
HAL Id: hal-01868218
https://hal.science/hal-01868218

Submitted on 5 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Practical Way of Testing Security Patterns
Loukmen Regainia, Sébastien Salva

To cite this version:
Loukmen Regainia, Sébastien Salva. A Practical Way of Testing Security Patterns. Thirteenth In-
ternational Conference on Software Engineering Advances (ICSEA’18), Oct 2018, Nice, France. �hal-
01868218�

https://hal.science/hal-01868218
https://hal.archives-ouvertes.fr

A Practical Way of Testing Security Patterns

Loukmen Regainia
LIMOS - UMR CNRS 6158

University Clermont Auvergne, France
email: sebastien.salva@udamail.fr

Sébastien Salva
LIMOS - UMR CNRS 6158

University Clermont Auvergne, France
email: sebastien.salva@uca.fr

Abstract—We propose an approach for helping developers
devise more secure applications from the threat modelling stage
up to the testing one. This approach relies on a Knowledge
base integrating varied security data to perform these task. It
firstly assists developers in the design of Attack Defense Trees
(ADTrees) expressing the attacker possibilities to compromise
an application and the defenses that may be implemented.
These defenses are expressed by means of security patterns,
which are generic and re-usable solutions to design secure
applications. ADTrees are then used to guide developers in the
generation of test cases and of LTL specifications encoding
properties about security pattern behaviours. Test verdicts
show whether an application is vulnerable to the attack
scenarios and if the security pattern properties hold in the
application traces.

Keywords-Security pattern ; Security Testing ; Attack De-
fense Tree ; Test Case Generation.

I. INTRODUCTION

Preventing attackers from exploiting software defects,
in order to compromise the security of applications or to
disclose and delete user data, may be considered as the main
motivations for software security. It is well admitted that
the choice of security solutions and the writing of concrete
security test cases are two tasks of the software life cycle
requiring time, expertise and experience. Unfortunately, de-
velopers lack resources and guidance on how to design or
implement secure applications and test them. Furthermore,
different kinds of expertise are required, e.g., to represent
threats, to choose the most appropriate security solutions
w.r.t. an application context, or to ensure that the latter are
implemented as expected.

Several digitalised security bases, documents and papers
have been proposed to guide developers in these activi-
ties. For instance, the CAPEC base makes publicly avail-
able around 1000 attack descriptions, including their goals,
steps, techniques, the targeted vulnerabilities, etc. In another
context, security pattern catalogues, e.g., [1], list 176 re-
usable solutions for helping developers design more secure
applications. The security pattern, which is a topic of this
paper, intuitively relates countermeasures to threats and
attacks in a given context [2]. This profusion of documents
makes developers drown in a sea of recommendations tak-
ing security with different viewpoints (attackers, defenders,
etc.), abstraction levels (security principles, attack steps,

exploits, etc.) or contexts (system, network, etc.). In this
paper, we focus on this issue and propose an approach to
assist developers devise more secure applications from the
threat modelling stage up to the testing one. The originality
of this approach resides in the fact that it relies on a
Knowledge base to automate some steps and to not require
that developers have skills in (formal) modelling.

Brief review of related work, and contributions: Nu-
merous papers proposed methods for generating test cases
from models to check the security of systems, protocols
or applications. Among them, several papers, e.g., [3], [4],
[5], focused on models not to describe the implementation
behaviour but rather to express attacker goals or vulnerability
causes of a system. These works take Threat models as
inputs, which are manually written. If these lack of details
(parameters, attack steps, etc.), the final test cases will be
too abstract as well. Furthermore, these methods do not give
any recommendation on how to write tests and on how to
structure them. Hence, developers lack guidance to write
tests and to reuse them.

We proposed in [6] a preliminary approach for helping
developers devise more secure applications with a guided
test case generation approach. It is based on a first Knowl-
edge base integrating security data. The approach firstly
queries the Knowledge base to help developers write an
Attack Defense Tree (ADTree) encoding the attack scenarios
that may be performed by an adversary and the defences,
materialised with security patterns, which have to be inte-
grated and implemented into the application. Thereafter, the
approach helps generate security test cases to check whether
the application is vulnerable to these attacks. However, it
does not assist developers to ensure that security patterns
have been correctly implemented in the application. This
work supplements our early study by covering this part.

