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Abstract—In this paper, we investigate how additive noise, 

e.g. thermomechanical noise, impacts the resolution of mode-

localized resonant sensing architectures based on two passively-

coupled linear resonators. Existing work suggests that the 

ultimate resolution of these sensors can be improved by 

decreasing the coupling coefficient of the resonators. The present 

work gives an analytical proof that this result does not hold, and 

that the resolution of such sensors is actually independent of the 

coupling strength. These results are established for different 

output metrics and operating points, in closed-loop and in open-

loop, and compared to those obtained with other approaches 

based on actively-coupled resonators.  

Keywords— resonant sensors; coupled resonators; 

thermomechanical noise. 

I. INTRODUCTION 

Resonant sensing based on coupled MEMS resonators has 
received considerable interest in the past 5 years [1-8]. The 
“mode-localization” approach proposed in [1] relies on two (or 
more) matched resonators coupled through a “weak” restoring 
force (weak with respect to each resonator’s own restoring 
force). It can be shown that, when the system is stimulated in 
open-loop close to one of its resonance frequencies, the ratio of 
the motional amplitudes of the resonators is highly sensitive to 
any mismatch of their - uncoupled - natural frequencies (Fig. 
1). Other output metrics, such as the relative shift in eigenstate, 
as in [1], have also been proposed [2]. The sensitivity of such 
measurements is inversely proportional to the coupling strength 
(i.e. the ratio of the coupling stiffness to each resonator’s 
stiffness). One may use such amplitude ratio measurements for 
high-sensitivity differential sensing, where one resonator is 
used as a reference, the other as a sensing cell, to detect 
infinitesimal changes of its stiffness or mass. In [3], it is 
reported that the ultimate resolution (i.e. the measurement limit 
induced by the presence of additive noise processes such as 
thermomechanical noise) of these sensors is linearly 
proportional to the coupling strength and that it may 
consequently surpass that of “conventional” sensors based on a 
single resonator. Recently, closed-loop mode-localized 
architectures have also been studied [7-8], but their theoretical 
performance has not been investigated yet. 

An alternative approach to differential resonant sensing 
consists in using mutually injection-locked oscillators (MILOs) 
based on matched MEMS resonators [4-6]. In this closed-loop 

approach, an electronic mixer is used to actively couple the 
resonators, and force them into a synchronized oscillation state. 
The phase difference between the resonators becomes highly 
sensitive to any stiffness or mass mismatch and may thus 
provide a differential measurement of a physical quantity of 
interest [5-6]. An important result in [4] is that decreasing the 
coupling strength of MILOs (the ratio of the injection signal to 
each resonator’s own feedback signal) results in an increase of 
the sensor sensitivity, as in mode-localized approaches, but 
does not improve its ultimate resolution.  

In spite of many conceptual differences (active vs. passive 
coupling, closed-loop vs. open-loop, phase difference vs. 
amplitude ratio), the MILO-based and mode-localized 
approaches have several similarities. In this paper, as in [9], we 
prove that some of the claims made in [3] are incorrect, and 
that, in the best-case scenario, mode-localized sensors based on 
the amplitude ratio output metric provide measurements whose 
resolution is independent on coupling strength. Thus, the gain 
in sensitivity made by decreasing the coupling strength is in 
fact compensated by an increased influence of the additive 
noise in the system (e.g. thermomechanical), as in the MILO-
based approach, and the resolution obtained with this output 
metric is in fact comparable to that of conventional differential 
resonant sensors based on independently oscillating loops [10-
13]. We also show that this result is valid for other output 
metrics, such as the phase difference between the motional 
signals of the resonators, and also holds in the case of closed-
loop mode-localized sensors, as presented in [7-8].  

In section II, we set the framework and the notations used 
in the paper, for our investigation of open-loop and closed-loop 
mode-localized sensors. In section III, we study the equations 
governing the steady-state of the open-loop system, and 
determine the sensitivity and the resolution of the amplitude 
ratio and of the phase difference output metrics, when the 
system is perturbed by additive noise sources. The difference 
between our analytical results (supported by transient 
simulations) and the results in [3] is also explained. Section IV 
is dedicated to the study of closed-loop solutions, with a focus 
on the characteristics of an architecture similar to the one 
proposed in [7-8] for mode-localized sensing. Finally, in 
section V, we sum up our results, and discuss the relative 
merits and limitations of MILOs, mode-localized approaches, 
and single-oscillator approaches in terms of metrological 
performance and ease of implementation. 



