
HAL Id: hal-01868235
https://hal.science/hal-01868235

Submitted on 5 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A security pattern classification based on Data
integration

Sébastien Salva, Loukmen Regainia

To cite this version:
Sébastien Salva, Loukmen Regainia. A security pattern classification based on Data integration.
Paolo Mori, Steven Furnell, Olivier Camp. Information Systems Security and Privacy, 867, Springer,
pp.105-129, 2018, Communications in Computer and Information Science, �10.1007/978-3-319-93354-
2_6�. �hal-01868235�

https://hal.science/hal-01868235
https://hal.archives-ouvertes.fr


A security pattern classification based on Data
integration

Sébastien Salva1 and Loukmen Regainia2

1 LIMOS CNRS UMR 6158, Clermont Auvergne University,
sebastien.salva@uca.fr

2 LIMOS CNRS UMR 6158, Clermont Auvergne University,
loukmen.regainia@uca.fr

Abstract. Security patterns are design patterns specialised to provide
reusable and general solutions to recurring security problems. These pat-
terns, which capture the strengths of different security approaches, are
intended to make the design of maintainable and secure applications eas-
ier. The pattern community is continuously providing new security pat-
terns (180 patterns are available at the moment). For a given problem,
this growing pattern set along with their abstract presentations make
the security pattern choice tedious, even for experts in software design.
We contribute in this issue by presenting a method of security pattern
classification based upon data extraction and integration. The pattern
classification is semi-automatically inferred by means of a data-store in-
tegrating disparate publicly available security data. This classification
exposes relationships among software attacks, weaknesses, security prin-
ciples and security patterns. It expresses the pattern combinations that
can counter a given attack. Besides the pattern classification, we show
that the data-store can be used to generate Attack Defense Trees. In
our context, these illustrate, for a given attack, its sub-attacks and the
related defenses given under the form of security pattern combinations.
Such trees make the pattern classification more readable even for begin-
ners in security patterns. Finally, we evaluate on 25 human subjects the
benefits of using Attack Defense Trees and a classification established for
Web applications, which covers 215 attacks, 136 software weaknesses, 66
security principles and 26 security patterns.

Keywords: Security patterns, Classification, Data integration, CAPEC
attacks, CWE weaknesses, Attack-Defense Trees

1 Introduction

Design patterns are recurring solutions to software design problems proposed
and used by skilled application or system designers. They are more and more
considered in the industry since they may accelerate the design stage of the
software life cycle and help in the code readability and maintenance. As the in-
terest in software security continuously grows for a few years, specialised patterns
also emerged to help design secure applications. These, called security patterns,



are defined as reusable elements to design secure applications, which will enable
software architects and designers to produce a system that meets their security
requirements and that is maintainable and extensible from the smallest to the
largest systems [19]. Schumacher also postulates that Security patterns relates
countermeasures to threats and attacks in a given context [21].

Security patterns are often presented at a high level of abstraction with texts
and sometimes with UML diagrams to be reusable in different kinds of context.
Since 1997, the number of security patterns is continuously growing. The repos-
itory given in [22] lists around 180 security patterns. Because of the abstract
nature of security patterns and because the documents are not structured in the
same manner, the choice of the most appropriate pattern to solve a security prob-
lem is difficult with regard to a given context and somehow perilous for novice
designers [1] as a wrong choice may imply the use of useless countermeasures or
the addition of new vulnerabilities in the design and code of the application. As
designers cannot be experts in all the software engineering fields, security pattern
classifications have been published in the literature to help them find the most
appropriate patterns according to the application requirements. Several classifi-
cations were proposed to arrange security patterns into different categories, e.g.,
by security principles [28, 2], by application domains [4] (software, network, user,
etc.), by vulnerabilities [3, 1] or by attacks [27, 1]. Despite the improvements in
the pattern choice, several issues still remain open. Among them, we noticed
that these classifications are manually devised by directly comparing the tex-
tual descriptions of security concepts (vulnerabilities, attacks, patterns, etc.).
As these descriptions are generic and have different purposes, the categorisation
of a pattern can be done only when there is an evident relation between it and
other security concepts. Besides, as these classifications are not deterministic
(no strict definition of the classification process [2]), it becomes often delicate
to upgrade them. These observations lead to the purpose of this paper, which is
to establish a strict security pattern classification method, composed of several
successive steps. These lead to a pattern classification that organises the security
patterns that can be used to counter an attack. This paper extends the work we
initiated in [16] and includes the following contributions:

– we present a data-store architecture and an integration method that ex-
tracts data from various Web and publicly accessible sources and stores
relationships among attacks, security principles and security patterns. The
data-store integrates data coming from the CAPEC base [12], several pa-
pers dealing with security principles [20, 25, 11, 5, 10] and from the pattern
catalogue given in [29]. It also integrates the studies about inter-pattern rela-
tions [28, 6]. All these steps provide the detailed justifications of the resulting
classification;

– we automatically derive a security pattern classification from the data-store,
providing the pattern combinations that can be used to counter an attack.
The inter-pattern relations integrated into the data-store offer the advan-
tage of making apparent the dependencies among patterns as well as the
conflicting or alternative patterns. We have generated a classification spe-



cialised to Web applications, which includes 215 CAPEC attacks, 136 CWE
weaknesses, and 26 security patterns covering varied security aspects. To the
best of our knowledge, this is the largest classification for this application
domain. It is stored in a database available in [17];

– we automatically generate Attack-Defence Trees (shortened ADTrees [9]),
which aim at supplementing the classification with illustrations depicting,
for a given attack, its sub-attacks along with defenses expressed here with
security patterns. Such ADTrees improve the understanding of the previous
classification.

We employed the classification to evaluate, on 25 human subjects, the benefits
of using our pattern classification and ADTrees in terms of Comprehensibility,
Effectiveness and Accuracy.

Paper organisation: Section 2 presents the related work and the moti-
vations of the approach. In addition, we introduce some security notions and
data used throughout the paper. The extraction and integration of security data
into the data-store are given in Section 3. The next section shows how we au-
tomatically extract the pattern classification and ADTrees from the data-store.
Then, we evaluate it in Section 6. We discuss about the advantages and limita-
tions of our classification in Section 7. We traditionally conclude and give some
perspectives for future work in Section 8.

