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Optimization-Based Control Design Techniques and Tools

Pierre Apkarian Dominikus Noll

Abstract— Structured output feedback controller synthesis
is an exciting new concept in modern control design, which
bridges between theory and practice in so far as it allows for the
first time to apply sophisticated mathematical design paradigms
like H∞- or H2-control within control architectures preferred
by practitioners. The new approach to structured H∞-control,
developed during the past decade, is rooted in a change of
paradigm in the synthesis algorithms. Structured design may no
longer be based on solving algebraic Riccati equations or matrix
inequalities. Instead, optimization-based design techniques are
required. In this essay we indicate why structured controller
synthesis is central in modern control engineering. We explain
why non-smooth optimization techniques are needed to compute
structured control laws, and we point to software tools which
enable practitioners to use these new tools in high technology
applications.

I. MOTIVATIONS

In the modern high technology field control engineers usu-
ally face a large variety of concurring design specifications
such as noise or gain attenuation in prescribed frequency
bands, damping, decoupling, constraints on settling- or rise-
time, and much else. In addition, as plant models are
generally only approximations of the true system dynamics,
control laws have to be robust with respect to uncertainty
in physical parameters or with regard to un-modeled high
frequency phenomena. Not surprisingly, such a plethora of
constraints presents a major challenge for controller tuning,
due not only to the ever growing number of such constraints,
but also because of their very different provenience.

The dramatic increase in plant complexity is exacerbated
by the desire that regulators should be as simple as possible,
easy to understand and to tune by practitioners, convenient
to hardware implement, and generally available at low cost.
Such practical constraints explain the limited use of black-
box controllers, and they are the driving force for the
implementation of structured control architectures, as well as
for the tendency to replace hand tuning methods by rigorous
algorithmic optimization tools.

II. STRUCTURED CONTROLLERS

Before addressing specific optimization techniques, we in-
troduce some basic terminology for control design problems
with structured controllers. Given a plant P in state-space
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P :





ẋ = Ax + B1w + B2u
z = C1x + D11w + D12u
y = C2x + D21w + D22u

(1)

where x ∈ RnP is the state, u ∈ Rnu the control, y ∈ Rny

the measured output, w ∈ Rnw the exogenous input, and
z ∈ Rnz the regulated output, an output feedback controller
K in state-space form

K :

{
ẋK = AKxK + BKy
u = CKxK + DKy

(2)

with AK ∈ RnK×nK , is called structured if the matrices
AK , BK , CK , DK depend smoothly on a design parameter
x ∈ Rn, referred to as the vector of tunable parameters.
Formally, we have differentiable mappings

AK = AK(x), BK = BK(x), CK = CK(x), DK = DK(x),

and we abbreviate these by the notation K = K(x). A struc-
tured controller synthesis problem is then an optimization
problem of the form

minimize ‖Twz(P,K(x))‖
subject to K(x) closed-loop stabilizing

K = K(x), x ∈ Rn
(3)

where Twz(P,K) = F`(P,K) is the lower feedback con-
nection of (1) with (2) as in Fig. 1 (left), also called the
Linear Fractional Transformation [1]. The norm ‖ · ‖ stands
for the H∞-norm, the H2-norm, or any other system norm,
while the optimization variable x ∈ Rn regroups the tunable
parameters in the design.

Standard examples of structured controllers K(x) include
realizable PIDs, observer-based, reduced-order, or decentral-
ized controllers, which in state-space are expressed as:
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In the case of a PID the tunable parameters are
x = (τ, kP , kI , kD), for observer-based controllers x
regroups the estimator and state-feedback gains (Kf ,Kc),
for reduced order controllers nK < nP the tunable
parameters x are the n2K +nKny +nKnu +nynu unknown
entries in (AK , BK , CK , DK), and in the decentralized
form x regroups the unknown entries in AK1, . . . , DKq . In



contrast, full-order controllers have the maximum number
N = n2P +nPny+nPnu+nynu of degrees of freedom and
are referred to as unstructured or as black-box controllers.

contrast, full-order controllers have the maximum number
N = n2

P +nP ny +nP nu +nynu of degrees of freedom and
are referred to as unstructured or as black-box controllers.
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Fig. 1. Black-box full-order controller K on the left, structured 2-DOF
control architecture with K = block-diag(K1, K2) on the right.