 

Fig. 1. Symbolic representation of a mode-localized sensor as a mass-spring 
system.  

II. NOTATIONS AND FRAMEWORK 

Consider two nearly-identical coupled linear resonators 
described by the following model: 
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where K , B  and M  respectively designate the nominal 
stiffness, damping coefficient and mass of the resonators, x̂  

and ŷ  are the displacements of the resonators with respect to 

their equilibrium positions, t̂  is time, 1   is the relative 

coupling strength (i.e. the ratio of the coupling stiffness to the 
nominal stiffness of the resonators) and 1   is the relative 

stiffness mismatch of the resonators (the quantity one seeks to 

measure), ˆ
xf  is a force applied to the first resonator, ˆ

xn  and 

ˆ
yn  are additive perturbations, which may represent the 

contributions of thermomechanical or electronic feedback 

noise in the system. Letting 
0 /K M   , /Q KM B , 

0
ˆt t  , ˆ /x x L , ˆ /y y L , where L  is a characteristic 

length scale of the system, ˆ /x xf f KL , ˆ /x xn n KL , and 

ˆ /y yn n KL , the equivalent non-dimensional model is 

obtained:   
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Two cases are considered in this paper (i) one in which the 

force xf  is applied in open-loop, in which case the angular 

frequency   of xf  is imposed and the phase   between x  

and xf  may vary, (ii) the other in which xf  is applied in 

closed-loop, in which case a specific value of phase   is 

imposed so that an oscillation starts, whose angular frequency 
  may vary.  

Throughout the paper, our objective is the determination of the 
“ultimate” resolution of coupled architectures: the 

perturbations ˆ
xn  and ˆ

yn  are then assumed to be independent 

random processes, with the same power spectral densities 
(white, with power proportional to B , in the case of 
thermomechanical noise).. 

 

Fig. 2. Amplitude responses (a) of the resonators (X = black, Y = grey) and 

amplitude ratio (b) for =0 (full lines) and =10-3 (dashed lines). The system 

parameters are F=1, Q=1000, =5.10-3.  

III. ANALYSIS OF OPEN-LOOP MODE-LOCALIZED RESONANT 

SENSORS 

A. Open-loop steady-state solution 

In the absence of perturbations ( 0x yn n  ), and in the 

case of harmonic forcing, i.e. sinxf F t , the steady-state 

solution of (1) is trivially written as: 
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The amplitudes X   and Y , and the phases   and   are 

given by a nonlinear set of equations  , , ,
OL
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which can be solved analytically. In particular, the last two 
equations of the system yield the following relations:  
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The amplitude ratio X Y   is represented in Fig. 2 for two 

values of , along with the amplitude responses of the 

resonators. The variation of  can be seen to result in an overall 
shift of the resonance frequencies of the system, and also in an 
increase of the amplitude of the first resonator close to in-phase 
resonance (i.e. 1  ) and a decrease close to out-of-phase 

resonance (i.e. 1   ). The sensitivity of the amplitude 

ratio and phase output metrics are studied in the following sub-
section. 

B. Sensitivity of open-loop phase and amplitude ratio 

measurements 

For a given value of the angular frequency , the 
sensitivity to mismatch of the phase difference or of the 
amplitude ratio can be derived from (4) by differentiation with 
respect to  . In particular, when 0   and 1  , we find:  
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where the approximations hold provided 1Q  , i.e. the two 

peaks in the frequency response of either of the resonators are 
well-resolved.  

Note that in experimental studies of open-loop mode-

localized sensors [1-3], for each new measurement of , a 

frequency sweep is performed to find the precise value * of 

  corresponding to in-phase (or out-of-phase) resonance: the 

amplitude ratio is then measured at this specific value of the 
angular frequency, rather than at 1  . In that case, the 

sensitivities can still be determined by differentiating (4) with 

respect to  , at *  , but one must also use the chain rule to 

take into account the dependence of *  to  . Within our 

framework (nominally identical resonators, weak coupling, and 
small mismatch  ), this refinement has no impact on the 

sensitivities given in (5), nor on our further theoretical 
developments. However, in practice, this frequency sweep is 
essential to guarantee a high-sensitivity measurement over a 
wide dynamic range (i.e. for finite values of  ), and the time 

that it requires is a major experimental drawback of the open-
loop approach.  

