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Optimization-Based Control Design Techniques and Tools

Pierre Apkarian Dominikus Noll

Abstract-Structured output feedback controller synthesis is an exciting new concept in modern control design, which bridges between theory and practice in so far as it allows for the first time to apply sophisticated mathematical design paradigms like H∞or H2-control within control architectures preferred by practitioners. The new approach to structured H∞-control, developed during the past decade, is rooted in a change of paradigm in the synthesis algorithms. Structured design may no longer be based on solving algebraic Riccati equations or matrix inequalities. Instead, optimization-based design techniques are required. In this essay we indicate why structured controller synthesis is central in modern control engineering. We explain why non-smooth optimization techniques are needed to compute structured control laws, and we point to software tools which enable practitioners to use these new tools in high technology applications.

I. MOTIVATIONS

In the modern high technology field control engineers usually face a large variety of concurring design specifications such as noise or gain attenuation in prescribed frequency bands, damping, decoupling, constraints on settling-or risetime, and much else. In addition, as plant models are generally only approximations of the true system dynamics, control laws have to be robust with respect to uncertainty in physical parameters or with regard to un-modeled high frequency phenomena. Not surprisingly, such a plethora of constraints presents a major challenge for controller tuning, due not only to the ever growing number of such constraints, but also because of their very different provenience.

The dramatic increase in plant complexity is exacerbated by the desire that regulators should be as simple as possible, easy to understand and to tune by practitioners, convenient to hardware implement, and generally available at low cost. Such practical constraints explain the limited use of blackbox controllers, and they are the driving force for the implementation of structured control architectures, as well as for the tendency to replace hand tuning methods by rigorous algorithmic optimization tools.

II. STRUCTURED CONTROLLERS

Before addressing specific optimization techniques, we introduce some basic terminology for control design problems with structured controllers. Given a plant P in state-space Pierre Apkarian is with ONERA, 2 Av. Ed. Belin, 31055, Toulouse, France Pierre.Apkarian@onera.fr Dominikus Noll is with Université de Toulouse, Institut de Mathmatiques, 118, route de Narbonne, 31062 Toulouse, France dominikus.noll@math.univ-toulouse.fr form P :

   ẋ = Ax + B 1 w + B 2 u z = C 1 x + D 11 w + D 12 u y = C 2 x + D 21 w + D 22 u (1)
where x ∈ R n P is the state, u ∈ R nu the control, y ∈ R ny the measured output, w ∈ R nw the exogenous input, and z ∈ R nz the regulated output, an output feedback controller K in state-space form

K : ẋK = A K x K + B K y u = C K x K + D K y (2) 
with

A K ∈ R n K ×n K , is called structured if the matrices A K , B K , C K , D K depend
smoothly on a design parameter x ∈ R n , referred to as the vector of tunable parameters. Formally, we have differentiable mappings

A K = A K (x), B K = B K (x), C K = C K (x), D K = D K (x),
and we abbreviate these by the notation K = K(x). A structured controller synthesis problem is then an optimization problem of the form minimize T wz (P, K(x)) subject to K(x) closed-loop stabilizing

K = K(x), x ∈ R n (3) 
where T wz (P, K) = F (P, K) is the lower feedback connection of (1) with (2) as in Fig. 1 (left), also called the Linear Fractional Transformation [START_REF] Varga | Symbolic and numerical software tools for lft-based low order uncertainty modeling[END_REF]. The norm • stands for the H ∞ -norm, the H 2 -norm, or any other system norm, while the optimization variable x ∈ R n regroups the tunable parameters in the design. Standard examples of structured controllers K(x) include realizable PIDs, observer-based, reduced-order, or decentralized controllers, which in state-space are expressed as:

  0 0 1 0 -1/τ -k D /τ k I 1/τ k P + k D /τ   , A -B 2 K c -K f C 2 K f -K c 0 , A K B K C K D K ,    q diag i=1 A Ki q diag i=1 B Ki q diag i=1 C Ki q diag i=1 D Ki    .
In the case of a PID the tunable parameters are x = (τ, k P , k I , k D ), for observer-based controllers x regroups the estimator and state-feedback gains (K f , K c ), for reduced order controllers n K < n P the tunable parameters x are the n 2 K + n K n y + n K n u + n y n u unknown entries in (A K , B K , C K , D K ), and in the decentralized form x regroups the unknown entries in A K1 , . . . , D Kq . In contrast, full-order controllers have the maximum number N = n 2 P + n P n y + n P n u + n y n u of degrees of freedom and are referred to as unstructured or as black-box controllers. contrast, full-order controllers have the maximum number N = n 2 P + n P n y + n P n u + n y n u of degrees of freedom and are referred to as unstructured or as black-box controllers. More sophisticated controllers structures K(x) arise form architectures like for instance a 2-DOF control arrangement with feedback block K 2 and a set-point filter K 1 as in Fig. 1 (right). Suppose K 1 is the 1st-order filter K 1 (s) = a/(s + a) and K 2 the PI feedback K 2 (s) = k P + k I /s. Then the transfer T ry from r to y can be represented as the feedback connection of P and K(x) with

z w P y K u r K 1 K 2 G y e u + -
P := 2 6 6 4 A 0 0 B C 0 0 D 0 I 0 0 C 0 I D 3 7 7 5 , K(x) :=  K 1 (s) 0 0 K 2 (s) ,
where K(x, s) takes a typical block-diagonal structure featuring the tunable elements x = (a, k P , k I ).

In much the same way arbitrary multi-loop interconnections of fixed-model elements with tunable controller blocks K i (x) can be re-arranged as in Fig. 2, so that K(x) captures all tunable blocks in a decentralized structure general enough to cover most engineering applications. Synthesis of K = block-diag(K 1 , . . . , K N ) against multiple requirements or models P (1) , . . . , P (M ) . Each K i (x) can be structured.

The structure concept is equally useful to deal with the second central challenge in control design: system uncertainty. The latter may be handled with µ-synthesis techniques [START_REF] Stein | Beyond singular values and loopshapes[END_REF] if a parametric uncertain model is available. A less ambitious but often more practical alternative consists in optimizing the structured controller K(x) against a finite set of plants P (1) , . . . , P (M ) representing model variations due to uncertainty, aging, sensor and actuator breakdown, un-modeled dynamics, in tandem with the robustness and performance specifications. This is again formally covered by Fig. 2 and leads to a multi-objective constrained optimization problem of the form

minimize f (x) = max k2SOFT,i2I k kT (k) wizi (K(x))k subject to g(x) = max k2HARD,j2J k kT (k) wj zj (K(x))k  1 K = K(x) closed-loop stabilizing x 2 R n (4)
where

T (k)
wizi denotes the ith closed-loop robustness or performance channel w i ! z i for the k-th plant model P (k) (s). The rationale of ( 4) is to minimize the worst-case cost of the soft constraints kT 

III. OPTIMIZATION TECHNIQUES OVER THE YEARS

During the late 1990s the necessity to develop design techniques for structured regulators K(x) was recognized [START_REF] Fares | An Augmented Lagrangian Method for a Class of LMI-Constrained Problems in Robust Control Theory[END_REF], and the limitations of synthesis methods based on algebraic Riccati equations (AREs) or linear matrix inequalities (LMIs) became evident, as these techniques can only provide black-box controllers. Unfortunately, the lack of appropriate synthesis techniques for structured K(x) led to the unsatisfying situation, where sophisticated approaches like the H 1 paradigm developed by academia since the 1980s could not be brought to work for the design of those controller structures K(x) preferred by practitioners. Design engineers had to continue to rely on heuristic and ad-hoc tuning techniques, with only limited scope and reliability. As an example: post-processing to reduce a black-box controller to a practical size is prone to failure. It may at best be considered fill-in for a rigorous design method which directly computes a reduced-order controller. Similarly, hand-tuning of the parameter x remains a puzzling task because of the loop interactions, and fails as soon as complexity increases.