More sophisticated controllers structures K(x) arise form
architectures like for instance a 2-DOF control arrangement
with feedback block K2 and a set-point filter K1 as in Fig.
1 (right). Suppose K1 is the 1st-order filter K1(s) = a/(s+
a) and K2 the PI feedback K2(s) = kP + kI/s. Then the
transfer Try from r to y can be represented as the feedback
connection of P and K(x) with

P :=

2
664

A 0 0 B
C 0 0 D
0 I 0 0

�C 0 I �D

3
775 , K(x) :=


K1(s) 0

0 K2(s)

�
,

where K(x, s) takes a typical block-diagonal structure fea-
turing the tunable elements x = (a, kP , kI).

In much the same way arbitrary multi-loop interconnec-
tions of fixed-model elements with tunable controller blocks
Ki(x) can be re-arranged as in Fig. 2, so that K(x) captures
all tunable blocks in a decentralized structure general enough
to cover most engineering applications.

Fig. 2. Synthesis of K = block-diag(K1, . . . , KN ) against multiple
requirements or models P (1), . . . , P (M). Each Ki(x) can be structured.

The structure concept is equally useful to deal with the
second central challenge in control design: system uncer-
tainty. The latter may be handled with µ-synthesis techniques
[2] if a parametric uncertain model is available. A less
ambitious but often more practical alternative consists in
optimizing the structured controller K(x) against a finite
set of plants P (1), . . . , P (M) representing model variations
due to uncertainty, aging, sensor and actuator breakdown,
un-modeled dynamics, in tandem with the robustness and
performance specifications. This is again formally covered by
Fig. 2 and leads to a multi-objective constrained optimization
problem of the form

minimize f(x) = max
k2SOFT,i2Ik

kT (k)
wizi(K(x))k

subject to g(x) = max
k2HARD,j2Jk

kT (k)
wjzj (K(x))k  1

K = K(x) closed-loop stabilizing
x 2 Rn

(4)

where T
(k)
wizi denotes the ith closed-loop robustness or per-

formance channel wi ! zi for the k-th plant model P (k)(s).
The rationale of (4) is to minimize the worst-case cost of
the soft constraints kT (k)

wizik, k 2 SOFT, while enforcing the
hard constraints kT (k)

wjzjk  1, k 2HARD.

III. OPTIMIZATION TECHNIQUES OVER THE YEARS

During the late 1990s the necessity to develop design
techniques for structured regulators K(x) was recognized
[3], and the limitations of synthesis methods based on
algebraic Riccati equations (AREs) or linear matrix inequal-
ities (LMIs) became evident, as these techniques can only
provide black-box controllers. Unfortunately, the lack of
appropriate synthesis techniques for structured K(x) led to
the unsatisfying situation, where sophisticated approaches
like the H1 paradigm developed by academia since the
1980s could not be brought to work for the design of those
controller structures K(x) preferred by practitioners. Design
engineers had to continue to rely on heuristic and ad-hoc
tuning techniques, with only limited scope and reliability. As
an example: post-processing to reduce a black-box controller
to a practical size is prone to failure. It may at best be
considered fill-in for a rigorous design method which directly
computes a reduced-order controller. Similarly, hand-tuning
of the parameter x remains a puzzling task because of the
loop interactions, and fails as soon as complexity increases.

In the late 1990s and early 2000s, a change of methods
was observed. Structured H2- and H1-synthesis problems
(3) were addressed by bilinear matrix inequality (BMI)
optimization, which used local optimization techniques based
on augmented Lagrangian [4]–[6], sequential semidefinite
programming methods [7], [8], and non-smooth methods for
BMIs [9], [10]. However, these techniques were based on the
bounded real lemma or similar matrix inequalities, and were
therefore of limited success due to the presence of Lyapunov
variables, whose number grows quadratically in nP +nK and
represents the bottleneck of this approach.

The epoch-making change occurs with the introduction of
non-smooth optimization techniques [11]–[14] to programs
(3) and (4). Today non-smooth methods have superseded
matrix inequality-based techniques and may be considered
the state-of-art as far as realistic applications are concerned.
The transition took almost a decade.

Alternative control-related local optimization techniques
and heuristics include the gradient sampling technique of
[15], derivative-free optimization discussed in [16], [17],
particle swarm optimization, see [18] and references therein,
and also evolutionary computation techniques [19]. The last
three classes do not take advantage of derivative information
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and rely on function evaluations only. They are therefore ap-
plicable to a broad variety of problems including those where
function values arise from complex numerical simulations.
The combinatorial nature of these techniques, however, limits
their use to small problems with a few tens of variable. More
significantly, these methods often lack a solid convergence
theory. In contrast, as we have demonstrated over recent
years, specialized non-smooth techniques are highly efficient
in practice, are based on a sophisticated convergence theory,
capable of solving medium size problems in a matter of
seconds, and are still operational for large size problems with
several hundreds of states.