It is also worth noting that the sensitivity to   of the 

amplitude ratio and of the phase difference depends on the 

operating point. For example, if the angular frequency of xf  is 

chosen equal to 1 2   , then the sensitivity of the phase 

difference is equal to Q , whereas that of the amplitude ratio is 

near zero, as can be seen from Fig. 2. However, operating close 
to in-phase or out-of-phase resonance is usually preferred, 
because the amplitudes of the motional signals from the 
resonators are then much larger and easier to detect, especially 

when 1Q  . 

C. Ultimate resolution of open-loop phase and amplitude 

ratio measurements 

In order to determine the ultimate resolution of the open-
loop approach, consider that the system is perturbed by 

additive noise sources xn  and 
yn . One may then look for a 

solution of (1) of the form:  
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where the amplitude and phase fluctuations are assumed to be 
small and slowly-varying. Differential equations governing the 
slow dynamics (hence the spectra) of these fluctuations may be 
derived using a number of perturbation methods, as in [4].  

However, in the present paper, our interest lies in the near-
DC terms of these fluctuations (corresponding to close-to-the-
carrier fluctuations of x  and y ), from which the ultimate 

resolution of the different output metrics may be derived. 
These near-DC terms are governed by a linear set of equations 
obtained by doing a first-order perturbation of the state 
variables appearing in (3): 
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J  

is the Jacobian of 
OL

g  at steady-state, and the right-hand term 

of (7) corresponds to the projections of the additive noise terms 

xn  and yn  on sin(t) and cos(t). Note that, through the use of 

the method of harmonic balance, the near-DC spectrum of 
c

xn , 

s

xn , c

yn  and s

yn  corresponds to the near- spectrum of xn  and 

yn . This linear system can be solved analytically.  

 

For example, close to in-phase resonance and supposing 

1Q  , we find, when =0: 
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where the first line corresponds to the phase difference 
fluctuations, and the second line to the amplitude ratio 
fluctuations. These fluctuations correspond to the best-case  



 

Fig. 3. Spectrum of amplitude ratio fluctuations when the system is subject 

to independent white noise perturbations 
xn  and 

yn . Simulation parameters 

are  =1, F=1, Q =1000, 0  .  

 

Fig. 4. Resolution (a), and sensitivity (b) of the amplitude ratio (full lines) 

and phase difference (dashed lines) output metrics vs. coupling coefficient , 

resulting from the analytical solution of (7). Calculation parameters are  =1, 

Q =1000, and 0  . The resolution is calculated for N =1, and f =1. 

output-referred noise that can be measured with the coupled 
resonators, “best-case” meaning that readout noise and 
quantization noise can effectively be neglected. The input-
referred noise of an output metric is obtained by dividing its 

fluctuations (e.g. (8)) by its sensitivity to mismatch (e.g. (5)). 
Both quantities are inversely proportional to  , as confirmed 
by transient simulations of (1), whose results are shown in Fig. 
3. The power of the near-DC fluctuations is multiplied by 100 
when   is divided by 10, as predicted by equation (8). The 

peak in the response at frequency offset /   corresponds to 

the resonance of the out-of-phase mode, as can be predicted by 
refining the model to account for the dynamics of the 
amplitude and phase fluctuations, as in [4]. The simulations 
also confirm that the spectrum of the phase difference 
fluctuations is superposed to that of the amplitude ratio 
fluctuations, as implied by (8). The resolution of either output 

metric over a small frequency band f  can then be 

determined as the ratio of the rms value of its fluctuation to its 
sensitivity to mismatch. This resolution can also be interpreted 
as the amount of input-referred noise of the sensor over a 

frequency band f . 

As far as the amplitude ratio output metric is concerned, the 

best resolution is obtained when 1Q   and 0  . The 

following expression can be derived from (5) and (8):  

0 0
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Q F
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where 2N is the DC value of the power density of 
c

xn (and, 

under our assumptions, of 
s

xn , c

yn  and s

yn  as well). Hence, the 

“ultimate” resolution of this output metric is independent of . 
The resolution of the amplitude ratio output metric, obtained 
by solving (7) and differentiating (4) for different values of   

and , has been represented in Fig. 4.  

Likewise, when 1Q   and 0  , the resolution of 

phase difference measurements can be derived as:  

0

1/22
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F
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Thus, the resolution of this output metric is proportional to  . 
However, this expression is established under the assumption 

that 1Q  , so that in fact 
0 0 0X YR R  . Consequently, as 

far as metrological performance is considered and provided our 
assumptions are verified, the amplitude ratio is a better output 
metric than the phase difference in open-loop mode-localized 
sensors.  