2 Background

2.1 Related work and motivations

The growing number of security patterns available in the literature makes the
choice of the most appropriate ones very difficult for overcoming a security prob-
lem. In order to ease this task, several pattern catalogues and classifications were
proposed [22, 14, 29, 27, 23, 1, 24, 3]. An overview of these documents is given by
Bunke et al., who reviewed the papers dealing with security patterns between
1997 and 2012 [4]. They listed a set of classification criteria and established a
comparison between design patterns and security pattern classifications. They
finally proposed their own classification based upon the application domains of
patterns (software, network, user, etc.)

Vulnerabilities are taken into consideration for pattern classification in [3,
1]. Compared to the previous paper, these give another point of view helping
designers in the choice of patterns to fix software vulnerabilities. The classifi-
cations exposed in [27, 23, 1, 24] expose pattern categories by focusing on the
attacker side and attacks. This choice of categorisation seems quite interesting
and meaningful as attacks are more and more known and examined by designers.
Wiesauer et al. initially introduced in [27] a short taxonomy of security design
patterns made from links found in the textual descriptions of attacks and secu-
rity patterns. Wiesauer et al. claimed that 40 security patterns can be connected
to attacks, but only few examples are given. These examples are associated with
one or two patterns only. Tondel et al. presented in [23] the combination of



three formalisms of security modelling (misuse cases, attack trees and security
activity models) in order to give a more complete security modelling approach.
In their method for building attack trees, they linked some activities of attack
trees with CAPEC attacks; they also connected some activities of SAGs (secu-
rity activity diagrams) with security patterns. The relationships among security
activities and security patterns are manually extracted from documentation and
are not explained. Shortly after, Alvi et al. presented a classification scheme for
security patterns putting together CAPEC attacks and security patterns for the
implementation phase of the software life cycle [1]. They analysed some security
pattern templates available in the literature and proposed a new template as-
sociated with software lifecycle phases. They considered around 20 attacks and
linked them to 5 patterns. They also manually augmented the CAPEC attack
documentation with a section named “Relevant security patterns“ composed of
some patterns [1]. After inspecting the CAPEC base, we observed that this sec-
tion is seldom available, which limits its use and interest. Finally, Uzunov et al.
introduced in [24] a classification of security threats and patterns specialised for
distributed systems. They proposed a library of threats and their relationships
with security patterns in order to reduce the expertise level required for the
design of secure applications. They considered that that their threat patterns
are abstract enough to encompass security problems related to the context of
distributed systems [24].

Open issues and contributions

Alvi et al. outlined 24 pattern catalogues and classifications in [2] and estab-
lished a comparative study to point out their positive and negative aspects.
They chose 29 classification attributes (purpose, abstraction levels, life-cycle,
etc.) and compared the classifications against a set of nine desirable quality cri-
teria (Navigability, Completeness, Usefulness, etc.). They observed that several
classifications were built in reference to a unique classification attribute, which
appears to be insufficient. They indeed concluded that the use of multiple at-
tributes enables the pattern selection in a faster and more accurate manner.
Yskout et al. also reported that the security pattern adoption is limited possibly
due to a sub-optimal quality of the documentation [29]. We indeed believe that
security pattern classifications lack Navigability and Comprehensibility, which
are quality criteria respectively defined as: the ability to direct a software de-
signer among collaborative and related patterns; the ease to understand patterns
by both a novice and expert developer.

We also observed that the main issue of the above works lies in the lack of a
precise method to build the classification. All of them are based upon the inter-
pretation of different documents, which are converted to abstract relationships.
The first consequence of these interpretations is the difficulty to extend these
classifications. In addition, it is sometimes tricky to understand the reasons of
the relationships established between attacks and patterns.

In [18], we introduced a first semi-automatic classification method and the
classification itself, which exposes relationships among 185 software weaknesses



of the CWE base [13], security principles and 26 security patterns. The classifica-
tion groups the patterns that partially mitigate a given weakness with respect to
the security principles that have to be addressed to fix the weakness. In [16], we
introduced another classification method to categorise the security patterns that
can be used to counter attacks. We extend this work by describing the meta-
model of the data-store used to automatically infer the pattern classification.
The classification process, which is built on data acquisition, is composed of six
manual and automatic steps. They offer the advantage of justifying the pattern
classification and reduce the efforts required to add new patterns or attacks to
the classification. Finally, we complete the classification with ADTrees illustrat-
ing attacks, sub-attacks and security patterns as defenses. These are generated
after the choice of an attack in the classification and remain up-to-date.

2.2 Publicly accessible resources used for the data integration

Security patterns A security pattern is a generic solution to a recurring se-
curity problem, which is characterised by a set of structural and behavioural
properties. A pattern is described with textual sections called intents, forces and
consequences. These sections point out the features of a pattern, called strong
points [7]. For a security pattern, strong points characterise the forces and the
consequences brought by the use of the pattern against a security problem.

In addition, a security pattern can be documented to express its relationships
with other patterns. Such annotations may noticeably help combine patterns and
not to devise unsound composite patterns. Yskout et al. defined the following
annotations between two patterns p1 and p2 [28]:

– “depend”means that the implementation of p1 requires the implementation
of p2 ;

– “benefit” models that implementing p2 completes p1 with extra security
functionalities or decreases the development time;

– “alternative” expresses that p2 is a different pattern fulfilling the same func-
tionality as p1 ;

– “impair” means that the functioning of p1 can be obstructed by the imple-
mentation of p2 , but both may be used together;

– “conflict” encodes the fact that if both p1 and p2 are implemented together
then it shall result in inconsistencies.

For example, Figure 1 portrays the UML class diagram of the pattern “Ap-
plication Firewall” whose purpose is to filter requests and responses to and from
an application, based on access control policies. This security pattern structures
an application in such a way that the inputs filtering logic is centralised and
decoupled from the functional logic of the application. This is a strong point
of this pattern. “Application Firewall” is related to two other security patterns
[28]: it is an alternative to the patterns “Input Guard” and “Output Guard”
since it is able to filter input calls and output responses from the application.



Fig. 1. Security pattern “Application Firewall”, reprinted from Security Pattern Cat-
alog, URL: https://people.cs.kuleuven.be/ koen.yskout/icse15/catalog.pdf, 2017

CWE weaknesses The Common Weakness (CWE) base [13] provides an open
catalogue of software weaknesses, which are software or design mistakes that
can lead to vulnerabilities. At the moment, this database includes around 1000
software weaknesses but this number is still growing. A weakness is documented
with a panoply of information, including a full description, its causes, detection
methods, and relations with CAPEC attacks or vulnerabilities. In addition, a
set of potential mitigations are often proposed.