IV. NON-SMOOTH OPTIMIZATION TECHNIQUES

The benefit of the non-smooth casts (3) and (4) lies in
the possibility to avoid searching for Lyapunov variables,
a major advantage as their number (nP + nK)2/2 usually
largely dominates n, the number of true decision parameters
x. Lyapunov variables do still occur implicitly in the function
evaluation procedures, but this has no harmful effect for
systems up to several hundred states. In abstract terms, a
non-smooth optimization program has the form

minimize f(x)
subject to g(x) ≤ 0

x ∈ Rn
(5)

where f, g : Rn → R are locally Lipschitz functions and are
easily identified from the cast in (4).

In the realm of convex optimization, non-smooth programs
are conveniently addressed by so-called bundle methods,
introduced in the late 1970s by Lemaréchal [20]. Bundle
methods are used to solve difficult problems in integer
programming or in stochastic optimization via Lagrangian
relaxation. Extensions of the bundling technique to non-
convex problems like (3) or (4) were first developed in [9],
[12]–[14], [21], and in more abstract form, in [22].

Fig. 3 shows a schematic view of a non-convex bundle
method consisting of a descent-step generating inner loop
(yellow block) comparable to a line search in smooth opti-
mization, embedded into the outer loop (blue box), where
serious iterates are processed, stopping criteria are applied,
and the model tradition is assured. At the core of the
interaction between inner and outer loop is the management
of the proximity control parameter τ , which governs the
stepsize ‖x−yk‖ between trial steps yk at the current serious
iterate x. Similar to the management of a trust region radius
or of the stepsize in a linesearch, proximity control allows
to do shorter trial steps if agreement of the local model with
the true objective function is poor, and to allow larger steps
if agreement is satisfactory.

Oracle-based bundle methods traditionally assure global
convergence in the sense of subsequences under the sole
hypothesis that for every trial point x the function value
f(x) and a Clarke subgradient φ ∈ ∂f(x) are provided.
In automatic control applications it is as a rule possible to
provide more specific information, which may be explored
to speed up the convergence.
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Fig. 3. Flow chart of proximity control bundle algorithm

In the case of the H2-norm, f(x) = ‖Twz (P,K(x)) ‖2,
computing function value and gradient requires essentially
the solution of four Lyapunov equations of size nP +nK , see
[23], [24]. For the H∞-norm, f(x) = ‖Twz (P,K(x)) ‖∞,
function evaluation is based on the Hamiltonian algorithm of
[25], [26]. The Hamiltonian matrix is of size nP + nK , so
that function evaluations may be costly for very large plant
state dimension (nP > 500), even though the number of
outer loop iterations of the bundle algorithm is not affected
by a large nP and generally relates to n, the dimension of
x. The additional cost for subgradient computation for large
nP is relatively cheap as it relies on linear algebra [12].

V. COMPUTATIONAL TOOLS

The novel non-smooth optimization methods became
available to the engineering community since 2010 via
the MATLAB Robust Control Toolbox [27], [28]. Routines
HINFSTRUCT , LOOPTUNE and SYSTUNE are versatile
enough to define and combine tunable blocks Ki(x), to
build and aggregate design requirements T (k)

wz of different
nature, and to provide suitable validation tools. Their im-
plementation was carried out in cooperation with P. Gahinet
(MathWorks). These routines further exploit the structure of
the problem (4) to enhance efficiency, see [13] and [12] .

It should be mentioned that design problems with multiple
hard constraints are inherently complex. It is well known that
even simultaneous stabilization of several plants P (j) with
a structured control law K(x) is generally NP-complete, so
that exhaustive methods are expected to fail even for small
to medium problems. The principled decision made in [12],
and reflected in the MATLAB routines, is to rely on local
optimization techniques instead. This leads to weaker certifi-
cates, but has the advantage to work successfully in practice.
In the same vein, in (4) it is preferable to rely on a mixture
of soft and hard requirements, for instance, by the use of
exact penalty functions [11]. Key features implemented in
the mentioned MATLAB routines are discussed in [13], [28],
[29].

VI. DESIGN EXAMPLE

Design of a feedback regulator is an interactive process, in
which tools like SYSTUNE , LOOPTUNE or HINFSTRUCT



support the designer in various ways. In this section we
illustrate their enormous potential by solving a multi-model,
fixed-structure reliable flight control design problem.