We show in Fig. 4 how both output metrics behave in terms 
of resolution and sensitivity for 0  , and different values of 

 . It is remarkable that, when 1Q  , the phase difference 

becomes a better output metric than the amplitude ratio. One 
should also keep in mind that the resolution in Fig. 4-a is 
plotted for a unit frequency band, regardless of the value of  , 
even though our simulations (Fig. 2) show that the bandwidth 
of amplitude ratio or phase difference fluctuations is clearly 
dependent of  . 



D. Comparison to previous results 

It may seem surprising that the above results, in particular 
equation (9), are in contradiction with those in [3], which 
predict that the resolution of the amplitude ratio output metric 
is proportional to   (is, in fact, on the order of 1   times 
the resolution we calculate). However, upon close reading, 
there seems to be a mistake in the derivation of equation (21)in 
[3]: the authors are clearly interested in determining 
thermomechanically-induced “close to the carrier” fluctuations 
of the modal coordinates of the weakly-coupled system. Yet, 
they integrate the corresponding spectral densities in an 
angular frequency band   close to 0  , instead of 1   

(so that near-DC fluctuations of x  and y  are estimated, rather 

than near-DC fluctuations of X  and Y ). Consequently, the 
noise in the system is underestimated by a factor Q . This error, 

combined with other approximations, leads to an erroneous 
prediction, in [3], of the resolution of mode-localized sensors.  

IV. ANALYSIS OF CLOSED-LOOP MODE-LOCALIZED 

RESONANT SENSORS 

A. Closed-loop steady-state solution 

A self-oscillating loop is designed so that the exciting force 

xf  is delivered with a specific phase with respect to the motion 

x  of the first resonator, as in [7-8], and a given amplitude 

F>0. A typical (single-resonator) oscillator scheme would be to 
have the exciting force leading x  by 90°, so that:  
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where   is the angular frequency of the oscillation. The 

amplitudes X   and Y , the phase   and   are given by a 

nonlinear set of equations  , , ,
CL
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The last two equations of this system are the same as in the 
open-loop case (3), from which one may infer that (4) still 

holds, provided one replaces   with   in it. The first two 

equations of (12) then yield an implicit relation between  , 

  and the other system parameters:  
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Equation (13) is a third-degree polynomial in 2

 , meaning 

that, depending on the system parameters, there are up to three 
possible steady oscillation states for the closed-loop system. 
The stability of these solutions can be determined in a 
straightforward manner with a perturbation method. For 
example, if the same approach as in [4] is followed, we find 
that the steady-state solutions of (12) are stable provided the 

eigenvalues of the jacobian matrix 
stab

J  (14) have negative real 

parts. We find that, if 1Q  , there exists a range of values of 

 , centered on 0, for which two stable and one unstable 

solution exist. Beyond this range, there is only one stable 
steady-state solution: the response of the oscillator then 
exhibits a hysteretic character. In the case when 1Q   the 

hysteresis disappears: to any value of  , there corresponds a 

single stable steady-state solution. These results are illustrated 
in Fig. 5, and validated by comparing them with transient 
simulation results in Fig. 6. This interesting phenomenon is not 
observed in [7-8], because the resonators are not operated close 
to 0  . Note that the existence of multiple steady-state 

solutions and hysteresis is highly dependent on the phase 
between the motional signal and the excitation force imposed 
by the feedback loop (in our present case 90°). A more general 
study, out of the scope of the present paper, should be 
undertaken to determine whether this behavior can somehow 
be optimized, or if other closed-loop architectures (e.g. [14]) 
may exhibit improved performance. 

B. Sensitivity of closed-loop measurements 

The sensitivity to   of the different output metrics can be 

calculated from (13) – using the implicit function theorem to 

determine the derivative of   with respect to   – and then 

making use of the chain rule in (4). Far from 0  , the 

sensitivity of   drops to 0, and 1 2    (Fig. 5), so that 

the closed-loop amplitude ratio and phase difference can be 
calculated as in the open-loop case:  
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Fig. 5. Steady-state characteristics of the oscillator versus mismatch   for 

0.5Q   (a,d,g), 1Q   (b,e,h) and 5Q   (c,f,i). The quality factor is Q

=1000. For 5Q  , the grey circles indicate the stable solutions. 

 

Fig. 6.  Comparison of calculated solution of (13) (dots and circles, as in Fig. 
5) and transient simulation results (dashed lines) obtained by slowly sweeping 

  up and down in a Simulink model of (1), with Q =1000 and =5.10-3. 
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It is remarkable that, far from 0  , the sensitivity of the 

amplitude ratio output metric is the same as in the open-loop 
case, regardless from the precise value of  . On the other 

hand, the sensitivity of the phase difference drops fast as the 
mismatch increases. 