Capec Attacks The Common Attack Pattern Enumeration and Classification
(CAPEC) is an open database offering a catalogue of attacks in a comprehen-
sive schema [12]. Attack patterns are descriptions of common approaches that
attackers take to target weaknesses of software or systems. An attack pattern,
which we refer here as documentation (to avoid the confusion with security pat-
tern), consists of several textual sections, e.g., Attack Execution Flow, Severity,
etc. In our context, three sections sound particularly interesting for starting a
classification. The section Related attack patterns shows interdependence among
attacks, having different levels of abstraction. The first two levels (Category and
Meta pattern) give attack mechanisms, the last two levels called ”Standard pat-
tern” and ”Detailed attack pattern” gather the most concrete attacks. These
interdependences provide a hierarchical organisation of attacks. Another section
called Related Weaknesses lists the CWE weaknesses targeted by the attack.
The section “Relation security principles” aligns some principles defined as de-
sirable properties targeted by the attacks. At the moment, this section is often
incomplete though.



Security principles A security principle is a desirable property, structure or
behaviour of software that aims at reducing the impact and the likelihood of a
threat realisation [25]. They represent an insight on the nature of close security
tasks whose contexts are not taken into consideration.

Numerous works focused on security principles since the last four decades.
Saltzer and Schroeder firstly established a set of eight best practices for system
security [20], which were widely expanded to form security principles [25, 11, 5,
10]. Most of these papers reflect the fact that a security principle has a level
of abstraction; it may be the realisation of other security principles, or as a
subordinate principle of another one.

3 Data-store architectures

Fig. 2. Metamodel 1 of the data-store

Fig. 3. Metamodel 2 of the data-store

As stated previously, our classification aims to make the design of secure
applications easier by providing the set of security patterns that can be used
as countermeasures against a given attack (in reference to the security pattern
definition of Schumacher [21]) and the relations among these patterns. Finding



direct relations among attacks and security patterns by reading documentation
is a hard problem. The documents are presented quite differently, with different
level of abstractions. Instead, in order to later infer a precise classification, we
chose to anatomise the security concepts available in documentation into more
detailed properties that can be interconnected in an explicit manner. The litera-
ture and some attack bases [12, 13, 15] have confirmed to us the importance of the
following associations: an attack can be documented with more concrete attacks,
which can be themselves segmented into steps; These steps can be performed
with techniques and can be prevented with countermeasures. These properties
and associations are modelled with the meta-model of Figure 2. Besides, an at-
tack also exploits a weakness, which may be composed of several more concrete
weaknesses. Mitigations can be applied to treat them. These others associations
are illustrated in Figure 3. As for security patterns, they can be characterised
with strong points, which are pattern features that are extractable from pattern
descriptions. In addition, a security pattern can have relations with others pat-
terns. Figures 2 and 3 depict these properties and relations with entities in the
same way.

Countermeasures, mitigations and strong points refer to the notion of attack
prevention. But directly finding relations among them is still an obscure task as
these properties have initially different purposes. To solve this issue, we chose to
focus on security principles as mediators. As introduced by Wassermann et al.,
security patterns are classifiable w.r.t. security principles like most of the security
concepts [26]. Here again, we consider that a security principle are organised into
a hierarchy, which shows the materialisation of a principle with more concrete
ones. Countermeasures and mitigations are often detailed security properties. It
turns out that gathering them into groups (clusters) often reduces the efforts
required to find connections with security principles without adding ambiguity.
The choice of the cluster granularity, i.e., the size of the groups, along with the
principle organisation offer a lot of flexibility to reach about the same abstraction
level among strong points, principles, countermeasures and mitigations. In other
words, these techniques help associate clusters, principles and strong points.
These last security properties and associations are identically modelled in Figures
2 and 3.

Both meta-models of Figures 2 and 3 can be used to structure our data-
store. A last possible meta-model could be achieved by blending the two previous
ones. At the moment, we prefer avoiding this solution as the countermeasures
of an attack step and the mitigations of a weakness have different purposes. We
believe that gathering them might bring confusing associations among security
principles and clusters, and finally false relations among attacks and security
patterns. After inspecting the available security data resources, e.g., [12, 13, 15],
we observed that few documents provide the countermeasures of a given attack
step. For instance, some countermeasures are provided in the CAPEC base, but
not all of them. In contrast, many countermeasures are listed for a weakness in
the CWE base. In essence, it is manifest that the more security data we collect,
the more precise the pattern classification will be. This is why we prefer using



the meta-model of Figure 3 for designing our data-store. The next section shows
how the data integration is performed with this data-store.

4 Data integration

We present, in this section, the six steps required to integrate security data
into the data-store. These aim at collecting security data and establishing the
different relations illustrated in the meta-model of Figure 3. Steps 1 to 5 give
birth to databases, and Step 6 consolidates them so that every entity of the
meta-model is related to the other ones as expected. The steps 1,2 and 6 are
automatically done with tools. These steps offer the strong advantage of semi-
automatically achieving a data-store, which can be updated. For instance, if one
wants to add a new attack, the steps 1 and 2 have to be followed. Likewise, if a
new security pattern is available in the literature, the steps 3 and 5 have to be
applied.

We have implemented these steps with scripts mostly based upon the tool
Talend3, an ELT (Extraction, Load, Transform) tool that allows an automated
processing of data independently from the type of its source or destination.
We applied these steps on attacks, patterns and principles related to the Web
application context and on data coming from different sources: the CAPEC and
CWE bases, several papers dealing with security principles [20, 25, 11, 5, 10] and
the pattern catalogue given in [29]. We provide some quantitative results related
to this context with each step. But other kinds of systems can be considered as
long as documentation is available.

We also illustrate these steps with the pattern “Application Firewall” and
with the attack “CAPEC-39: Manipulating Opaque Client-based Data Tokens”,
which corresponds to a threat on applications using tokens, e.g., cookies, holding
personal data.

4.1 Step 1: CAPEC attack extraction and organisation

We chose to focus on the CAPEC base to extract information about security
attacks because this appears to be the most complete base composed of the
largest number of attacks explained in detail (steps, techniques, risks, security
controls, etc.)

We extracted attacks from the CAPEC base and organised them into a single
tree that describes a hierarchy of attacks from the most abstract to the most
concrete ones so that we can get all the sub-attacks of a given attack. To reach
that purpose, we rely on the relationships among attack descriptions found in the
CAPEC section called Related Attack Patterns. By scrutinising all the CAPEC
documents, it becomes possible to develop a hierarchical tree whose root node is
unlabelled and connected to the most abstract attacks of the type “Category”.
These nodes are parents of attacks that belong to the type “Meta Attack pattern”

3 https://talend.com/



and so on. The leaves are the most concrete attacks of the type “Detailed attack
pattern”.

