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Abstract

To deal with large datasets, sampling can be used as a preprocessing step for

clustering. In this paper, an hybrid sampling algorithm is proposed. It is

density-based while managing distance concepts to ensure space coverage and

fit cluster shapes. At each step a new item is added to the sample: it is chosen as

the furthest from the representative in the most important group. A constraint

on the hyper volume induced by the samples avoids over sampling in high density

areas. The inner structure allows for internal optimization: only a few distances

have to be computed. The algorithm behavior is investigated using synthetic

and real-world data sets and compared to alternative approaches, at conceptual

and empirical levels. The numerical experiments proved it is more parsimonious,

faster and more accurate, according to the Rand Index, with both k-means and

hierarchical clustering algorithms.

Keywords: Density, distance, space coverage, clustering, Rand index.

1. Introduction

Summarizing information is a key task in information processing, either in

data mining, knowledge induction or pattern recognition. Clustering (Ling,

1981) is one of the most popular techniques. It aims at grouping items in such
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a way that similar ones belong to the same cluster and are different from the5

ones which belong to other clusters. Many methods (Andreopoulos et al., 2009)

have been proposed to identify clusters according to various criteria. Some of

them (Nagpal et al., 2013) are based on an input space partition (k-means,

spectral clustering, Clarans) or grid techniques (like Sting or Clique), others are

density-based (Dbscan, Denclue, Clique). Some of these techniques benefit a10

tree implementation: Birch, Cure, Diana, Chameleon, Kd-tree.

Algorithms are becoming more and more sophisticated in order to be able

to manage data with clusters of various shapes and densities. This leads to an

increased computational cost which limits their practical use, especially when

applications concern very large database like records of scientific and commer-15

cial applications, telephone calls, etc. Clearly, most of mature clustering tech-

niques address small or medium databases (several hundreds of patterns) but

fail to scale up well with large data sets due to an excessive computational

time. Therefore, in addition to the usual performance requirements, response

time is of major concern to most data clustering algorithms nowadays. Obvi-20

ously, algorithms with quadratic or exponential complexity, such as hierarchical

approaches, are strongly limited, but even algorithms like k-means are still slow

in practice for large datasets.

While some approaches aim to optimize and speed up existing techniques

(Viswanath et al., 2013; Chiang et al., 2011), sampling appears as an interesting25

alternative to manage large data sets. In our case, sampling is a preprocessing

step for clustering and clustering is assessed according to cluster homogeneity

and group separability. This calls for two basic notions: density and distance.

Clusters can be defined as dense input areas separated by low density transition

zones. Sampling algorithms are based upon these two notions, one driving the30

process while the other is more or less induced.

Various techniques have been proposed in the abundant literature. Some al-

gorithms estimate local density, using neighborhood or kernel functions (Kollios

et al., 2003), in order to bias the random sampling to make sure small clus-

ters are represented in the sample (Palmer & Faloutsos, 2000; Ilango & Mohan,35
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2010). Others work at a global scale, like the popular k-means or evolutionary

approaches (Naldi & Campello, 2015). In the former, the number of representa-

tives is a priori set, each center induces an attraction basin. The third category

includes incremental algorithms. They can be driven either by the attraction

basin size (Yang & Wu, 2005) favoring the density search or by distance concepts40

(Sarma et al., 2013; Rosenkrantz et al., 1977) promoting the coverage aspect.

Incremental algorithms differ in the heuristics introduced to balance the den-

sity and distance concepts, and also in the parametrization. A comparison of

algorithms for initializing k-means can be found in (Celebi et al., 2013).

Fulfilling the two conflicting objectives of the sampling, ensuring small clus-45

ters coverage while favoring high local density areas, especially around the modes

of the spatial distribution, with a small set of meaningful parameters, is still an

open challenge.

The goal of this paper is to introduce a new incremental algorithm to meet

these needs. DENDIS combines density and distance concepts in a really in-50

novative way. Density-based, it is able to manage distance concepts to ensure

space coverage and fit cluster shapes. At each step a new item is added to the

sample: it is chosen as the furthest from the representative in the most impor-

tant group. A constraint on the hyper volume induced by the samples avoids

over sampling in high density areas. The attraction basins are not defined us-55

ing a parameter but are induced by the sampling process. The inner structure

allows for internal optimization. This makes the algorithm fast enough to deal

with large data sets.