Close to 0  , the situation is more complex to analyze, 

notably because of the discontinuities in the sensor response 
(Fig. 5-6) that may be observed for all output metrics when 

1Q  . Arguably, these discontinuities could be interpreted as 

points of “infinite” sensitivity. However, it should also be 
considered that, as these points correspond to the onset of 
instability in the system, any perturbation (not just a change in 
the value of  ) is bound to result in a fluctuation of the output 

metrics, thus impacting resolution. Aside from the 
discontinuities, the sensitivity of the amplitude ratio output 
metric tends to decrease as the mismatch decreases, whereas 
the sensitivity of the phase difference (or of the oscillation 
angular frequency) tends to increase. At 0  , if 1Q  , we 

find there are two solutions with 1   (in-phase motion of 

the resonators) and 1    (anti-phase motion of the 

resonators), with similar sensitivities: 
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Note that the sensitivities obtained in that case for the 
amplitude ratio and the phase difference output metric are half 
of those obtained in the open-loop case (5). Finally, it should 
be emphasized that these expressions are not valid if 1Q  , 

in which case we find that 
0 0

0X YS   and that 
0

S Q  . 

C. Ultimate resolution of closed-loop measurements 

The first-order perturbation of (12) leads to the following 
set of equations: 
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J  

is the Jacobian of 
CL

g  at steady-state. As in the open-loop case, 

this system may be solved analytically to derive the near-DC 
fluctuations of the different output metrics, induced by additive 
noise. 



 

Fig. 7. Resolution (a) and sensitivity (b) of the amplitude ratio (full lines), 

phase difference (dashed lines) output metrics vs. coupling coefficient , 

resulting from the analytical solution of (17). The dotted curves are obtained 

for the amplitude ratio, when 10   . The quality factor is Q =1000, and 

the resolution is calculated for N =1, and f =1. 

When 1Q   and =0, we find for the in-phase solution: 
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  (18) 

The expression for the fluctuations of 0  is the same as in the 

open-loop case (8), but the closed-loop sensitivity is twice as 
small (5) (16). Thus, the ultimate resolution of this output 

metric at =0 is twice as large as in the open-loop case (10). As 

far as the amplitude ratio is concerned, the resolution at =0 is 

2  times larger than in the open-loop case (9).  

Operating at a “large” value (with respect to  ) of  , as in [7-

8], the amplitude ratio fluctuations are:  
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which, using (15), yields:  
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i.e. the resolution for this output metric gets worse as   

increases, due to the fact that the amplitude ratio (equal to 

/  ) gets larger, and so do its fluctuations. Although the 

phase difference and the angular frequency are bounded, the 
resolution of these output metrics also becomes worse as   

increases, because of their increasingly poorer sensitivity (15). 
These results are illustrated in Fig. 7. It should be pointed out 
that, because of the dynamic nature of the instability observed 
when 1Q  , the resolution calculated with our near-DC 

perturbation approach is likely to have little practical 
significance close to the phase jump. Whether this 
discontinuity can be put to use in practice, remains to be 
investigated, theoretically and experimentally. 

Finally, it should be noted that, in some configurations, the 
phase difference does provide measurements with a better 
resolution than the amplitude ratio. This is typically the case 
when 1Q   and 1Q   (i.e. very weak coupling and 

mismatch), the optimal resolution being then reached in 0  .  

V. GENERAL DISCUSSION 

Within the limits of the framework of the present paper, it 
appears that open-loop or closed-loop mode-localized sensors 
do not break the ultimate limit set by the measurement of the 
oscillation frequency of a single, noisy resonator [15]. As a 
basis for comparison, consider an oscillator governed by:  
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where xf  is a feedback-generated (harmonic) force in 

quadrature with x . With our notations, the sensitivity to  and 

the resolution of the angular frequency of such a system are:  
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Thus, in a differential resonant sensor based on two identical, 
independently-oscillating loops [10-13], the first loop used as a 
reference, the second loop only being sensitive to   (as in our 

own framework), the resolution is in fact 

0

1/22 N
R f

Q F
     

 which we shall use as a value of reference.  