Few works dealt with the testing of security patterns,
which is the main topic of this paper. Yoshizawa et al.
introduced a method for testing whether behavioural and
structural properties of patterns may be observed in applica-
tion traces [7]. Given a security pattern, two test templates
(OCL expressions) are manually written, one to specify the
pattern structure and another to encode its behaviour. Then,
developers have to make templates concrete by manually
writing tests for experimenting the application. The latter

returns traces on which the OCL expressions are verified.
Our approach requires neither complete models nor formal
properties. It generates Attack Defense Trees (ADtrees) to
help developers choose security patterns. Furthermore, with
our approach, developers don’t need to have a good knowl-
edge and skills on the writing of formal properties. Instead,
we propose a practical way to generate them. Intuitively,
after the choice of security patterns, our approach provides
generic UML sequence diagrams, which can be modified by
the developer. From these diagrams, we generate LTL (Lin-
ear Temporal Logic) properties, which capture the cause-
effects relations among pairs of method calls. After the
test case execution, we check if these properties hold in
application traces. The developer is hence not aware of the
LTL property generation.

Paper Organisation: Section II introduces the Knowledge
base used by our approach. Section III gives the first three
steps of the approach, which aim at generating threat models,
proposing security patterns and providing UML sequence
diagrams. Section IV addresses the generation of test cases
and LTL properties, which are used to return test verdicts.
We finally conclude in Section V.

II. KNOWLEDGE BASE OVERVIEW

Figure 1. Knowledge Base meta-model part 1

Figure 2. Knowledge Base meta-model part 2
Our approach relies on a Knowledge base to automate

some of its steps. Its meta-model is depicted in Figures
1 and 2. We summarise its architecture in the following
but we refer to [6] for a complete description and for
the data integration. The meta-model associates attacks,

techniques, security principles, security patterns, test cases
and UML sequence diagrams. To increase the precision
of the relations, we chose to decompose attacks into sub-
attacks, and into attack steps. These steps are associated
to countermeasures, allowing to prevent attack steps. We
also decompose security patterns into strong points, which
are sub-properties expressing pattern key design features.
Relying on a hierarchical organisation of security principles,
the method maps countermeasure clusters to principles and
strong points to principles. As countermeasures usually are
detailed properties, we gather them into clusters (groups)
to reach about the same abstraction levels as those of the
security principles.

In Figure 2, an attack step is also associated to one
Application context and one Test architecture. The context
refers to an application family, e.g., Web sites. The Test
architecture entity refers to textual paragraphs explaining the
points of observation and control, testers or tools required
to execute the attack step on an application, which belongs
to an Application context. Next, we map attack steps onto
GWT (Given When Then) test case sections. For readability
and re-usability purposes, we chose to consider the “Given
When Then” pattern to break up test cases into several parts:

• the Given section aims at putting an application under
test in a known state;

• the When section triggers some actions;
• the Then section is used to check whether the condi-

tions of success of the test case are meet (assertions).
We suppose that a Then section returns the message
“Passst” if an attack step st has been successfully
executed, “Inconclusivest” if some test case proce-
dures have not been executed due to various problems
(e.g., incomplete test architecture, network issues, etc.)
or “Failst” otherwise.

A test case section is linked to one procedure stored in
the Procedure table, which implements the section. These
procedures may be completed with comments or with blocks
of code to ease the test case development. But, they must
remain generic, i.e. re-usable with any application in a
precise context.

For this paper, we updated the Knowledge base in such
a way that a security pattern is also associated to generic
UML sequence diagrams, themselves arranged in Appli-
cation contexts. Indeed, security pattern catalogues often
provide generic UML sequence diagrams expressing the
security pattern behaviours. These diagrams often show how
to implement a security pattern with regard to an Application
context.

As a proof of concept, we generated a Knowledge base
specialised to Web applications. The paper [6] details the
data acquisition and integration steps. It includes information
about 215 attacks (209 attack steps, 448 techniques), 26 se-
curity patterns, 66 security principles. We also generated 627
GWT test case sections (Given, When and Then sections)

and 209 procedures. The latter are composed of comments
explaining: which techniques can be used to execute an
attack step and which observations reveal that the applica-
tion is vulnerable. We manually completed 32 procedures,
which cover 43 attack steps. We used the testing framework
Selenium and the penetration testing tool ZAProxy1, which
covers varied Web vulnerabilities. This Knowledge base is
available here2.