The relations among attacks (“parent of”, “child of”) are provided in the
CAPEC Base. Figure 4 shows the related attacks for the attack CAPEC-39.
The abstraction level of the attack is expressed in the column “Type” (M stands
for Meta-pattern, C for Category, D for Detailed pattern), the links with other
attacks are listed in the column “Nature”. Figure 4 shows the CAPEC-39 has one
sub-attack “CAPEC-31: Accessing/Intercepting/Modifying HTTP Cookies”.

Fig. 4. Hierarchical organisation of attacks for the attack CAPEC 39, adapted from
the CAPEC base, URL:https://capec.mitre.org/, 2017

This data extraction is automatically performed with a script, which yields a
database DB1 . From the CAPEC database Version 2.8, we collected 215 attacks
for the Web application context.

4.2 Step 2: CWE weakness and mitigation extraction

Given an attack of the database DB1 , we automatically extracted the CWE
weaknesses targeted by the attack. These can be found in a textual section called
Related Weaknesses of the CAPEC documents. Weaknesses are grouped here
into two categories named Targeted and Secondary ranking the impact degree of
the attack on a weakness. We focused on the type Targeted (even though it could
also be relevant to consider both types). These weaknesses are also described in
the CWE base, which arranges them into a hierarchy of four levels reflecting
abstraction levels. From the CWE base, we automatically gathered the more
concrete weaknesses of every previous weakness and their respective mitigations
found in a textual section called CWE mitigations.

As depicted in Figure 3, we later associate security principles with mitiga-
tions by grouping the latter into clusters. It turns out that the section “CWE
mitigations“ often groups mitigations by categories called Strategies. After a
meticulous study of these groups, we observed that they can be associated with
security principles without ambiguity. As a consequence, we have directly inte-
grated them as mitigation clusters into the data-store.

The outcome of this systematic extraction is stored in a database DB2 , which
encodes relations among 215 attacks, 136 CWE weaknesses, 130 mitigations and
15 clusters. Unsurprisingly, we observed that the attacks having the highest level
of abstraction are seldom related to CWE weaknesses, whereas concrete attacks
are connected to several mitigation clusters.



The attack CAPEC-39 and its sub-attack CAPEC-31 taken as example, tar-
get 18 CWE weaknesses, which illustrate here that the attacks are segmented
into more concrete security functionalities. Among them, we have “Improper In-
put Validation” or “External Control of Critical State Data”. These weaknesses
can be fixed by 17 mitigations, grouped into 8 clusters.

4.3 Step 3: Security pattern and strong point integration

We manually collected security patterns and their strong points from the cata-
logue given in [29]. Finding strong points can be a difficult task as these ones
are seldom explicitly provided. Strong points often have to be deduced from
the sections referring to the forces and intents of the patterns. Afterwards, we
manually established two relations among patterns and strong points:

1. the first one is a many-to-many relation between security patterns and strong
points, each pattern being characterised by a set of strong points that can
be shared with other patterns. For example, the patterns “Authorization en-
forcer” and “Container managed security” share the strong point “Providing
the application with authorization mechanism”;

2. the second relation is related to the inter-pattern relationships [28]. With
P a set of patterns, we define a mapping from P 2 to the annotation set
{depend, benefit, impair, alternative}.

These data and relations, which provide connections among security pat-
terns and strong points, are encoded into the database DB3. For the domain
of Web applications, we gathered 26 security patterns and 36 strong points.
For instance, the security pattern “Application firewall” can be characterised
with 8 strong points e.g., “Providing the application with a perimeter security
mechanism”. “Application firewall” is associated with two alternative patterns,
“Output Guard” and “Input Guard”.

4.4 Step 4: Security principle integration

We chose to organise security principles into a hierarchy, from the most abstract
to the most concrete principles. This principle organisation gives a complete hi-
erarchical view on security mechanisms, which are required to cure a weakness
and provided by security patterns at the same time. As principles are hierarchi-
cally organised, we can link a strong point and a mitigation cluster even if they
do not exactly have the same level of abstraction. For instance, consider a strong
point and a cluster that are linked to two principles being in different levels of
the hierarchy. If one principle is a child of the second one, then the strong point
and the cluster will be later related in the classification.

We collected 66 security principles related to Web applications from the pa-
pers [20, 25, 11, 5, 10] and manually established dependencies in accordance with
the nature of each security principle, often described with text. The resulting
hierarchy is certainly not exhaustive but covers the security patterns considered



in the catalogue given in [29]. Figure 5 depicts the security principle hierarchy,
which is stored in the database DB4. There are four levels, the first one being
composed of elements labelled by by the most abstract principles, e.g., “Access
control”.

Fig. 5. Security principles organisation

4.5 Step 5: Association among strong points, security principles
and mitigation clusters

In this step, we incorporated into the data-store the many-to-many relations
between strong points and security principles. We manually performed this step
because strong points and principles are mostly presented with different key-
words. We observed that the abstraction levels of the strong points better fit
with the most concrete security principles, which are labelled in the lowest-level
nodes of the hierarchical organisation depicted in Figure 5. But, if a strong point
is related to a principle sp that is not at the lowest level, then we also link the
strong point with all the children of sp.

If we take back the example of security pattern “Application Firewall”, its
strong point “Providing the application with a perimeter security mechanism”
can be easily associated with the principle “Perimeter security”. As the latter
has 3 children in the hierarchy of Figure 5, the strong point is also related to
them.



In the same way, we established the many-to-many relations between mitiga-
tion clusters and security principles. In Step 3, the clusters include mitigations
based upon the same security aspects, e.g., validating user inputs. Once these
aspects are deduced, linking clusters and security principles becomes straight-
forward. For instance, the need for validating user inputs corresponds to the
principle “Input validation”, which belongs to the principle “Complete media-
tion” in the security principle hierarchy.

These relations are materialised with the database DB5, which gathers 15
clusters, 36 strong points and 66 principles.

4.6 Step 6: data consolidation

This automatic step merges the previous databases DB1 to DB5 into a single
one. On the one hand, DB1, DB2, DB4 and DB5 store the relations among
attacks, weaknesses, mitigations and security principles. On the other hand,
DB3, DB4 and DB5 store the relations among security patterns, strong points
and security principles. It is now manifest that the security principle hierarchy
becomes the central point that helps match attacks with security patterns.

This step is automatically performed with a script by means of the meta-
model given in Figure 3. The step produces the final database DBf , which is
available in [17].