All the output metrics of the open-loop or closed-loop mode-
localized differential architectures considered in this work have 
worse resolution than (24). Although closed-loop mode-



localized architectures perform slightly less well than open-
loop ones, as far as ultimate resolution is concerned, they do 
not require any frequency sweep, which is a major advantage 
in terms of sensor response time. We have shown that 
operating in closed-loop at   , as in [7-8], avoids the 

discontinuities highlighted in section IV, which limit the 
measurement range close to 0  . However, the resolution 

(20) is then considerably degraded compared to (24). It should 
also be pointed out that, as opposed to frequency or phase 
difference, the amplitude ratio is not a “quasi-digital” output 
metric, so that its measurement requires two specific analog-to-
digital (A/D) conversion stages. In particular, when   , 

the motional amplitudes of the two resonators are very 
different (the amplitude ratio being then equal to /  ). Thus, 

obtaining a digital value of the amplitude ratio in that case 
either calls for two different A/D stages or two different pre-
amplification stages. Furthermore, particular attention must 
then be dedicated to amplitude-dependent nonlinear 
phenomena that are ubiquitous in MEMS devices [16], and that 
are bound to affect coupling [17]. Choosing a closed-loop 
operating point close to 0   (hence an amplitude ratio close 

to unity) makes these issues easier to tackle, but at the cost of a 
a reduced measurement range. Note that, at this operating 
point, the resolution might still be improved by choosing a 
different feedback phase in the oscillator loop, as our own 
work on MILOs [4] (where the resonators are actively coupled 
through their actuation forces) suggests. A more complete 
parametric study of closed-loop mode-localized sensors should 
take this into account.  

As far as quasi-digital output metrics of mode-localized 
sensors are considered, the best compromise in terms of 
sensitivity and resolution is obtained with phase-difference, 
when Q  is slightly smaller than unity and 0   (Fig. 7). A 

difficulty here probably lies with the practical implementation, 
with passive mechanical elements or with electrostatic biasing, 
of the coupling stiffness of the resonators: the coupling should 
be, at the same time, very weak (so that 1Q  ), accurate (for 

repeatability) and stable (since fluctuations of   are likely to 
result in fluctuations of the sensor output metrics). 
Alternatively, active coupling techniques may be used, as in 
MILO-based sensors, some of which can be implemented with 
only digital components. For example, in [5-6], the excitation 
forces are generated from the motional signals with a digital 
mixer consisting of two comparators and three logical gates. 
When the optimal amount of phase-shift is applied, the 
sensitivity to   and the resolution of the phase difference are:  

0
S Q    

0

1/22
y x

s sn n N
R f

F Q F



     

where F  is the magnitude of the first harmonic of the 
excitation forces. The sensitivity of MILOs may be boosted to 
values much larger than Q , as in the “very weakly-coupled” 

architectures proposed in [18] (outside of the field of sensing). 
However, as established in [4], this does not improve the 

resolution of the system, and raises several practical issues 
(implementation of accurate analog gains, for example), and 
metrological issues as well (reduction of the locking range of 
the MILO, and increase of the sensor response time).  

In fact, it should be noted that the increase in sensitivity of 
(mode-localized or MILO-based) coupled sensors usually 
comes at the cost of a decrease of the range of the 
measurement, compared to the independent-oscillator case. 
However, this drawback may be compensated for with proper 
feedback control techniques (e.g. adjusting the stiffness of 
resonator x by changing its bias voltage to keep track of the 

variations of ), but entails added complexity to the system.  

It is our opinion that, more than their large sensitivity 
(which is admittedly a plus when it gets to overcoming readout 
noise), the main interest of sensors based on (actively or 
passively) coupled resonators is that they can provide 
differential measurements (i.e. that are insensitive to drift at 
first order) of the physical quantity of interest. On the other 
hand, the design of differential architectures based on two 
nominally-identical, uncoupled oscillator loops is quite 
challenging. In fact, the closer the oscillators are to each other 
(in order to better eliminate drift), the more likely it becomes 
that unwanted, parasitic couplings (electrical, mechanical, etc.) 
affect the normal behavior of the system (through modulation, 
frequency pulling and locking, etc.). As we have shown in this 
paper, MILOs and mode-localized approaches are two 
solutions to this issue with comparable resolution, and higher 
sensitivity.  

To be complete, our analysis of mode-localized sensor 
output metrics should be expanded with a study of their 
dynamic characteristics. Other application- and context-
dependent issues (ease of implementation, compatibility of 
these approaches with VLSI and, most importantly, 
nonlinearity) should also be considered. In fact, our own recent 
work on MILOs [19-20] shows that some of their output 
metrics are not affected by the A-f effect, which limits the use 
of conventional frequency-modulated resonant sensors: that 
similar results also hold for mode-localized sensors should then 
not be surprising. 
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