The paper is organized as follows. Section 2 reports the main sampling tech-

niques. Then DENDIS is introduced in Section 3 and compared at a conceptual60

level to alternative approaches in Section 4. The optimization procedure is

detailed in Section 5. Section 6 is dedicated to numerical experiments, using

synthetic and real world data, to explore the algorithm behavior and to com-

pare the proposal with concurrent approaches. Finally Section 7 summarizes

the main conclusions and open perspectives.65
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2. Literature review

The simplest and most popular method to appear was uniform random sam-

pling, well known to statisticians. The only parameter is the proportion of the

data to be kept. Even if some work has been done to find the optimal size by

determining appropriate bounds (Guha et al., 1998), random sampling does not70

account for cluster shape or density. The results are interesting from a theoret-

ical point of view (Chernoff, 1952), but they tend to overestimate the sample

size in non worst-case situations.

Density methods (Menardi & Azzalini, 2014) assume clusters are more likely

present around the modes of the spatial distribution. They can be grouped in75

two main families for density estimation: space partition (Palmer & Faloutsos,

2000; Ilango & Mohan, 2010) and local estimation, using neighborhood or kernel

functions (Kollios et al., 2003).

The main idea of these methods is to add a bias according to space density,

giving a higher probability for patterns located in less dense regions to be se-80

lected in order to ensure small cluster representation. The results are highly

dependent upon the bias level and the density estimation method. The local

estimation approaches (kernel or k-nearest-neighbors) require a high computa-

tional cost. Without additional optimization based on preprocessing, like the

bucketing algorithm (Devroye, 1981), they are not scalable. However this new85

step also increases their complexity.

Distance concepts are widely used in clustering and sampling algorithms to

measure similarity and proximity between patterns. The most popular repre-

sentative of this family remains the k-means algorithm, and its robust version

called k-medoids. It has been successfully used as a preprocessing step for so-90

phisticated and expensive techniques such as hierarchical approaches or Support

Vector Machine algorithms (SVM) (Xiao et al., 2014). It is still the subject of

many studies to improve its own efficiency and tractability (Lv et al., 2015; Khan

& Ahmad, 2013; Zhong et al., 2015). The proposals are based on preprocessing

algorithms which are themselves related to sampling or condensation techniques95
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(Zahra et al., 2015; Arthur & Vassilvitskii, 2007) including evolutionary algo-

rithms (Hatamlou et al., 2012; Naldi & Campello, 2015). These algorithms are

still computationally expensive (Tzortzis & Likas, 2014).

While the k-means is an iterative algorithm, whose convergence is guaran-

teed, some single data-scan distance based algorithms have also been proposed,100

such as leader family (Sarma et al., 2013; Viswanath et al., 2013) clustering

or the furthest-first-traversal (fft) algorithm (Rosenkrantz et al., 1977). The

pioneering versions of distance based methods are simple and fast, but they

also are limited in the variety of shapes and densities they are able to manage.

When improved, for instance by taking density into account, they become more105

relevant but their overall performance depends on the way both concepts are

associated and, also, on the increase of the computational cost. The mountain

method proposed by Yager and its modified versions (Yang & Wu, 2005) are

good representatives of hybrid methodologies as well as the recent work pro-

posed by Feldman et al. (2011). Density is managed by removing from the110

original set items already represented in the sample.

Strategies usually based on stratification processes have also been developed

to improve and speed up the sampling process (Gutmann & Kersting, 2007).

Reservoir algorithms (Al-Kateb & Lee, 2014) can be seen as a special case of

stratification approaches. They have been proposed to deal with dynamic data115

sets, like the ones to be found in web processing applications. These method

need an accurate setting to become really relevant.

Even if the context is rather different, Vector Quantization techniques (Chang

& Hsieh, 2012), coming from the signal area especially for data compression, in-

volve similar mechanisms. The objective is to provide a codebook representative120

of the original cover without distortion. The LBG algorithm and its variations

(Bardekar & Tijare, 2011) appear to be the most popular. The methods are

incremental, similar to the global k-means family approaches (Likas et al., 2003;

Bagirov et al., 2011), as at each step a new representative is added according to

an appropriate criterion. Recent literature (Tzortzis & Likas, 2014; Ma et al.,125

2015) reports the difficulty to find the balance between length of codebook en-
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tries, its quality and time required for its formulation.

This short review shows that sampling for clustering techniques have been

well investigated. Both concepts, density and distance, as well as the meth-

ods have reached a good level of maturity. Approaches that benefit from a130

kd-tree implementation (Nanopoulos et al., 2002; Wang et al., 2009) seem to

represent the best alternative, among the known methods, in terms of accuracy

and tractability. However, they are highly sensitive to the parameter setting.

The design of a method that would be accurate and scalable allowing to pro-

cess various kinds of large data sets with a standard setting, remains an open135

challenge.

3. DENDIS: the proposed sampling algorithm

The objective of the algorithm is to select items from the whole set, T , to

build the sample set, S. Each item in S is called a representative, each pattern in

T is attached to its closest representative in S. The S set is expected to behave140

like the T one and to be as small as possible. DENDIS stands for DENsity and

DIStance, meaning the proposal combines both aspects.