5 Security pattern classification and ADTree generation

The database DBf now holds enough information to organise security patterns
and build ADTrees. This section explains how to automatically generate them.

5.1 Security pattern classification

We have chosen to catalogue the combinations of security patterns that could
be used to counter an attack stored in DBf . More precisely, for a given attack
Att, we extract:

– the information about the attack (name, identifier, description, etc.),
– the tree T (Att) of attacks, whose root is Att, if Att is not a leaf of the attack

tree derived in Step 1.
– for each attack A of T (Att), the hierarchy of security principles Sp(A) by

means of the successive relations established among A, weaknesses, clusters
and security principles. Sp(A) represents the complete hierarchy of security
principles related to an attack, i.e., if a principle sp of Sp(A) is not a leaf of
the hierarchical organisation depicted in Figure 5, then we also extract the
principle sub-tree whose root is sp;

– for each principle sp in Sp(A), the set of security patterns Psp and the set
of patterns P2sp not in Psp that have relations with any pattern of Psp. We
also extract the inter-pattern relationships defined for couples of patterns by
the relations depend, benefit, impair, alternative, conflict.



Fig. 6. Data extraction for the attack CAPEC-39

Figure 6 depicts an extraction example for the attack CAPEC-39. The first
column gives the attack identifier. The next column gives the security pattern
allowing to counter the attack. Columns 3 and 4 provide the inter-pattern rela-
tions, e.g., “Application Firewall” is an alternative to “Input Guard”. The attack
CAPEC-39 has one sub-attack CAPEC-31, whose identifier is provided in Col-
umn 5. The three last columns give the security patterns allowing to overcome
the attack CAPEC-31 and their relations with other patterns.

The data extraction is automatically performed with a tool based upon Tal-
end. Once the tool has covered all the attacks stored in the database DBf , we
obtain the security pattern classification. This tool can be re-executed every time
the data-store is updated. The classification remains up-to-date accordingly.

Unfortunately, we think that Comprehensibility, which refers to the ability
to use the classification by experts or novices, is not yet totally satisfied at this
stage. Indeed, the classification is given under a tabular form, which does not
appear to be the most user-friendly way to represent a classification. This is why
we also propose to improve its readability with ADTrees.

5.2 Attack-Defense Tree generation

ADTrees are graphical representations of possible measures an attacker might
take in order to attack a system and the defenses that a defender can employ
to protect the system [9]. ADTrees have two different kinds of nodes: attack
nodes (red circles) and defense nodes (green squares). A node can be refined
with child nodes and can have one child of the opposite type (linked with a
dashed line). Node refinements are either disjunctive or conjunctive. The former
is recognisable by edges going from a node to its children. The latter is graphically
distinguishable by connecting these edges with an arc.

We generate ADTrees having the general form illustrated in Figure 7(a). The
root of this tree is labelled by an attack. If the latter has sub-attacks, these are
given in the tree with children linked with a disjunctive refinement and so forth.
Furthermore, the tree points out how to prevent attacks with defenses given



under the form of security pattern combinations. A defense node is linked to an
attack node with a dashed line. This defense node is either labelled by a security
pattern, or is the root of a sub-tree showing patterns and their relations. We
generate ADTrees with the following steps:

(a) Pattern classifica-
tion representation with
ADTrees

(b) Conflicting pat-
tern representation
with ADTree

Fig. 7. ADTree examples, reprinted from A methodology of security pattern classifi-
cation and of attack-defense tree generation, by Regainia, L., Salva, S., Proceedings of
ICISSP’17, SciTePress, Porto, Portugal (02 2017).

1. every attack found in DBf has its own ADTree whose root node is labelled by
its identifier. This root node is linked to other attack nodes with a disjunctive
refinement if the attack has sub-attacks. This step is repeated for every sub-
attack. In other words, we generate a sub-tree of the original hierarchical
tree extracted in Step 1, whose root is an attack;

2. for every attack node A, we collect the set P of security patterns that counter
the attack. The inter-pattern relationships are illustrated in the ADTree with
new nodes and logic operations. Given a couple of patterns (p1 , p2 ) ∈ P , if
we have:

– (p1 R p2) with R a relation in {depend, benefit}, we build three defense
nodes, one parent node labelled by R and two nodes labelled by p1, p2
combined with this parent defense node by a conjunctive refinement;

– (p1 alternative p2), we build three defense nodes, one parent node la-
belled by alternative and two nodes labelled by p1, p2, which are linked
by a disjunctive refinement to the parent node;

– (p1 R p2) with R a relation in {impair, conflict}. In this particular
case, we would want to use the xor operation since both patterns can
be used but the implementation of p2 decreases the efficiency or con-
flicts with p1 . Unfortunately, this operation is not available with this



tree model. Therefore, we replace the operator by the classical formula
(A xor B) −→ ((A or B) and not (A and B)). The not operation is here
replaced by an attack node meaning that two conflicting security pat-
terns used together constitute a kind of attack. The corresponding sub-
tree is depicted in Figure 7(b),

– p1 having no relation with any pattern p2 in P , we add one parent defense
node labelled with p1.

The parent defense nodes, resulting from the above steps, are combined
to a defense node labelled by ”Pattern Composition” with a conjunctive
refinement. This last defense node is linked to the attack node A.

When an attack is linked to several security patterns, the second step can
achieve a large defense sub-tree. But, this one can often be simplified. In short,
if we replace the relations depend, benefit by the operation AND, the relation
alternative by OR and the relations impair, conflict by XOR, we obtain logical
expressions. These expressions can be reduced with tools, e.g., BExpRed4. A
simplified defense tree can be derived from the reduced expression. For instance,
with the three patterns p1, p2 and p3 having the relations (p1 benefit p2), (p1
alternative p3) and (p2 alternative p3), we obtain (p1 AND p2) AND (p2 OR
p3) AND (p1 OR p3), which can be reduced by (p1 AND p2). This expression
gives a defense node that is conjunctively refined with two nodes labelled by p1
and p2.

Fig. 8. ADTree of the attack CAPEC-39

4 https://sourceforge.net/projects/bexpred/



We implemented the ADTree generation with a tool, which takes as input an
attack identifier and yields an ADTree, which is stored into an XML file. These
files can be used with the ADTree editing tool ADTool presented in [8]. As a
consequence, ADTrees can be modified or updated as the designer wishes.