III. SECURITY AND SECURITY PATTERN TESTING

Figure 3 depicts an overview of the six steps of our
approach, beginning by the construction of a threat model
and ending with the generation of test verdicts expressing
whether an application under test (AUT) is vulnerable to the
attack scenarios encoded in the threat model and whether
security pattern behaviours hold in the AUT traces. Before
describing these steps, we briefly recall some notions about
the ADTree model.

A. Attack Defense Trees (ADTrees)

ADTrees are graphical representations of possible mea-
sures an attacker might take in order to attack a system and
the defenses that a defender can employ to protect the system
[8]. ADTrees have two different kinds of nodes: attack nodes
(red circles) and defense nodes (green squares). A node can
be refined with child nodes and can have one child of the op-
posite type (linked with a dashed line). Node refinements can
be disjunctive (as in Figure 4) or conjunctive. The latter is
graphically distinguishable by connecting the edges between
a root node and its children with an arc. We extend these
two refinements with the sequential conjunctive refinement
of attack nodes.This operator expresses the execution order
of child attack nodes. Graphically, a sequential conjunctive
refinement is illustrated by connecting the edges, going from
a node to its children, with an arrow.

Alternatively, an ADTree T can be formulated with an
algebraic expression called ADTerm and denoted ι(T). In
short, the ADTerm syntax is composed of operators having
types given as exponents in {o, p} with o modelling an oppo-
nent and p a proponent. ∨s,∧s,−→∧ s, with s ∈ {o, p} respec-
tively stand for the disjunctive refinement, the conjunctive
refinement and the sequential conjunctive refinement of a
node. A last operator c expresses counteractions (dashed
lines in the graphical tree).

B. Model Generation, Security Pattern Choice (Step 1 to 3)

Step 1: Initial ADTree Design
The developer establishes an initial ADTree T whose root

node represents the attacker’s goal. This node may be refined
with several layers of children to refine this goal. We suppose
that T at least has leaves labelled by attacks available in the

1https://www.owasp.org/index.php/OWASP Zed Attack Proxy Project
2http://regainia.com/research/companion.html

Figure 3. Overview of the 6 steps of the approach

Figure 4. Initial ADTree example

Knowledge base. Otherwise, a semantic alignment may be
required to replace some attack labels.

An example is given in Figure 4: the goal, given in the root
node of the ADTree, refers to the injection of malicious code
into an application. This goal is disjunctively refined by two
children expressing two more concrete attacks, described in
the CAPEC base: CAPEC-66: SQL Injection and CAPEC-
244: Cross-Site Scripting via Encoded URI Schemes.
Step 2: Detailed ADTree Generation

The knowledge base is now queried to automatically
complete T with more details about the attack proceeding
and with defense nodes labelled by security patterns. We
summarise this step in the following but we refer to [6] for
the details.

For every node labelled with an attack Att, the Knowledge
base is called to automatically generate an ADTree denoted
T (Att). This ADTree has a specific form satisfying the
meta-model of the Knowledge base. The root of T (Att)
is labelled by Att. This node may have children expressing
more concrete attacks and so forth. The most concrete at-
tacks have step sequences (edges connected with an arrow).
These steps are connected to techniques with a disjunctive
refinement. The lowest attack steps in the ADTree are also
linked to defense nodes, which may be the roots of sub-trees
expressing security pattern combinations whose purposes are
to counteract the attack steps. The developer can now edit
the ADTrees T (Att) to keep or remove attack steps w.r.t. the
application context. He or she also has to choose the security
patterns that have to be contextualised and implemented in
the application. After this step, we assume that a defense
node either is labelled by a security pattern (it does not
have children) or has a conjunctive refinement of nodes

Figure 5. ADTree of the Attack CAPEC-66

labelled by security patterns. These generated ADTrees have
a specific forms, which are encoded by these ADTerms:

Proposition 1 An ADTree T (Att) achieved by the previous
steps has an ADTerm ι(T (Att)) having one of these forms:

1) ∨p(t1, . . . , tn) with ti(1 ≤ i ≤ n) an ADTerm also
having one of these forms:

2) −→∧ p(t1, . . . , tn) with ti(1 ≤ i ≤ n) an ADTerm having
the form given in 2) or 3);

3) cp(st, sp), with st an ADTerm expressing an attack
step and sp an ADTerm modelling a security pattern
combination.