In the late 1990s and early 2000s, a change of methods was observed. Structured H 2 -and H 1 -synthesis problems (3) were addressed by bilinear matrix inequality (BMI) optimization, which used local optimization techniques based on augmented Lagrangian [START_REF]An Augmented Lagrangian Method for a Class of LMI-Constrained Problems in Robust Control Theory[END_REF]- [START_REF] Kocvara | A code for convex nonlinear and semidefinite programming[END_REF], sequential semidefinite programming methods [START_REF] Fares | Robust Control via Sequential Semidefinite Programming[END_REF], [START_REF] Apkarian | A Spectral Quadratic-SDP Method with Applications to Fixed-Order H 2 and H∞ Synthesis[END_REF], and non-smooth methods for BMIs [START_REF] Noll | A proximity control algorithm to minimize nonsmooth and nonconvex semi-infinite maximum eigenvalue functions[END_REF], [START_REF] Lemaréchal | Nonsmooth algorithms to solve semidefinite programs[END_REF]. However, these techniques were based on the bounded real lemma or similar matrix inequalities, and were therefore of limited success due to the presence of Lyapunov variables, whose number grows quadratically in n P +n K and represents the bottleneck of this approach.

The epoch-making change occurs with the introduction of non-smooth optimization techniques [START_REF] Noll | Spectral bundle methods for nonconvex maximum eigenvalue functions: first-order methods[END_REF]- [START_REF]Nonsmooth optimization for multidisk H∞ synthesis[END_REF] to programs (3) and ( 4). Today non-smooth methods have superseded matrix inequality-based techniques and may be considered the state-of-art as far as realistic applications are concerned. The transition took almost a decade.

Alternative control-related local optimization techniques and heuristics include the gradient sampling technique of [START_REF] Burke | Stabilization via nonsmooth, nonconvex optimization[END_REF], derivative-free optimization discussed in [START_REF] Kolda | Optimization by direct search: new perspectives on some classical and modern methods[END_REF], [START_REF] Apkarian | Controller design via nonsmooth multidirectional search[END_REF], particle swarm optimization, see [START_REF] Oi | Development of PSObased PID tuning method[END_REF] and references therein, and also evolutionary computation techniques [START_REF] Lieslehto | PID controller tuning using evolutionary programming[END_REF]. The last three classes do not take advantage of derivative information More sophisticated controllers structures K(x) arise form architectures like for instance a 2-DOF control arrangement feedback block K 2 and a set-point filter K 1 as in Fig. 1 (right). Suppose K 1 is the 1st-order filter K 1 (s) = a/(s + a) and K 2 the PI feedback K 2 (s) = k P + k I /s. Then the transfer T ry from r to y can be represented as the feedback connection of P and K(x) with

P :=     A 0 0 B C 0 0 D 0 I 0 0 -C 0 I -D     , K(x) := K 1 (s) 0 0 K 2 (s) ,
where K(x, s) takes a typical block-diagonal structure featuring the tunable elements x = (a, k P , k I ).

In much the same way arbitrary multi-loop interconnections of fixed-model elements with tunable controller blocks K i (x) can be re-arranged as in Fig. 2, so that K(x) captures all tunable blocks in a decentralized structure general enough to cover most engineering applications.

contrast, full-order controllers have the maximum number N = n 2 P + n P n y + n P n u + n y n u of degrees of freedom and are referred to as unstructured or as black-box controllers. More sophisticated controllers structures K(x) arise form architectures like for instance a 2-DOF control arrangement with feedback block K 2 and a set-point filter K 1 as in Fig. 1 (right). Suppose K 1 is the 1st-order filter K 1 (s) = a/(s + a) and K 2 the PI feedback K 2 (s) = k P + k I /s. Then the transfer T ry from r to y can be represented as the feedback connection of P and K(x) with

P := 2 6 6 4 A 0 0 B C 0 0 D 0 I 0 0 C 0 I D 3 7 7 5 , K(x) :=  K 1 (s) 0 0 K 2 (s) ,
where K(x, s) takes a typical block-diagonal structure featuring the tunable elements x = (a, k P , k I ).

In much the same way arbitrary multi-loop interconnections of fixed-model elements with tunable controller blocks K i (x) can be re-arranged as in Fig. 2, so that K(x) captures all tunable blocks in a decentralized structure general enough to cover most engineering applications.
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Synthesis of K = block-diag(K 1 , . . . , K N ) against multiple requirements or models P (1) , . . . , P (M ) . Each K i (x) can be structured.