If we take back the attack CAPEC-39, we obtain the ADTree of Figure 8.
This tree firstly shows that the attack CAPEC-39 has the sub-attack CAPEC-
31. Both attacks can be countered by several security pattern combinations. For
instance, the attack CAPEC-39 can be countered by two pattern combinations:
the pattern “Canonicalization” must be used either with “Application Firewall”
or with “Input guard” since both are alternative patterns. The number of security
patterns related to the attacks CAPEC-39 and CAPEC-31 is explained here by
the diversity of the targeted weaknesses. Indeed, 18 weaknesses can be exploited
here (6 for the attack CAPEC-39 and 12 for CAPEC-31). We assume for the
classification generation that all of them have to be mitigated. As they cover
different security issues, e.g., input validation problems, privilege management
or encryption problems, several patterns are required to fix the weaknesses and
hence block the attacks.

This example illustrates that a designer can follow the concrete materialisa-
tions of an attack in an ADTree. He/she can choose the most appropriate attack
with respect to the context of the application being designed. The ADTree pro-
vides the different security pattern combinations that have to be used to prevent
this attack.

6 Empirical Evaluation

In order to assess whether designers can take profit of our classification and
ADTrees, we empirically studied two scenarios where 25 participants were given
the task of choosing security pattern combinations to prevent two attacks, CAPEC-
244: Cross-Site Scripting via Encoded URI Schemes and CAPEC-66: SQL In-
jection, on two vulnerable Web applications, Ropeytasks 5 and Bodgeit 6. The
participants are third to fourth year computer science undergraduate students;
most of them have good skills in the design, development and test of Web ap-
plications. They have some knowledge about classical attacks and are used to
handle design patterns, but not security patterns. The duration of each scenario
was set at most to one hour.

In the first scenario, denoted Part 1, we supplied these documents to the
students: the CAPEC base, two concrete examples showing how to perform
each attack, the catalogue of security patterns given in [29] and the pattern
classification proposed in [1]. For simplicity, we refer to these documents as basic
pattern documents in the remainder of the evaluation. In the second scenario,
denoted Part 2, we supplied additional documents for the two attacks, i.e., our
classification under the form of tabulars, two ADTrees generated from the data-

5 https://github.com/continuumsecurity/RopeyTasks
6 https://github.com/psiinon/bodgeit



store. At the end of each scenario, the students were invited to fill in a form
listing these questions:

– Q1: Was it difficult to choose security patterns?
– Q2: Was it difficult to use the CAPEC documentation (in Part 1) / our

classification+ADTrees (in Part 2)?
– Q3: Was it difficult to use the basic pattern documents (in Part 1) / our

classification+ADTrees (in Part 2)?
– Q4: What was your time spent for choosing security patterns?
– Q5: How confident are you in your pattern choice?
– Q6: What are the patterns you have chosen?

This form was actually devised to evaluate the following criteria:

– C1: Comprehensibility: does our classification make the pattern choice less
difficult?

– C2: Efficiency: does our classification help reduce the time needed to choose
patterns?

– C3: Accuracy: are the chosen patterns correct ?

6.1 Experiment results

From the forms returned by the participants (available in [17]), we extracted
the following results. Firstly, Figure 9 illustrates the percentages of answers to
the questions Q1 to Q3. For these, we used this four-valued scale: easy, fairly
easy, difficult, very difficult. From Question Q4, we collected the time spent by
the participants for choosing patterns (in Part 1 and 2 of the experimentation).
In summary, response times varied between 15 and 50 minutes for Part 1, and
between 5 and 30 minutes for Part 2. The bar charts of Figure 10 depicts the
levels of confidence of the participants towards their security pattern choices
(Question Q5). The possible answers were for both scenarios: very sure, sure,
fairly sure, not sure.

We finally analysed the security pattern combinations provided by the partic-
ipants in Question Q6. We organised these responses into four categories (ordered
from the more to the less accurate):

– Correct: several pattern combinations were accurate. When a participant
gives one of these combinations, its response belongs to this category;

– Correct+Additional: this category includes the responses composed of a cor-
rect pattern combination, completed with some other patterns;

– Missing: we gather in this category, the incomplete pattern combinations
without additional patterns;

– Missing+Additional: this category holds the worst responses, composed of
unexpected patterns eventually accompanied with some expected ones.

With these categories, we obtained the bar charts of Figure 11, which gives
the number of responses per category and per experiment scenario.



Fig. 9. Response rates for Q1 to Q3

Fig. 10. Confidence rates (Q5)

6.2 Result interpretation

C1 Comprehensibility: Figure 9 shows that 33% of the participants estimated
that the pattern choice was easy with our classification and ADTrees (Q1).
In contrast, no participant found that the choice was easy when using only
the basic pattern documents. The rate of ”Easy” Fairly Easy” increased by
70,8% between Part 1 and Part 2. With Question Q2, 41,7% of the participants
found ”Fairly easy” the use of the CAPEC base, whereas 87,5% esteemed our
documents (ADTrees) ”Easy” and ”Fairly Easy” to use. Similarly, only 37,5% of
the participants found ”Easy” and ”Fairly easy” the reading of the basic pattern
documents. This rate reaches 87,5% with our classification. Consequently, Figure
9 shows that our classification and ADTrees make the pattern choice easier and
that they are simpler to interpret than the basic pattern documents. Figure 10



Fig. 11. Accuracy Measurement (Q6)

expresses that the confidence of the participants on their responses increased by
20,8 %.
C2 Efficiency: the average time spent by the participants for choosing patterns
is equal to 32 minutes in the first scenario (Part 1). This time delay decreases
to 15 minutes when the participants employed our classification and ADTrees.
Furthermore, no participants went over 30 minutes for choosing patterns in Part
2 (in contrast with 50 minutes for Part 1). Hence, our documents make the
participants more efficient.
C3 Accuracy: Figure 11 reveals how complicated it is to read the basic pattern
documents. Indeed, no participant gave a correct pattern combination in Part
1. In contrast, when they used our classification and ADTrees, the number of
correct responses rises to 15 out of 25 (60%). Furthermore, the category of re-
sponses ”Missing+Additional” (worst responses) is strongly reduced (60 % with
Part 1 to 8% with Part 2). Consequently, the pattern choice is significantly more
accurate with our classification and ADTrees. Nonetheless, even with our doc-
uments, the number of participants that gave incomplete pattern combinations
remains around the same range (9 in Part 1, 7 in Part 2). More efforts seem
required to avoid the participants forgetting patterns in ADTrees.