The first ADTerm expresses children nodes labelled by more
concrete attacks. The second one represents sequences of
attack steps. The last ADTerm is composed of an attack step
st refined with techniques, which can be counteracted by a
security pattern combination sp = ∧o(sp1, . . . , spm). We
call this ADTerm a Basic Attack Defence Step, shortened
BADStep. BADStep(Tf) denotes the set of BADSteps of
Tf .

Figure 5 depicts the ADTree of the attack CAPEC-66.
Each lowest attack step has a defense node expressing pat-
tern combinations. Step 2.1, which identifies the possibilities
to inject malicious code through the application inputs,
requires more patterns than the other steps to filter these
inputs. Some of them have relations: for instance the pattern
“Application Firewall” can be replaced by “Intercepting
Validator” with “Output Guard”.

In the initial ADTree T , each attack node labelled by Att
is now automatically replaced with the ADTree T (Att). This
can be done by substituting every term Att in the ADTerm
ι(T) by ι(T (Att)). We denote Tf the resulting ADTree, and
SP (Tf) the security pattern set found in ι(Tf).

In this step, we finally extract from the Knowledge base a
description of the test architecture required to run the attacks
on the application under test and to observe its reactions.
Step 3: UML Sequence Diagram Extraction

Figure 6. Intercepting Validator sequence diagram

For every security pattern found in Tf , we extract a list
of generic UML sequence diagrams from the Knowledge
base, each being related to the application context. These
show the behavioural activities of the patterns. We now
suppose that the developer implements every security pattern
in the application. At the same time, he/she can choose
to modify the generic class and method names labelled
in the UML sequence diagrams. In this case, we assume
that the sequence diagrams are annotated to point out these
modifications.

As example, Figure 6 illustrates the UML sequence dia-
gram of the security pattern “Intercepting Validator”, whose
purpose is to control the compliance of user requests with
regard to a specification. The validation must be performed
in the server side. For instance, if the name of the method
“process” has to be modified by “send”, the new label must
be of the form “process/send” to express the substitution.

IV. ATTACK AND SECURITY PATTERN TESTING

At this stage, an ADTree encodes the notion of attack
scenarios over BADSteps, a scenario being is a minimal
combination of events leading to the root attack.

Definition 2 (Attack scenarios) Let Tf be an ADTree and
ι(Tf) be its ADTerm. The set of Attack scenarios of Tf ,
denoted SC(Tf) is the set of clauses of the disjunctive
normal form of ι(Tf) over BADStep(Tf).

An attack scenario s is still an ADTerm over BADSteps.
BADStep(s) denotes the set of BADSteps of s.
Step 4: Test suite generation

Let us consider a security scenario s ∈ SC(Tf). Given a
BADStep b = cp(st, sp) ∈ BADStep(s), we generate the
GWT test case TC(b), which aims at checking whether the
application under test AUT is vulnerable to the attack step
st. TC(b) is constructed by extracting from the Knowledge
base, for the attack step st, one Given section, one When
section and one Then section, each related to one procedure.
The Then section aims to assert whether the application is
vulnerable to the attack step st; these sections are assembled
to make up the GWT test case stub TC(b).

After having iteratively applied this test case construction
on the scenarios of SC(Tf), we obtain the test suite TS with
TS = {TC(b) | b = cp(st, sp) ∈ BADStep(s) and s ∈
SC(Tf)}.
Step 5: Security Pattern LTL Property Generation

Our approach aims at checking whether security pattern
behavioural properties hold in the AUT. Instead of asking the
developer to write these properties, we automatically gener-
ate them from UML sequence diagrams. This step analyses
sequence diagrams, recognises behavioural characteristics
and translates them into LTL properties.

Given a security pattern sp and its UML sequence dia-
gram, the latter is firstly transformed into a UML activity
diagram. We propose 5 transformation rules whose three are
depicted in Table I. Intuitively, these rules transform each
method call in the sequence diagram by an action state in the
activity diagram. We took inspiration from the transforma-
tions of UML sequence diagrams to state machines proposed
in [9]. This transformation allows us to use the mapping
of UML activity diagrams to LTL properties proposed by
Muram et al. [10]. The transformation rules are based upon
the Response Property Pattern 3, which describes the cause-
effect relations among method calls. Three examples of
transformations are given in Table I. At the end of this
transformation sequence, we have a set of LTL properties
P (sp) for every security pattern sp ∈ SP (Tf). Although
the LTL properties of P (sp) do not necessarily cover all
the possible behavioural properties of a security pattern sp,
this process offers the advantages to not require generic
LTL properties modelling pattern behaviours, and to not ask
developers to instantiate generic LTL properties to match the
application model or code.