Overview of the algorithm It is an iterative algorithm that add a new

representative at each step in order to reach two objectives. Firstly, ensure high

density areas are represented in S, and, keeping in mind the small size goal,145

avoiding over representation. The second objective aims at homogeneous space

covering to fit cluster shapes. To deal with the density requirement the new rep-

resentative is chosen in the most populated set of attached patterns. For space

covering purposes, the new representative is the furthest from the existing one.

Over representation is avoided by a dynamic control of both parameters that150

define density: volume and cardinality. The latter is defined according to the

unique input parameter, granularity, noted gr, and the initial set size, n. The

product defines the Wt threshold: the minimum number of patterns attached

to a given representative. The volume is estimated by the maximum distance

6
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between an attached pattern and the representative.155

The two steps of the algorithm The algorithm is made up of two steps.

The first one, Algorithm 1, is based on space density while taking into account

distance notions. The second one, Algorithm 2, can be seen as a post processing

step which aims at not selecting outliers as representatives.160

The unique input parameter, except the data to be sampled, is called granularity,

and noted gr. Data independent, it is combined with the whole set cardinal-

ity to define a threshold, Wt, on the number of patterns attached to a given

representative (line 5). The granularity impacts the S size, the lower gr the

higher the number of representatives. However, the relation between both is165

not deterministic, like in Sample Random Sampling. The number of patterns

attached to a representative also depends on a volume estimation as explained

below.

The first sample is randomly chosen (line 3). Then the algorithm iterates to

select the representatives (lines 6-30). In a preparation phase, each not selected170

pattern, x ∈ T \ S1, is attached to the closest selected one in S (lines 7-10)

and, for each set Tyk
, the algorithm searches for the furthest attached pattern,

xmax(yk), located at distance dmax(yk) = d(xmax(yk), yk) (lines 11-14).

Then a new representative is selected (lines 15-26). The selected items are

sorted according to the cardinality of the set of patterns they are the represen-175

tative (line 16) and these sets, Tyk
, are analyzed in decreasing order of weight.

Each of them is split when two conditions are met (lines 18 and 22). The first

one deals with the number of attached patterns: it has to be higher than the

threshold, Wt = n gr. Without any additional constraint, the representatives

would tend to have the same number of patters attached, close to Wt. This180

behavior would lead to an over size sample in high density areas. Therefore,

the other condition is related to the density, controlled by the induced hyper

1’\’ stands for the set difference operation.
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Algorithm 1 The density-based sampling algorithm

1: Input: T = {xi}, i = 1 . . . , n, gr

2: Output: S = {yj}, Tyj , j = 1, . . . , s

3: Select an initial pattern xinit ∈ T

4: S = {y1 = xinit}, s = 1

5: ADD=TRUE, K = 0.2, Wt = n gr

6: while (ADD==TRUE) do

7: for all xl ∈ T \ S do

8: Find dnear(xl) = min
yk∈S

d(xl, yk)

9: Tyk = Tyk ∪ {xl} {Set of patterns represented by yk}

10: end for

11: for all yk ∈ S do

12: Find dmax(yk) = max
xm∈Tyk

d(xm, yk)

13: Store dmax(yk), xmax(yk)

{where dmax(yk) = d(xmax(yk), yk)}

14: end for

15: ADD=FALSE

16: Sort y(1), . . . , y(s) with |Ty(1) | ≥ . . . ≥ |Ty(s) |

17: for all yk in S do

18: if (|Tyk | < Wt) then

19: break

20: end if

21: αk = max( Wt
|Tyk

| ,K)

22: if (dmax(yk) ≥ αk dmax(yk)
yk∈S

) then

23: x∗ = xmax(yk)

24: ADD=TRUE, break

25: end if

26: end for

27: if (ADD==TRUE) then

28: S = S ∪ {x∗}, s = s+ 1

29: end if

30: end while

31: Run the post processing algorithm {Algorithm 2}

32: return S, Tyk , k = 1, . . . , s

8
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volume. At the beginning of the process, the dmax values are quite high, as

well as the cardinalities |Tyk
|. The fraction of minimum volume is then limited

by an upper bound, K. This allows for the space to be covered in an homoge-185

neous way, the dmax values tend to a lower mean with a lower deviation. In the

last steps of the process, αk dynamically promotes dense areas in order for the

sample to reflect the original densities: the larger the cardinality the smaller αk

and thus the constraint on the induced volume (line 21). The constant value,

K = 0.2, has been empirically defined from experimental simulations.190

As previously explained, the new representative is chosen as the furthest

attached pattern, xmax(yk), for space covering purposes (line 23).

The process is repeated until there is no more set to split (line 18-19).