The structure concept is equally useful to deal with the second central challenge in control design: system uncertainty. The latter may be handled with µ-synthesis techniques [START_REF] Stein | Beyond singular values and loopshapes[END_REF] if a parametric uncertain model is available. A less ambitious but often more practical alternative consists in optimizing the structured controller K(x) against a finite set of plants P (1) , . . . , P (M ) representing model variations due to uncertainty, aging, sensor and actuator breakdown, un-modeled dynamics, in tandem with the robustness and performance specifications. This is again formally covered by Fig. 2 and leads to a multi-objective constrained optimization problem of the form

minimize f (x) = max k2SOFT,i2I k kT (k) w i z i (K(x))k subject to g(x) = max k2HARD,j2J k kT (k) w j z j (K(x))k  1 K = K(x) closed-loop stabilizing x 2 R n (4)
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w j z j k  1, k 2 HARD.
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The epoch-making change occurs with the introduction of non-smooth optimization techniques [START_REF] Noll | Spectral bundle methods for nonconvex maximum eigenvalue functions: first-order methods[END_REF]- [START_REF]Nonsmooth optimization for multidisk H∞ synthesis[END_REF] to programs (3) and (4). Today non-smooth methods have superseded matrix inequality-based techniques and may be considered the state-of-art as far as realistic applications are concerned. The transition took almost a decade.
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Synthesis of K = block-diag(K 1 , . . . , K N ) against multiple requirements or models P (1) , . . . , P (M ) . Each K i (x) can be structured.

The structure concept is equally useful to deal with the second central challenge in control design: system uncertainty. The latter may be handled with µ-synthesis techniques [START_REF] Stein | Beyond singular values and loopshapes[END_REF] if a parametric uncertain model is available. A less ambitious but often more practical alternative consists in optimizing the structured controller K(x) against a finite set of plants P (1) , . . . , P (M ) representing model variations due to uncertainty, aging, sensor and actuator breakdown, un-modeled dynamics, in tandem with the robustness and performance specifications. This is again formally covered by Fig. 2 and leads to a multi-objective constrained optimization problem of the form

minimize f (x) = max k∈SOFT,i∈I k T (k) wizi (K(x)) subject to g(x) = max k∈HARD,j∈J k T (k) wj zj (K(x)) ≤ 1 K = K(x) closed-loop stabilizing x ∈ R n (4)
where

T (k)
wizi denotes the ith closed-loop robustness or performance channel w i → z i for the k-th plant model P (k) (s). The rationale of ( 4) is to minimize the worst-case cost of the soft constraints T 

III. OPTIMIZATION TECHNIQUES OVER THE YEARS

During the late 1990s the necessity to develop design techniques for structured regulators K(x) was recognized [START_REF] Fares | An Augmented Lagrangian Method for a Class of LMI-Constrained Problems in Robust Control Theory[END_REF], and the limitations of synthesis methods based on algebraic Riccati equations (AREs) or linear matrix inequalities (LMIs) became evident, as these techniques can only provide black-box controllers. Unfortunately, the lack of appropriate synthesis techniques for structured K(x) led to the unsatisfying situation, where sophisticated approaches like the H ∞ paradigm developed by academia since the 1980s could not be brought to work for the design of those controller structures K(x) preferred by practitioners. Design engineers had to continue to rely on heuristic and ad-hoc tuning techniques, with only limited scope and reliability. As an example: post-processing to reduce a black-box controller to a practical size is prone to failure. It may at best be considered fill-in for a rigorous design method which directly computes a reduced-order controller. Similarly, hand-tuning of the parameter x remains a puzzling task because of the loop interactions, and fails as soon as complexity increases.