From the example of UML sequence diagram given in
Figure 6, four LTL properties are generated. Table II lists
them. These capture the cause-effect relations of every pair
of methods found in the UML sequence diagram.
Step 6: Test Verdict generation

Once the GWT test case stubs are completed by the
developer, these are executed on AUT . The test architec-
ture allowing the experimentation of AUT is described in
the report provided by Step 2. The execution of a test
case TC(b) on AUT , leads to a local verdict denoted
Verdict(TC(b)||AUT), which takes as value a test case
assertion message. Furthermore, we consider that the AUT
is instrumented with a debugger or similar tool to collect
the methods called in the application while the execution
of the test cases of TS. After the test case execution, we
hence have a set of method call traces of AUT denoted
Traces(AUT). With a model-checking tool, e.g.***, our
approach can now can detect the non-satisfiability of LTL
properties of a security pattern sp on Traces(AUT). The

3http://patterns.projects.cs.ksu.edu/documentation/patterns/response.
shtml

predicate Unsatb(sp) defines this detection:

Definition 3 (Local Test Verdicts) Let AUT be an appli-
cation under test, b = cp(st, sp) ∈ BADStep(Tf), sp1 a
security pattern in sp, TC(b) ∈ TS be a test case.

1) Verdict(TC(b)||AUT) =
-Failst (resp. Passst) means AUT is (resp. does not
appear to be) vulnerable to the attack step st;
-Inconclusivest means that various problems oc-
curred while the test case execution.

2) Unsatb(sp1) =def true if ∃p ∈ P (sp1),∃t ∈
Traces(AUT), t 2 p; otherwise, Unsatb(sp1) =def

false;

Subsequently, we define the final test verdicts with
regard to the ADTree Tf . These verdicts are given
with the predicates Vulnerable(Tf), Unsatb(SP (Tf)) and
Inconclusive(Tf) returning boolean values. The predicate
Vulnerable(b) is also defined on a BADStep b to later
apply a substitution σ : BADStep(s) → {true, false}
on an attack-defense scenario s. A scenario s holds if the
evaluation of the substitution σ to s (i.e. replacing every
BADStep term b with the evaluation of Vulnerable(b))
returns true. When a scenario of Tf holds, then the threat
modelled by Tf can be achieved on AUT . This is defined
with the predicate Vulnerable(Tf). Unsatb(SP (Tf)) is true
as soon as a security pattern property does not hold on
Traces(AUT). Table III informally summarises the mean-
ing of some test verdicts and some corrections that may be
followed in case of failure.

Definition 4 (Final Test Verdicts) Let AUT be an appli-
cation under test, Tf be an ADTree, s ∈ SC(Tf) and
b = cp(st, sp) ∈ BADStep(Tf).

1) Vulnerable(b) =def true if Verdict(TC(b)||AUT) =
Failst; otherwise, Vulnerable(b) =def false;

2) σ : BADStep(s) → {true, false} is a substitution
{b1 → Vulnerable(b1), . . . , bn → Vulnerable(bn)};

3) Vulnerable(Tf) =def true if ∃s ∈ SC(Tf) :
eval(sσ) returns true; otherwise, Vulnerable(
Tf) =def false;

4) Inconclusive(Tf) =def true if ∃s ∈ SC(Tf),
∃b ∈ BADStep(s): Verdict(TC(b)|| AUT) =
Inconclusivest; otherwise, Inconclusive(Tf) =def

false.
5) Unsatb(SP (Tf)) =def true if ∃sp ∈

SP (Tf),Unsatb(sp) = true; otherwise, Unsatc(
SP (Tf)) =def false;

V. CONCLUSION

This paper proposes an approach taking advantage of a
Knowledge base to assist developers in the implementation
of secure applications through six steps covering threat mod-
elling, the choice of security patterns, security testing and

Table I
TRANSFORMATION RULES

Sequence Activity LTL properties

�(B.1 −→ ♦C.2)

�(B.1 −→ (♦B.2)xor(♦C.3))

�(B.1 −→ (♦B.2)and(♦C.3))