Algorithm 2 The post processing algorithm

1: for all yi in S do

2: if (|Tyi | ≤Wn) then

3: S = S − {yi}, s = s− 1

4: end if

5: if (dmax(yi) > dmax(yi)
yi∈S

) then

6: yi = arg min
xl∈Tyi

d(xl, B) {B is the barycenter of Tyi
}

7: end if

8: Tyi = {yi}

9: end for

10: for all xl ∈ T \ S do

11: Find dnear(xl) = min
yk∈S

d(xl, yk)

12: Tyk = Tyk ∪ {xl}

13: end for

When all the s representatives are selected, the post processing step, Algo-

rithm 2, discards outliers as representatives. As the new selected item is chosen195

as the furthest from the ones which are already selected, the S set is likely to

include some outliers. Two cases may occur.

In the first one (lines 2-3), when the representative is isolated, the number of

attached patterns is lower or equal than the noise threshold |Tyi
| ≤Wn, inferred

9
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from the Tyk
distribution. Let T ′ = {Tyk

| |Tyk
| < |Tyk

|} be the reduced set of200

representatives with a number of attached pattern less than the average, and

let m, σ and min, the mean, standard deviation and minimum of the |T ′|. The

noise threshold is defined as: Wn = max(m − 2σ,min). The choice is then to

remove this representative labeled as noise.

In the other case, the outlier detection is based upon the induced volume:205

the corresponding dmax is higher than average (line 5). In the post processing

phase, the input space coverage is quite homogeneous: the mean can be used

as a threshold. In this case, the new representative is chosen as the closest to

the barycenter, B, of the set (line 6). This way of doing is similar to the usual

practice: the representative is set at the center of the dense areas, like in kernel210

and neighboring approaches. By contrast, the proposal comes to select the

representative at the border of the dense area. Once at least a representative

has been changed or removed, an update of the attached patterns is needed

(lines 10-13), and to do this the sets of attached patterns must be previously

reset (line 8).215

Figure 1 illustrates the impact of the constraint on the induced volume

(Algorithm 1, line 22). The data (blue) are well structured in four clusters of

heterogeneous densities. The six first selected representatives are plotted in red,

while the following ones appear in black. The small groups, in the bottom part

of the figure, are denser than the others. The results for these two clusters are220

displayed in a zoom version in Figure 2, with and without this constraint.

Without the mentioned constraint, the new representatives are located in

the denser areas until the number of attached patterns become smaller than the

Wt threshold. When the constraint is active the number of representatives in

the dense area is limited by the induced volume. Density and distance are both225

useful to avoid an over representation in dense areas.
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Figure 1: Impact of the induced volume constraint

4. Conceptual comparison with alternative approaches

DENDIS shares some ideas with known algorithms but the way they are

combined is really innovative. This can be highlighted by describing the main

characteristics of the proposal.230

It is density based. Many methods estimate the local density thanks to a pa-

rameter that defines the attraction basin either by counting items to induce a

corresponding volume, like the popular K-nearest-neighbors algorithm, or by

defining a volume, e.g. Parzen window, Mountain method (Yang & Wu, 2005),

or static grids. In this case, the result is highly dependent on the setting. To235

fit the data structure, some methods propose an adaptive process. Attraction

basin can also be induced thanks to a recursive partitioning, like in trees or

dynamic grids, or by a probabilistic process. In the k-means++ (Arthur & Vas-

silvitskii, 2007) a new seed is selected according to the probability computed
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Figure 2: Zoom of the two densest clusters

as dnear(xi)
2∑n

k=1 dnear(xk)2
, where dnear(xi) is the distance from xi ∈ T to its closest240

representative in S. This probability mechanism tends to favor representatives

located in dense areas. Outliers, even with a high individual probability are less

likely to be selected.

In the method proposed by Feldman et al. (2011), the representatives are

randomly selected, yielding a higher probability for dense areas, and inducing245

variable size basins. In DENDIS the attraction basin is also induced: the average

volume is estimated when the space coverage is homogeneous.

It ensures space coverage. The methods which include a neighborhood defi-

nition, e.g. leader family, grids, Mountain method, achieve a total coverage.

Depending on the parameter setting they either require a large sample or may250

miss important details. The dynamic ones, Feldman or trees, are more power-

ful. In DENDIS, choosing the furthest item in the group from the representative

ensures small clusters are represented. This idea is shared by the fft algorithm

(Rosenkrantz et al., 1977). The main difference is that in fft the new sample

item is chosen as the furthest from its representative, the maximum distance255

being computed over all the groups, while in DENDIS it is the furthest in the

most populated group, balancing the density and coverage constraints.