In the late 1990s and early 2000s, a change of methods was observed. Structured H 2 -and H ∞ -synthesis problems (3) were addressed by bilinear matrix inequality (BMI) optimization, which used local optimization techniques based on augmented Lagrangian [START_REF]An Augmented Lagrangian Method for a Class of LMI-Constrained Problems in Robust Control Theory[END_REF]- [START_REF] Kocvara | A code for convex nonlinear and semidefinite programming[END_REF], sequential semidefinite programming methods [START_REF] Fares | Robust Control via Sequential Semidefinite Programming[END_REF], [START_REF] Apkarian | A Spectral Quadratic-SDP Method with Applications to Fixed-Order H 2 and H∞ Synthesis[END_REF], and non-smooth methods for BMIs [START_REF] Noll | A proximity control algorithm to minimize nonsmooth and nonconvex semi-infinite maximum eigenvalue functions[END_REF], [START_REF] Lemaréchal | Nonsmooth algorithms to solve semidefinite programs[END_REF]. However, these techniques were based on the bounded real lemma or similar matrix inequalities, and were therefore of limited success due to the presence of Lyapunov variables, whose number grows quadratically in n P +n K and represents the bottleneck of this approach.

The epoch-making change occurs with the introduction of non-smooth optimization techniques [START_REF] Noll | Spectral bundle methods for nonconvex maximum eigenvalue functions: first-order methods[END_REF]- [START_REF]Nonsmooth optimization for multidisk H∞ synthesis[END_REF] to programs (3) and ( 4). Today non-smooth methods have superseded matrix inequality-based techniques and may be considered the state-of-art as far as realistic applications are concerned. The transition took almost a decade.

Alternative control-related local optimization techniques and heuristics include the gradient sampling technique of [START_REF] Burke | Stabilization via nonsmooth, nonconvex optimization[END_REF], derivative-free optimization discussed in [START_REF] Kolda | Optimization by direct search: new perspectives on some classical and modern methods[END_REF], [START_REF] Apkarian | Controller design via nonsmooth multidirectional search[END_REF], particle swarm optimization, see [START_REF] Oi | Development of PSObased PID tuning method[END_REF] and references therein, and also evolutionary computation techniques [START_REF] Lieslehto | PID controller tuning using evolutionary programming[END_REF]. The last three classes do not take advantage of derivative information and rely on function evaluations only. They are therefore applicable to a broad variety of problems including those where function values arise from complex numerical simulations. The combinatorial nature of these techniques, however, limits their use to small problems with a few tens of variable. More significantly, these methods often lack a solid convergence theory. In contrast, as we have demonstrated over recent years, specialized non-smooth techniques are highly efficient in practice, are based on a sophisticated convergence theory, capable of solving medium size problems in a matter of seconds, and are still operational for large size problems with several hundreds of states.

IV. NON-SMOOTH OPTIMIZATION TECHNIQUES

The benefit of the non-smooth casts ( 3) and ( 4) lies in the possibility to avoid searching for Lyapunov variables, a major advantage as their number (n P + n K ) 2 /2 usually largely dominates n, the number of true decision parameters x. Lyapunov variables do still occur implicitly in the function evaluation procedures, but this has no harmful effect for systems up to several hundred states. In abstract terms, a non-smooth optimization program has the form

minimize f (x) subject to g(x) ≤ 0 x ∈ R n (5) 
where f, g : R n → R are locally Lipschitz functions and are easily identified from the cast in (4).

In the realm of convex optimization, non-smooth programs are conveniently addressed by so-called bundle methods, introduced in the late 1970s by Lemaréchal [START_REF]An extension of Davidon methods to nondifferentiable problems[END_REF]. Bundle methods are used to solve difficult problems in integer programming or in stochastic optimization via Lagrangian relaxation. Extensions of the bundling technique to nonconvex problems like (3) or (4) were first developed in [START_REF] Noll | A proximity control algorithm to minimize nonsmooth and nonconvex semi-infinite maximum eigenvalue functions[END_REF], [START_REF] Apkarian | Nonsmooth H∞ synthesis[END_REF]- [START_REF]Nonsmooth optimization for multidisk H∞ synthesis[END_REF], [START_REF] Apkarian | A trust region spectral bundle method for nonconvex eigenvalue optimization[END_REF], and in more abstract form, in [START_REF] Noll | A proximity control algorithm to minimize nonsmooth and nonconvex functions[END_REF].

Fig. 3 shows a schematic view of a non-convex bundle method consisting of a descent-step generating inner loop (yellow block) comparable to a line search in smooth optimization, embedded into the outer loop (blue box), where serious iterates are processed, stopping criteria are applied, and the model tradition is assured. At the core of the interaction between inner and outer loop is the management of the proximity control parameter τ , which governs the stepsize x-y k between trial steps y k at the current serious iterate x. Similar to the management of a trust region radius or of the stepsize in a linesearch, proximity control allows to do shorter trial steps if agreement of the local model with the true objective function is poor, and to allow larger steps if agreement is satisfactory.