7 Classification Discussion

Our current classification is built on a non exhaustive set of 215 CAPEC attacks,
26 security patterns and 136 CWE weaknesses related to Web applications. Pre-
sented in a tabular form, it enables multi-attribute based decisions insofar as
patterns can be classified according to security principles, weaknesses and at-
tacks. The classification complies with seven of the nine quality criteria defined
in [2] :



– Navigability: our classification, accompanied by ADTrees, satisfies this cri-
terion as it exposes the hierarchical refinements of an attack and the com-
binations of patterns, which should be integrated in the application model.
In addition, the classification provides the relationships among security pat-
terns, which help choose the most appropriate pattern combination. For
instance, if two conflicting patterns are listed, the classification points out
this conflict to avoid using them together;

– Determinism: the classification is clearly defined by means of the integration
steps. These justify the soundness of the classification;

– Unambiguity/Comprehensibility: as patterns are classified w.r.t. attacks and
security principles, we provide a clear category structure. This organisation,
which is supplemented and illustrated by means of ADTrees, makes our clas-
sification readable and comprehensible even for novices in security patterns;

– Usefulness: we believe the classification can be used in practice since it is
based upon the security pattern catalogue given in [29] and the CAPEC
and CWE bases. Furthermore, the Attack tree formalism is one of the most
prominent security formalism for analysing threats. The ADTree model is
supported by several tools, in particular ADTool [8]. Our ADTree generator
actually generates XML files taken as inputs by ADTools;

– Acceptability: an acceptable classification schema should be structured in a
way that it provides help in partitioning the security pattern landscape and
becomes generally approved [2]. Our classification partitions security patterns
with regard to attacks, weaknesses and security principles. Furthermore, our
evaluation shows that the classification makes participants more efficient and
confident on their pattern choices without providing new constraints;

– Repeatability: the classification is generic and can be reused. Furthermore,
the data-store and the classification can be updated.

In our classification, a security pattern can be related to several attacks and
security principles. As a consequence, it is not Mutual exclusive (patterns should
be categorised into at most one category). Even though it is not a primary goal
of our classification, we could fix this issue by grouping attacks into contexts in a
mutual way, like in [4]. To do so, the meta-model of Figure 3 should be updated
with a new entity called Context linked to the entity Attack. Like most of the
pattern classifications, the Completeness criterion is not met as we do not yet
consider all the available security patterns.

We compared our classification with the two papers providing relations be-
tween security patterns and attacks [27, 1]. In these works, the security pattern
intents are manually compared to the summaries of the attacks. As these tex-
tual sections are abstract, few relations were found. The largest contribution is
provided by Alvi et al. who considered around 20 attacks and manually linked
them to 5 patterns. In contrast to these works, our classification is more com-
plete: we provide 26 security patterns as solutions against 215 attacks of the
CAPEC base. Our classification exposes more pattern combinations per attack;
the more choice is not always the better though. After inspection, we observed
that more than one or two patterns are generally required to counter attacks. A



last important point is that the classifications exposed in [27, 1] do not contradict
our relations between attack and patterns. For instance, the attack “CAPEC-
66 SQL Injection” is related to the security patterns “Intercepting Validator”
and “Input validation” in [27]. The attacks “CAPEC-244: Cross-Site Scripting
via Encoded URI Schemes” and CAPEC-66 are only associated with the pat-
tern “Intercepting Validator” in [1]. For these attacks, our method generates
two ADTrees, which provide 4 combinations of 7 patterns for the CAPEC-244
and 8 combinations of 9 patterns for the CAPEC-66. As in [27, 1], the ADTrees
exhibit the pattern “Input Guard”, which can be implemented by “Intercepting
Validator”. But, they also list other patterns. For the CAPEC-244, some of these
patterns are alternative to “Input Guard”, e.g., “Application Firewall”. Other
patterns, e.g., “Authentication Enforcer” or “Controlled Object Monitor” are
related to specific weaknesses targeted by the attack CAPEC-244. We believe
these patterns, which are not given in the previous classifications, are required
to counter the attack with regard to the application context.

Some statistical information can be automatically extracted from our clas-
sification, e.g., the ratio of weaknesses to attacks, of patterns to attacks. For
instance, Figure 12 shows the number of attacks at least partially countered per
pattern. Keeping in mind, that the current set of patterns is not exhaustive, we
observe that 2 patterns seem to emerge for partly fixing a large part of the 215
attacks covered by the classification: “Input Guard” and “Application firewall”,
can overcome 113 and 109 attacks respectively. This kind of information can
guide designers towards security analysis and good practices. For instance, with
the above chart and ADTrees, a designer can deduce that the patterns “Input
Guard” and “Application firewall” are alternative security patterns and that one
of them should be used in the design of Web applications as they partially block
numerous attacks. It is manifest that if we complete the data-store with more
data, e.g., attack risks, such charts could be more refined and adapted to the
developer needs.

Limitations: Our classification and method present some limitations, which
could lead to some research future work:

– we did not envisaged the notion of attack combination. Such a combination
could be seen as several attacks or as one particular attack. If an attack
combination can be identified and documented with its sub-attacks, then it
can be integrated in our data-store;

– the ADTree size limit is not supported by our ADTree generator. When an
attack has a high level of abstraction, we observed that the resulting ADTree
size can become large because it includes a set of sub-attacks, themselves
linked to several patterns. This is a strong limitation since large trees are
usually unreadable, which contradicts the method purposes;

– the classification is not exhaustive: it includes 215 attacks out of 569 (for
any kind of application), 210 CWE weaknesses out of around 1000 and 26
security patterns out of around 176. It can be completed with new attacks
automatically. But it worth mentioning that the completion of the data-



Fig. 12. Number of fixed attacks per pattern, reprinted from A methodology of security
pattern classification and of attack-defense tree generation, by Regainia, L., Salva, S.,
Proceedings of ICISSP’17, SciTePress, Porto, Portugal (02 2017).

store with new security patterns or weaknesses requires some manual steps.
It could relevant to investigate whether some text mining techniques would
help partially automate these manual steps. The classification exhaustiveness
also depends on the available security data. In the ADTree of Figure 8, all the
attack nodes are linked to defense nodes. Sometimes, with other attacks, no
defenses are provided. This can be generally explained by three main reasons:
1. the attack is too abstract to be associated with weaknesses. This attack
should be linked to sub-attacks though; 2. Security databases or pattern
catalogues are incomplete (lack of mitigation, weakness, etc.). More data
are required while the data integration process; 3. the attack is relatively
new and cannot be yet overcame by security patterns;

– several steps require manual interventions, which are prone to errors. These
manual steps may lead to associations among security data that are bound
to be controversial. We compared our results with other papers, but this is
insufficient to ensure all the associations are correct or that no security data
e.g., strong point, is missing. Validating every relation is a hard problem. It
could be partially solved by the use of verification methods. But the writing
of formal expressions for modelling the entities and associations of our meta-
model is also a long and error-prone task.