It is little sensitive to noise. Looking after small clusters may result in select-

ing noise. Introducing a bias according to local density to favor sparse areas

12

Author-produced version of the article published in Expert Systems with Applications, 2016, N°56, p. 349-359. 
The original publication is available at http://www.sciencedirect.com  
Doi: 10.1016/j.eswa.2016.03.008



increases this risk. This also holds for other biased random methods like k-260

means++ or Feldman. DENDIS is aware that noisy representatives are likely

to be selected as they are chosen at the group border. A post-processing step

is dedicated to noise management.

It is little sensitive to randomness. It is well known that random use highly

impacts processes. This is true for k-means initialization, but also holds for265

other algorithms like Feldman. In k-means++, as denser areas have a higher

probability to be selected, this impact is reduced. In DENDIS, only the first

representative is randomly chosen. After a few iterations, the same border items

are selected. DENDIS could be made fully deterministic by adding an extra

iteration to select as the first representative the furthest from the minimum (or270

maximum) in each dimension.

It is data size independent. Density based methods aim to design groups with

a similar density: the sample size increases with the data size. This is not the

case for neighborhood based methods: in this case the sample size only depends

on the neighborhood one. Thanks to the constraint on the induced volume,275

DENDIS adapts the sample size to the data structure not to the data size.

It is driven by one meaningful parameter. Most of sampling methods require

several parameters which are more meaningful to the computer engineer than

to the user and remain difficult to set. DENDIS, like k-means++ or fft, needs

only one. The granularity parameter is not dependent on the size, like the one280

of uniform random sampling, nor on the number of groups, like in the k-means,

k-means++ or fft algorithms. It is a dimensionless number whose meaning is

very clear: it represents the minimal proportion of data a group has to include

to be split. Combined with the data size, it is quite similar to the minimal size

of a node in a tree.285

Granularity is not directly linked to accuracy. As there are several internal pa-

rameters induced from data, even if accuracy is sensitive to granularity, the re-

lationship between both is not modeled. An intermediate value, e.g. gr = 0.01,
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generally provides good results with the risk to be not fine enough to catch small

clusters. Choosing a small value, e.g. gr = 0.001, ensures a good accuracy in290

most cases, whatever the data structure. The price to pay is a risk of over repre-

sentation. This risk is however limited thanks to the distance constraint. Users

may be interested in setting the algorithm according to the desired accuracy.

This opens a stimulating perspective.

DENDIS presents similar ideas than popular algorithms that hybridize295

density and distance concepts and dynamically define attraction basins. The

way these concepts are managed produces a really new algorithm.

5. Optimization

Distance-based algorithms have an usual complexity of O(n2). This is not

the case for the proposal. Many distance computations can be avoided thanks300

to the algorithm structure itself and by embedding some optimization based on

the triangular inequality.

The time complexity of Algorithm 1 is mainly due to the two first loops. For

each of the s iterations, the first loop, lines 7-10, computes (n − s)n distances

while the second one, lines 11-14, calculates n more ones.305

5.1. Reducing time complexity

These two loops can be combined in a single one, lines 8-18 in Algorithm 3.

This allows for only computing n− s distances to the new representative, y∗, at

each of the s iterations.

The complexity is then O(ns), with s� n.310

The number of distances to be computed is:

T =
n∑

l=s

(l − 1) =
n (n− 1)

2
− s (s− 1)

2
(1)

The spatial complexity for this time optimization can be considered as rea-

sonable: n+2s distances between the representatives are stored: n dnear(x)and s

dmax(y) as well as the corresponding elements, y for dnear(x), and x for dmax(y).
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Algorithm 3 The first two loops are combined into a single one

1: while (ADD==TRUE) do

2: for all xl ∈ T \ S do

3: Compute d = d(xl, y∗)

4: if (d < dnear(xl)) then

5: Ty∗ = Ty∗ ∪ {xl}, Ty(xl) = Ty(xl) \ {xl}

6: dnear(xl) = d, y(xl) = y∗

7: end if

8: if (d > dmax(y∗)) then

9: xP = x(xs), YP = y∗

10: dmax(y∗) = d, x(y∗) = xl

11: end if

12: end for

13: Find a new representative y∗ {Lines 16-26 of Algorithm 1}

14: end while

5.2. Using the triangle inequality

A given iteration only impacts a part of the input space, meaning the neigh-315

borhood of the new representative. Moreover as the process goes on, the corre-

sponding induced volume decreases. This may save many distance calculations.

When a new representative in S has been selected, y∗, the question is: should

a given initial pattern, xi, be attached to y∗ instead of remaining in Tyj
? The

triangular inequality states: d(yj , y∗) ≤ d(xi, yj)+d(xi, y∗). And, xi ∈ Ty∗ ⇐⇒320

d(xi, y∗) < d(xi, yj). So, if d(yj , y∗) ≥ 2 d(xi, yj), xi remains in Tyj , no change

needs to be made. Only two distances are needed to check the inequality, and

discard any further calculations in the case of no change. In our algorithm,

there is no need to check this inequality for all the initial patterns. For each

representative, yk, dmax(yk) is stored. If d(yk, y∗) ≥ 2 dmax(yk), meaning the325

furthest initial pattern from yk remains attached to yk, this also holds ∀xi ∈ Tyk
.