In reliable flight control one has to maintain stability and
adequate performance not only in nominal operation, but also
in various scenarios where the aircraft undergoes outages
in elevator and aileron actuators. In particular, wind gusts
must be alleviated in all outage scenarios to maintain safety.
Variants of this problem are addressed in [30].

Fig. 4. Synthesis interconnection for reliable control

The open loop F16 aircraft in the scheme of Fig. 4 has 6
states, the body velocities u, v, w, pitch, roll, and yaw rates
q, p, r. The state is available for control as is the flight-path
bank angle rate µ (deg/s), the angle of attack α (deg), and
the sideslip angle β (deg). Control inputs are the left and
right elevator, left and right aileron, and rudder deflections
(deg). The controller consists of two blocks, a 3 × 6 state-
feedback gain matrix Kx in the inner loop, and a 3 × 3
integral gain matrix Ki in the outer loop, which leads to a
total of 27 = dimx parameters to tune.

In addition to nominal operation, we consider 8 outage
scenarios shown in Table I.

TABLE I
OUTAGE SCENARIOS WHERE 0 STANDS FOR FAILURE

Outage cases Diagonal of outage gain
nominal mode 1 1 1 1 1

right elevator outage 0 1 1 1 1
left elevator outage 1 0 1 1 1
right aileron outage 1 1 0 1 1
left aileron outage 1 1 1 0 1

left elevator and right aileron outage 1 0 0 1 1
right elevator and right aileron outage 0 1 0 1 1
right elevator and left aileron outage 0 1 1 0 1
left elevator and left aileron outage 1 0 1 0 1

The design requirements are as follows:

• Good tracking performance in µ, α, and β with adequate
decoupling of the three axes.

• Adequate rejection of wind gusts of 5 m/s.
• Maintain stability and acceptable performance in the

face of actuator outage.

Tracking is addressed by an LQG-cost [31], which penal-

izes integrated tracking error e and control effort u via

J = lim
T→∞

E

(
1

T

∫ T

0

‖Wee‖2 + ‖Wuu‖2dt
)
. (6)

Diagonal weights We and Wu provide tuning knobs
for trade-off between responsiveness, control effort, and
balancing of the three channels. We use We =
diag(20, 30, 20),Wu = I3 for normal operation and We =
diag(8, 12, 8),Wu = I3 for outage conditions. Model-
dependent weights allow to express the fact that nominal
operation prevails over failure cases. Weights for failure cases
are used to achieve limited deterioration of performance or
of gust alleviation under deflection surface breakdown.

The second requirement, wind gust alleviation, is treated
as a hard constraint limiting the variance of the error signal
e in response to white noise wg driving the Dryden wind
gust model. In particular, the variance of e is limited to 0.01
for normal operation and to 0.03 for the outage scenarios.

With the notation of section IV, the functions f(x)

and g(x) in (5) are f(x) := maxk=1,...,9 ‖T (k)
rz (x)‖2 and

g(x) := maxk=1,...,9 ‖T (k)
wge(x)‖2, where r denotes the set-

point inputs in µ, α and β. The regulated output z is

zT :=
[
(W

1/2
e e)T (W

1/2
u u)T

]T
,

with x = (vec(Ki), vec(Kx)) ∈ R27. Soft constraints are
the square roots of J in (6) with appropriate weightings
We and Wu, hard constraints the RMS values of e, suit-
ably weighted to reflect variance bounds of 0.01 and 0.03.
These requirements are covered by the Variance and
WeightedVariance options in [27].

With this setup, we tuned the controller gains Ki and Kx

for the nominal scenario only (nominal design) and for all
9 scenarios (fault-tolerant design). The responses to setpoint
changes in µ, α, and β with a gust speed of 5m/s are shown
in Fig. 5 for the nominal design and in Fig. 6 for the fault-
tolerant design. As expected, nominal responses are good but
notably deteriorate when faced with outages. In contrast, the
fault-tolerant controller maintains acceptable performance in
outage situations. Optimal performance (square root of LQG
cost J in (6)) for the fault-tolerant design is only slightly
worse than for the nominal design (26 vs. 23). The non-
smooth program (5) was solved with SYSTUNE and the fault-
tolerant design (9 models, 11 states, 27 parameters) took 30
seconds on Mac OS X with 2.66 GHz Intel Core i7 and 8
GB RAM. The reader is referred to [27] or higher versions,
further examples, and additional details.
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Fig. 5. Responses to step changes in µ, α and β for nominal design.
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Fig. 6. Responses to step changes in µ, α and β for fault-tolerant design.
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