Oracle-based bundle methods traditionally assure global convergence in the sense of subsequences under the sole hypothesis that for every trial point x the function value f (x) and a Clarke subgradient φ ∈ ∂f (x) are provided. In automatic control applications it is as a rule possible to provide more specific information, which may be explored to speed up the convergence. 

Flow chart of proximity control bundle algorithm

In the of the H 2 -norm, f (x) = T wz (P, K(x)) 2 , computing function value and gradient requires essentially the solution of four Lyapunov equations of size n P +n K , see [START_REF] Apkarian | Mixed H 2 /H∞ control via nonsmooth optimization[END_REF], [START_REF] Rautert | Computational design of optimal output feedback controllers[END_REF]. For the H ∞ -norm, f (x) = T wz (P, K(x)) ∞ , function evaluation is based on the Hamiltonian algorithm of [START_REF] Benner | L∞-norm computation for continuous-time descriptor systems using structured matrix pencils[END_REF], [START_REF] Boyd | A bisection method for computing the H∞ norm of a transfer matrix and related problems[END_REF]. The Hamiltonian matrix is of size n P + n K , so that function evaluations may be costly for very large plant state dimension (n P > 500), even though the number of outer loop iterations of the bundle algorithm is not affected a large n P and generally relates to n, the dimension x. The additional cost for subgradient computation for large n P is relatively cheap as it relies on linear algebra [START_REF] Apkarian | Nonsmooth H∞ synthesis[END_REF].

V. COMPUTATIONAL TOOLS

The novel non-smooth optimization methods became available to the engineering community since 2010 via the MATLAB Robust Control Toolbox [START_REF]Robust Control Toolbox 4.2[END_REF], [START_REF] Gahinet | Structured H∞ synthesis in MATLAB[END_REF]. Routines HINFSTRUCT , LOOPTUNE and SYSTUNE are versatile enough to define and combine tunable blocks K i (x), to build and aggregate design requirements T (k) wz of different nature, and to provide suitable validation tools. Their implementation was carried out in cooperation with P. Gahinet (MathWorks). These routines further exploit the structure of the problem (4) to enhance efficiency, see [START_REF]Nonsmooth optimization for multiband frequency domain control design[END_REF] and [START_REF] Apkarian | Nonsmooth H∞ synthesis[END_REF] .

It should be mentioned that design problems with multiple hard constraints are inherently complex. It is well known that even simultaneous stabilization of several plants P (j) with a structured control law K(x) is generally NP-complete, so that exhaustive methods are expected to fail even for small to medium problems. The principled decision made in [START_REF] Apkarian | Nonsmooth H∞ synthesis[END_REF], and reflected in the MATLAB routines, is to rely on local optimization techniques instead. This leads to weaker certificates, but has the advantage to work successfully in practice. In the same vein, in (4) it is preferable to rely on a mixture of soft and hard requirements, for instance, by the use of exact penalty functions [START_REF] Noll | Spectral bundle methods for nonconvex maximum eigenvalue functions: first-order methods[END_REF]. Key features implemented in the mentioned MATLAB routines are discussed in [START_REF]Nonsmooth optimization for multiband frequency domain control design[END_REF], [START_REF] Gahinet | Structured H∞ synthesis in MATLAB[END_REF], [START_REF] Apkarian | Tuning controllers against multiple design requirements[END_REF].

VI. DESIGN EXAMPLE

Design of a feedback regulator is an interactive process, in which tools like SYSTUNE , LOOPTUNE or HINFSTRUCT support the designer in various ways. In this section we illustrate their enormous potential by solving a multi-model, fixed-structure reliable flight control design problem.

In reliable flight control one has to maintain stability and adequate performance not only in nominal operation, but also in various scenarios where the aircraft undergoes outages in elevator and aileron actuators. In particular, wind gusts must be alleviated in all outage scenarios to maintain safety. Variants of this problem are addressed in [START_REF] Liao | Reliable robust flight tracking control: An LMI approach[END_REF]. In addition to nominal operation, we consider 8 outage scenarios shown in Table I. The design requirements are as follows:

• Good tracking performance in µ, α, and β with adequate decoupling of the three axes.