Then, these representatives and their attached patterns are not concerned by

the main loop of the algorithm (Algorithm 4, line 8-9). When this is not the
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Algorithm 4 The optimized density-based sampling algorithm

1: Input: T = {xi}, i = 1 . . . , n, gr

2: Output: S = {yj}, {Tyj
}, j = 1, . . . , s

3: ADD=TRUE, Wt = n gr

4: Select an initial pattern xinit ∈ T

5: S = {y1 = y∗ = xinit}, s = 1

6: dnear(xi) =∞, i = 1 . . . , n

7: while (ADD==TRUE) do

8: F = {Tyj |d(yj , y∗) ≥ 2 dmax(yj)}

9: for all xl ∈ T \ {S ∪ F} do

10: if (dnear(xl) > 0.5 d(y(xl), y∗)) then

11: Compute d = d(xl, y∗)

12: if (d < dnear(xl)) then

13: Ty∗ = Ty∗ ∪ {xl}, Ty(xl) = Ty(xl) \ {xl}

14: dnear(xl) = d, y(xl) = y∗

15: end if

16: if (d > dmax(y∗)) then

17: xP = x(xs), YP = y∗

18: dmax(y∗) = d, x(y∗) = xl

19: end if

20: end if

21: end for

22: Find a new representative y∗ {Lines 16-26 of Algorithm 1}

23: end while

24: Run the post processing algorithm {Algorithm 2}

25: return S, Tyk∀k ∈ S
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case, the same triangle inequality provides a useful threshold. All xi ∈ Tyk
with

dnear(xi) ≤ 0.5 d(yj , y∗) remain attached to Tyk
(line 10).330

To take advantage of the triangular inequality properties, the number of

distances between representatives to be stored is s(s− 1)/2.

The optimized version of the sampling algorithm is shown in Algorithm 4.

5.3. Estimating the number of computed distances

The number of computed distances cannot be rigorously defined as it de-335

pends on the data, but it can be however roughly estimated under some weak

hypothesis. Each iteration of this distance based algorithm impacts only the

neighborhood of the new representative. Let k be the number of neighbors to

consider. The number of distances to be calculated is (n − 1) at the first step,

then the number of representatives to take into account is min(k, s) and the340

number of patterns for which the distance to the representatives has to be com-

puted is only a proportion, δ, of the set of the attached ones as the others are

managed by the triangular inequality properties. A value of δ = 0.5 seems to

be reasonable. This means that a high proportion of representatives are con-

cerned at the starting of the algorithm but the process then becomes more and345

more powerful when s increases compared to k. The real number of computed

distances can be estimated as follows.

C = (n− 1) +
n−1∑
i=s

min(k,s−i)∑
l=1

δ ∗ |Tyl
(i)| (2)

where |Tyl
(i)| is the number of patterns attached to representative l when i

representatives are selected.

To approximate C, one can consider that on average the representatives have350

a similar weight ∀y, |Tyl
(i)| ≈ n/i. When the two cases, i ≤ k and i > k, are

developed, the approximation becomes:

C = (n− 1) + δ

(
k+1∑
i=2

(i− 1)
n

i
+

n−k−2∑
i=s

k
n

i

)
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As
k+1∑
i=2

(i − 1) (n/i) ≤
k+1∑
i=2

(i) (n/i) and
n−k−2∑
i=s

k n
i ≤

n−k−2∑
i=s

k n
s , an upper

bound of C can be defined as follows:

C ≤ (n− 1) + δ
(
n(k − 1) + k

n

s
(n− k − 2− s)

)
(3)

As an illustration, using n = 20000, s = 250, k = 10 and δ = 0.6 the

decrease ratio, of the number of computed distances to the same number without

optimization, as given in Eq. 1, is:

D =
C

T
≤ 5%

This estimation is clearly confirmed by the experiments.355

Under some reasonable assumptions, it can be estimated that most of dis-

tance calculations can be saved by judiciously using the triangle inequality. This

optimization makes the algorithm very tractable.

6. Numerical experiments

The main objective of the sampling is to select a part that behaves like the360

whole. To assess the sample representativeness, the partitions built from the

sample sets are compared to the ones designed from the whole sets using the

same clustering algorithm. The Rand Index, RI, is used for partition compari-

son. Two representative clustering algorithms are tested, the popular k-means

and one hierarchical algorithm. The resulting sample size as well as the compu-365

tational cost are carefully studied as they have a strong impact on the practical

use of the algorithm. In this paper we use a time ratio to characterize the CPU

cost. It is computed as the sampling time added to the clustering on sample

time and divided by the time required to cluster the whole data set.