Table II
LTL PROPERTIES OF THE PATTERN INTERCEPTING VALIDATOR

p1 �(Controller.SecureBaseAction.process −→
♦InterceptingV alidator.V alidator.create)

p2 �(InterceptingV alidator.V alidator.create −→
♦interceptingV alidator.InterceptingV alidator.validate)

p3 �(InterceptingV alidator.InterceptingV alidator.validate −→
♦InterceptingV alidator.V alidator.validate)

p4 �(InterceptingV alidator.V alidator.validate −→
(♦model.Account.getAccount)xor(♦Controller.Secure
BaseAction.error))

Table III
TEST VERDICT SUMMARY AND SOLUTIONS

Vulnera-
ble(Tf)

Unsatb(
SP (Tf))

Incon
(Tf)

Corrective actions

False False False No issue detected
True False False At least one scenario is successfully applied on AUT.

Fix the pattern implementation. Or the chosen patterns
are inconvenient.

False True False Some pattern behavioural properties do not hold. Check
the pattern implementations with the UML seq. diag. Or
another pattern conceals the behaviour of the former.

True True False The chosen security patterns are useless or incorrectly
implemented. Review the ADTree, fix AUT.

T/F T/F True The test case execution crashed or returned unexpected
exceptions. Check the Test architecture and the test case
codes.

the verification of security pattern behavioural properties.
It guides developers in the generation of ADTrees and test
cases. In addition, it automatically generates LTL properties,
encoding security pattern behaviours. As a consequence,
the approach does not require developers to have skills in
(formal) modelling or in formal methods. We have imple-
mented this approach in a tool prototype 4. Due to lack of
room, we briefly summarise its features here: it generates
ADTrees stored into XML files, which can be edited with
ADTool [8]. Our tool also builds GWT test case compatible

4http://regainia.com/research/companion.

with the Cucumber framework 5, which supports a large
number of languages. These test cases can be imported
with the IDE Eclipse. The verification of LTL properties
is performed with the tool ProM***. We started to perform
some experiments on Web applications to assess the user
benefits. An evaluation will be presented in a future work.

REFERENCES

[1] R. Slavin and J. Niu. (2017) Security patterns repository.
[Online]. Available: http://sefm.cs.utsa.edu/repository/

[2] M. Schumacher, Security Engineering with Patterns: Origins,
Theoretical Models, and New Applications. Secaucus, NJ,
USA: Springer-Verlag New York, Inc., 2003.

[3] A. Morais, E. Martins, A. Cavalli, and W. Jimenez, “Se-
curity protocol testing using attack trees,” in 2009 Interna-
tional Conference on Computational Science and Engineer-
ing, vol. 2, Aug 2009, pp. 690–697.

[4] A. Marback, H. Do, K. He, S. Kondamarri, and D. Xu, “A
threat model-based approach to security testing,” Softw. Pract.
Exper., vol. 43, no. 2, pp. 241–258, Feb. 2013.

[5] N. Shahmehri, A. Mammar, E. Montes De Oca, D. Byers,
A. Cavalli, S. Ardi, and W. Jimenez, “An advanced approach
for modeling and detecting software vulnerabilities,” Inf.
Softw. Technol., vol. 54, no. 9, pp. 997–1013, Sep. 2012.

[6] S. Salva and L. Regainia, “Using data integration for security
testing,” in Proceedings 29th International Conference, ICTSS
2017, 10 2017, pp. 178–194.

[7] M. Yoshizawa, T. Kobashi, H. Washizaki, Y. Fukazawa,
T. Okubo, H. Kaiya, and N. Yoshioka, “Verifying implementa-
tion of security design patterns using a test template,” in 2014
Ninth International Conference on Availability, Reliability
and Security, Sept 2014, pp. 178–183.

5https://cucumber.io/

[8] B. Kordy, S. Mauw, S. Radomirović, and P. Schweitzer,
“Attack–defense trees,” Journal of Logic and Computation,
p. exs029, 2012.

[9] R. Grønmo and B. Møller-Pedersen, “From sequence dia-
grams to state machines by graph transformation,” in The-
ory and Practice of Model Transformations, L. Tratt and
M. Gogolla, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, pp. 93–107.

[10] F. U. Muram, H. Tran, and U. Zdun, “Automated map-
ping of UML activity diagrams to formal specifications
for supporting containment checking,” in Proceedings 11th
International Workshop on Formal Engineering approaches
to Software Components and Architectures, FESCA 2014,
Grenoble, France, 12th April 2014., 2014, pp. 93–107.