8 Conclusion

The generic nature of security patterns and their growing number make their
choice difficult for overcoming a security problem. This is why we have presented
a security pattern classification method putting together CAPEC attacks, CWE
weaknesses and security patterns to guide designers in their pattern choices.
This method provides a meta-model and the data integration steps to generate
a pattern classification showing the patterns that can be used to counter an
attack. Pattern intern-relationships are also given to increase Navigability and
Comprehensibility. The method automatically generates ADTrees, which ease
the classification readability. These ADTrees could be taken as a first step of
other security processes, e.g., threat modelling.

In future research, we firstly intend to focus on the automation of some of the
data integration steps. We will investigate whether some text mining techniques
would help partially automate the extraction and integration of security data
without bringing ambiguity. Our method does not take into consideration the
size of the ADTrees. The ADTree reduction could be a first solution on this
problem. But, the literature does not yet provide a generic method for this
kind of reduction. Reducing such trees remains a hard problem as the node
meaning must be taken into account in the node aggregating process. We intend
to investigate on this issue in future works.

References

1. Alvi, A.K., Zulkernine, M.: A Natural Classification Scheme for Software Security
Patterns. 2011 IEEE Ninth International Conference on Dependable, Autonomic
and Secure Computing pp. 113–120 (2011)

2. Alvi, Aleem, K., Zulkernine, M.: A Comparative Study of Software Security Pattern
Classifications. 2012 Seventh International Conference on Availability, Reliability
and Security pp. 582–589 (2012)

3. Anand, P., Ryoo, J., Kazman, R.: Vulnerability-Based Security Pattern Catego-
rization in Search of Missing Patterns. 2014 Ninth International Conference on
Availability, Reliability and Security pp. 476–483 (2014)

4. Bunke, M., Koschke, R., Sohr, K.: Organizing security patterns related to secu-
rity and pattern recognition requirements. International Journal on Advances in
Security 5 (2012)

5. Dialani, V., Miles, S., Moreau, L., De Roure, D., Luck, M.: Transparent fault tol-
erance for web services based architectures. In: Euro-Par 2002 Parallel Processing,
pp. 889–898. Springer (2002)

6. Fernandez, E.B., Washizaki, H., Yoshioka, N., Kubo, A., Fukazawa, Y.: Classify-
ing security patterns. In: Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). vol.
4976 LNCS, pp. 342–347 (2008)

7. Harb, D., Bouhours, C., Leblanc, H.: Using an Ontology to Suggest Software Design
Patterns Integration, pp. 318–331. Springer Berlin Heidelberg, Berlin, Heidelberg
(2009), http://dx.doi.org/10.1007/978-3-642-01648-6_34

8. Kordy, B., Kordy, P., Mauw, S., Schweitzer, P.: ADTool: Security Analysis with
Attack–Defense Trees, pp. 173–176. Springer, Berlin, Heidelberg (2013)



9. Kordy, B., Mauw, S., Radomirović, S., Schweitzer, P.: Attack–defense trees. Journal
of Logic and Computation p. exs029 (2012)

10. Meier, J.: Web application security engineering. Security & Privacy, IEEE 4(4),
16–24 (2006)

11. Meier, J., Mackman, A., Dunner, M., Vasireddy, S., Escamilla, R., Murukan, A.:
Improving web application security: threats and countermeasures. Microsoft Cor-
poration 3 (2003)

12. Mitre corporation: Common attack pattern enumeration and classification (2017),
https://capec.mitre.org/

13. Mitre corporation: Common weakness enumeration (2017), https://cwe.mitre.
org/

14. Munawar, H.: Security pattern catalog, http://www.munawarhafiz.com/

securitypatterncatalog/

15. OWASP: The open web application security project (owasp). In:
http://www.owasp.org (2017)

16. Regainia, L., Salva, S.: A methodology of security pattern classification and of
attack-defense tree generation. In: Camp, O., Furnell, S., Mori, P. (eds.) Proceed-
ings of the 3nd International Conference on Information Systems Security and
Privacy (ICISSP 2017. SciTePress, Porto, Portugal (02 2017)

17. Regainia, L., Salva, S.: Security pattern classification, companion site, http://

regainia.com/research/companion.html

18. Regainia, L., Salva, S., Bouhours, C.: A classification methodology for security
patterns to help fix software weaknesses. In: Proceedings of the 13th ACS/IEEE
International Conference on Computer Systems and Applications AICCSA (2016)

19. Rodriguez, E.: Security Design Patterns. In: 19th Annual Computer Security Ap-
plication Conference (ACSAC’03) (2003)

20. Saltzer, J.H., Schroeder, M.D.: The protection of information in computer systems.
Proceedings of the IEEE 63(9), 1278–1308 (1975)

21. Schumacher, M., Roedig, U.: Security Engineering with Patterns. Engineering
2754, 1–208 (2001), http://www.springerlink.com/content/y01ll29crpx0l8yu

22. Slavin, R., Niu, J.: Security patterns repository (2016), http://sefm.cs.utsa.

edu/repository/

23. Tøndel, I.A., Jensen, J., Røstad, L.: Combining misuse cases with attack trees and
security activity models. In: Availability, Reliability, and Security, 2010. ARES’10
International Conference on. pp. 438–445. IEEE (2010)

24. Uzunov, A.V., Fernandez, E.B.: An extensible pattern-based library and taxonomy
of security threats for distributed systems. Computer Standards & Interfaces 36(4),
734–747 (2014)

25. Viega, J., McGraw, G.: Building Secure Software: How to Avoid Security Problems
the Right Way, Portable Documents. Pearson Education (2001)

26. Wassermann, R., Cheng, B.H.: Security patterns. In: Michigan State University,
PLoP Conf. Citeseer (2003)

27. Wiesauer, A., Sametinger, J.: A security design pattern taxonomy based on attack
patterns. In: International Joint Conference on e-Business and Telecommunica-
tions. pp. 387–394 (2009)

28. Yskout, K., Heyman, T., Scandariato, R., Joosen, W.: A system of security patterns
(2006)

29. Yskout, K., Scandariato, R., Joosen, W.: Do security patterns really help designers?
In: Proceedings of the 37th International Conference on Software Engineering -
Volume 1. pp. 292–302. ICSE ’15, IEEE Press, Piscataway, NJ, USA (2015)