Twenty databases are used, 12 synthetic, S#1 to S#12, and 8 real world370

data sets, R#1 to R#8. The synthetic ones are all in two dimensions and of

various shapes, densities and sizes: {2200, 4000, 2200, 2000, 4000, 4500, 3500,

3500, 3000, 7500, 2500, 9500}. They are plotted in Figure 3. The real world

data are from the UCI public repository. They are of various sizes and space
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Figure 3: The twelve synthetic data sets, S#1 to S#12

dimensions, with unknown data distribution. Their main characteristics are375

summarized in Table 1. All the variables are centered and normalized.

6.1. Sample size

Figures 4 and 5 shows the reduction ratio of the size of the sample sets for

each of the synthetic and real world data sets for different values of granularity.

The reduction ratio highly depends on the data, on their inner structure. The380

maximum ratio on Figure 4 is 8% for S#1, which comes to 2200 × 0.08 = 176

representatives. As expected, the sample set size is higher when the granularity

is lower. This evolution is monotonic but not proportional. This is explained by

the restriction on the volume induced by the patterns attached to a representa-

tive (line 22 of Algorithm 1). When a dense area is covered, a lower granularity385

won’t add new representatives.

6.2. Quality of representation

To assess the representativeness of the sample set, the same clustering al-

gorithm, either k-means or the hierarchical one, is run with the whole set and

the sample set. Then the resulting partitions are compared using the Rand390
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Table 1: The eight real world data sets

Size Dim Name

R#1 434874 4 3D Road Network

R#2 45781 4 Eb.arff

R#3 5404 5 Phoneme

R#4 1025010 10 Poker Hand

R#5 58000 9 Shuttle

R#6 245057 4 Skin Segmentation

R#7 19020 10 Telescope

R#8 45730 10 CASP

Index. Dealing with the sample set, each non selected pattern is considered to

belonging to the cluster of its representative.

Let’s consider the k-means algorithm first. The number of clusters being

unknown, it has been set to each of the possible values in the range 2 to 20. As

the algorithm is sensitive to the initialization, a given number of trials, 10 in395

this paper, are run for a configuration.

For each data set, synthetic and real world, the resulting RI is averaged over

all the experiments, meaning all the trials for all the configurations.

The results are shown in Figures 6 and 7. The average RI is higher than

0.85 for all the data sets except for R#4, the Poker Hand data. These results400

can be considered as good. Is it worth reaching a perfect match with RI = 1?

The cost increase may be high just to make sure all the items, including those

located at the border of clusters, whose number varies from 2 to 20, are always

in the same partition. is not required to consider the results as good.

It is expected that the bigger the sample set, the higher the RI, at least405

until the RI becomes high enough. This can be observed in the plots of Figures

6 and 7. There is one exception, for S#11 and granularity of 0.05 and 0.01.

This situation can be explained by the stochastic part of the test protocol and

the data structure: two large clusters with different densities, and a very dense

tiny one. In this case, with a fixed small number of clusters, different from the410

20

Author-produced version of the article published in Expert Systems with Applications, 2016, N°56, p. 349-359. 
The original publication is available at http://www.sciencedirect.com  
Doi: 10.1016/j.eswa.2016.03.008



Figure 4: Size reduction ratio for the synthetic data sets

optimum, a random behavior can be observed as there are different solutions

with similar costs.

Comparison with uniform random sampling (URS) is interesting to assess the

relevance of the algorithm. Theoretical bounds like the ones proposed in (Guha

et al., 1998) guarantee the URS representativeness in the worst case. As the data415

are usually structured, this leads to an oversized sample. Table 2 reports the

results of some comparisons with URS size smaller than the theoretical bounds.

The granularity parameter has been set to reach a similar Rand Index than the

one yielded by URS. The results show that, for similar RI, the sample size is

usually smaller when resulting from the proposal than the one given by URS.420

However, in some cases like R#3 and R#7, the results are comparable meaning
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Figure 5: Size reduction ratio for the real world data sets

that the underlying structure is well captured by URS.

In the case of the hierarchical approach, various dendrograms can be built

according to the linkage function, e.g. Ward criterion or single link. To get a fair

comparison the number of groups is chosen in S in the range [2, 20] and the cut425

in T is done to get a similar explained inertia. When the Ward criterion is used

the number of groups in S and in T are quite similar while using the single link

aggregation criterion, the generated partitions are generally of different sizes.

