltl 50,
greedy ltl 50) or twenty percent (rand ltl 20, greedy ltl 20) of the total
running time. In order to effectively analyse this long-term learning scheme, the



Table 3. Complete ranking

Instance
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20 5 11 10 1 9 1 8 1 1 1 1 1
20 10 11 10 1 9 1 1 1 1 1 1 1
20 20 11 9 9 6 1 6 6 1 1 1 1
50 5 11 10 1 9 1 1 1 1 1 1 1
50 10 11 10 1 9 1 5 5 8 1 1 5
50 20 11 10 1 7 1 1 1 9 1 7 1
100 5 11 9 1 10 1 7 5 8 1 5 1
100 10 11 7 1 10 1 7 1 9 1 6 1
100 20 11 6 1 9 2 6 2 9 2 8 2
200 10 11 4 1 9 1 6 6 9 1 6 4
200 20 11 7 1 10 1 7 1 9 1 6 1
500 20 11 6 1 9 2 6 2 9 2 8 2

average 11 8.2 1.7 8.8 1.2 5.1 2.7 6.2 1.2 4.3 1.75

two adaptive approaches are investigated and ranked separately. Unsurprisingly,
the 2-arm versions of both adaptive approaches always statistically outperform
their respective 3-arm versions and so for the versions using the long-term learn-
ing. Introducing long-term learning to only keep well-performing arms is efficient.
The ranking between the two control mechanisms rand and greedy are not the
same size by size, but the average ranks show that it is more efficient to dis-
card an arm sooner since rand ltl 20 and greedy ltl 20 are better ranked
than rand ltl 50 and greedy ltl 50 respectively. These results demonstrate
how control mechanisms can effectively identify and evaluate the performance
of strategies during the search.

Table ?? summarises all experiments and shows the overall ranking of the
eleven approaches on each instance size and shows the final average ranks. Re-
garding the three deterministic approaches, the imp approach is always ranked
last; the ndom approach is almost always ranked first, only beaten on the 20-
jobs 20-machines instance where it is outperformed by all adaptive approaches.
Regarding the adaptive approaches, both the 2-arm approaches rand 2 and
greedy 2 are the best performing, then are ranked the ltl 20 ones and the
ltl 50 ones. The approaches using the random control mechanism generally
perform worse than the ones using the ε-greedy mechanism, especially for the
3-arm variants and the long-term learning variants. Interestingly, even the ran-
dom adaptive approach performs really well when considering the two imp ndom



and ndom arms, potentially meaning that the adaptive algorithms will achieve
very good results as long as there is no critically bad performing arm available.
However, the long-term learning variants show that it is possible to identify,
remove and recover in such event.

6 Conclusion

In this paper we presented an adaptive version of MOLS algorithms by intro-
ducing control mechanisms. If many control mechanisms can be found in the
literature, they have mostly been applied to single objective bio-inspired algo-
rithms; we investigated here their impact on a multi-objective iterative local
search algorithm on the classical bi-objective bPFSP. We restrained the con-
trol on a single parameter, the exploration strategy, using two different types of
control mechanisms: one uniform random and one feedback-based.

Our results show that on the studied problem, taken individually, the three
considered explorations strategies performs very differently, and that adaptive
approaches can achieve results statistically equivalent to the best strategy. We
verified that identifying the best performing strategy before the search, using
for example an offline automatic algorithm configurator, can lead to substantial
improvement of the algorithm performance. Moreover, we show that very basic
control mechanisms can achieve similar outcomes as long as the worst performing
strategies are quickly discarded. Identification of the arm qualities continues to
critically impact the performance of the overall algorithm, but the long-term
learning approaches show that it is possible to introduce this knowledge during
the search instead. It means that if a preliminary offline configuration of the
algorithm results on multiple high performing mechanisms, it should be possible
to simply postpone the decision and to adaptively decide during the search for
each tackled instance.

In future work, it would be necessary to first investigate the addition of
more possible arms to the MOLS structure, for example by differentiating the
exploration reference, in order to compare more complex and potentially more
efficient control mechanisms. Moreover, it would be helpful not to fix strategies
a priori. Therefore, we would investigate the potential of control mechanisms to
simultaneously manage different strategies. Finally, a single bi-objective prob-
lem was considered in this paper, in which the performance of each exploration
strategy did not vary much. As MOLS algorithms have also been applied to
other problems such as the travelling salesman problem or the quadratic assign-
ment problem, for which the optimal MOLS configurations differs, it would be
interesting to investigate adaptive MOLS on these problems.
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7. Nicolò Cesa-Bianchi and Paul Fischer. Finite-time regret bounds for the multi-
armed bandit problem. In ICML 1998, pages 100–108, 1998.

8. Nguyen Thi Thanh Dang, Leslie Pérez Cáceres, Thomas Stützle, and Patrick
De Causmaecker. Configuring irace using surrogate configuration benchmarks.
In GECCO 2017, 2017.
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