• Adequate rejection of wind gusts of 5 m/s.

• Maintain stability and acceptable performance in the face of actuator outage.

Tracking is addressed by an LQG-cost [START_REF] Maciejowski | Multivariable Feedback Design[END_REF], which penal-izes integrated tracking error e and control effort u via

J = lim T →∞ E 1 T T 0 W e e 2 + W u u 2 dt . (6) 
Diagonal weights W e and W u provide tuning knobs for trade-off between responsiveness, control effort, and balancing of the three channels. We use W e = diag [START_REF]An extension of Davidon methods to nondifferentiable problems[END_REF][START_REF] Liao | Reliable robust flight tracking control: An LMI approach[END_REF][START_REF]An extension of Davidon methods to nondifferentiable problems[END_REF], W u = I 3 for normal operation and W e = diag(8, 12, 8), W u = I 3 for outage conditions. Modeldependent weights allow to express the fact that nominal operation prevails over failure cases. Weights for failure cases are used to achieve limited deterioration of performance or of gust alleviation under deflection surface breakdown.

The second requirement, wind gust alleviation, is treated as a hard constraint limiting the variance of the error signal e in response to white noise w g driving the Dryden wind gust model. In particular, the variance of e is limited to 0.01 for normal operation and to 0.03 for the outage scenarios.

With the notation of section IV, the functions f (x) and g(x) in ( 5 WeightedVariance options in [START_REF]Robust Control Toolbox 4.2[END_REF].

With this setup, we tuned the controller gains K i and K x for the nominal scenario only (nominal design) and for all 9 scenarios (fault-tolerant design). The responses to setpoint changes in µ, α, and β with a gust speed of 5 m/s are shown in Fig. 5 for the nominal design and in Fig. 6 for the faulttolerant design. As expected, nominal responses are good but notably deteriorate when faced with outages. In contrast, the fault-tolerant controller maintains acceptable performance in outage situations. Optimal performance (square root of LQG cost J in ( 6)) for the fault-tolerant design is only slightly worse than for the nominal design (26 vs. 23). The nonsmooth program (5) was solved with SYSTUNE and the faulttolerant design (9 models, 11 states, 27 parameters) took 30 seconds on Mac OS X with 2.66 GHz Intel Core i7 and 8 GB RAM. The reader is referred to [START_REF]Robust Control Toolbox 4.2[END_REF] or higher versions, further examples, and additional details. CROSS REFERENCES
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 1 Fig. 1. Black-box full-order controller K on the left, structured 2-DOF control architecture with K = block-diag(K 1 , K 2 ) on the right.
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 2 Fig. 2.Synthesis of K = block-diag(K 1 , . . . , K N ) against multiple requirements or models P(1) , . . . , P(M ) . Each K i (x) can be structured.
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 1 Fig. 1. Black-box full-order controller K on the left, structured 2-DOF control architecture with K = block-diag(K 1 , K 2 ) on the right.
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 1 Fig. 1. Black-box full-order controller K on the left, structured 2-DOF control architecture with K = block-diag(K 1 , K 2 ) on the right.

  wizi , k ∈ SOFT, while enforcing the hard constraints T (k)wj zj ≤ 1, k ∈ HARD.

Fig. 4 .

 4 Fig. 4. Synthesis interconnection for reliable control

,

  ) are f (x) := max k=1,...,9 T (k) rz (x) 2 and g(x) := max k=1,...,9 T (k) wge (x) 2 , where r denotes the setpoint inputs in µ, α and β. The regulated output z isz T := (W with x = (vec(K i ), vec(K x )) ∈ R27 . Soft constraints are the square roots of J in (6) with appropriate weightings W e and W u , hard constraints the RMS values of e, suitably weighted to reflect variance bounds of 0.01 and 0.03. These requirements are covered by the Variance and

Fig. 5 .

 5 Fig. 5. Responses to step changes in µ, α and β for nominal design.
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 6 Fig. 6. Responses to step changes in µ, α and β for fault-tolerant design.