The average and standard deviation of the Rand Index were computed for all

the databases, reduced to 3000 patterns for tractability purposes, and different430

level of granularity. For granularity = 0.04, with the Ward criterion, the

RI is (µ, σ) = (0.86, 0.03) for the synthetic databases and (µ, σ) = (0.87, 0.04)
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Figure 6: The RI with the k-means algorithm for the synthetic data sets

Table 2: Comparison with uniform random sampling (URS) for the real world datasets

DENDIS URS

|S| RI gr |S| RI

R#1 702 0.96 0.0095 2014 0.93

R#2 471 0.96 0.0085 1996 0.94

R#3 271 0.96 0.015 270 0.96

R#4 750 0.85 0.015 2000 0.85

R#5 661 0.90 0.02 2006 0.94

R#6 662 0.98 0.015 2850 0.96

R#7 732 0.94 0.008 951 0.91

R#8 851 0.97 0.0095 1998 0.96
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Figure 7: The RI with the k-means algorithm for the real world data sets

for the real ones. With the single link one, it is (µ, σ) = (0.87, 0.05) for the

synthetic databases and (µ, σ) = (0.88, 0.08) for the real ones. In this case, the

standard deviation is higher than the one corresponding to the Ward criterion.435

This can be due to the explained inertia which may be slightly different and

more variable with the single link criterion due to its local behavior.

6.3. Computational cost

The sampling algorithm must be scalable to be used in real world problems.

The index used to characterize the algorithm efficiency is computed as a ratio.440

The numerator is the sum of the sampling time and the time needed to cluster

the sample set, while the denominator is the time for clustering the whole data.
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Figure 8: The time ratio (%) with the k-means algorithm for the synthetic data sets

The results for the k-means algorithm are shown in Figures 8 and 9. The

time ratio drops below 10% when the granularity is higher than 0.05. With

the hierarchical algorithm the same ratio is significantly smaller.445

The average time ratios (in percent) obtained with granularity = 0.01 and

for all the databases reduced to 3000 patterns are reported in Table 3. All of

them fall between 0.02% and 0.048%, meaning the proposal is 2000 times faster.

6.4. Comparison with known algorithms

In order to compare DENDIS with concurrent algorithms, 12 sampling rep-450

resentative approaches were considered.
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Table 3: Time ratio with the hierarchical algorithm

Time r. (%) Time r. (%)

S#1 0.026 R#1 0.031

S#2 0.021 R#2 0.023

S#3 0.029 R#3 0.043

S#4 0.021 R#4 0.040

S#5 0.020 R#5 0.026

S#6 0.022 R#6 0.028

S#7 0.019 R#7 0.045

S#8 0.020 R#8 0.011

S#9 0.024

S#10 0.048

S#11 0.021

S#12 0.031

Table 4: The twelve concurrent approaches

Name Param(s) Range

A1 Uniform Random Sampling |S| = |T |
λ∗

[10, 500]

A2 Leader (pioneer) (Ling, 1981) t =
dm
λ∗

[2, 10]

A3 Leader (improved) (Viswanath et al., 2013) |S| = |T |
λ∗
, c =

|T |
µ∗

[10, 500], [2, 5]

A4 k-means sampling(Xiao et al., 2014) b,|S| = |T |
λ∗

[10, 500]

A5 Kernel sampling(Kollios et al., 2003) b,|S| = |T |
λ∗

[10, 500]

A6 Grid sampling(Palmer & Faloutsos, 2000) b,N∗cut(axis) [2, 10]

A7 k-nearest-neighbors (Franco-Lopez et al., 2001) b, k = λ∗
√
|T | [0.2, 0.5]

A8 Tree sampling(Ros et al., 2003) b,minsize =
|T |
λ∗
, N∗cut [50, 200], [1, 4]

A9 Bagged sampling (Dolnicar & Leisch, 2004) N∗strata, Nr =
|T |
λ∗

[4, 20], [2, 100]

A10 k-means++ (Arthur & Vassilvitskii, 2007) |S| = |T |
λ∗

[10, 500]

A11 fft (Rosenkrantz et al., 1977) |S| = |T |
λ∗

[10, 500]

A12 Hybrid (Feldman et al., 2011) β∗, |S| = |T |
λ∗

[10, 100], [10, 500]
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Figure 9: The time ratio (%) with the k-means algorithm for the real world data sets

Table 4 summarizes their input parameters2. The bias level, b, common to

different approaches, ranges in [−1,+1].

The protocol was the one described in the previous section for each algo-

rithm. Only real data sets are considered. The number of partitions ranges455

from 4 to 10. The maximum sample size, set to min(0.005 n, 2000), has been

used as an extra stop criterion. For each configuration, the different algorithms

were run 10 times and the average considered. Both the hierarchical and k-

2A8 is similar to Ros et al. (2003) except that the bins are not fuzzy, and are ordered

via their weights until reaching a lower bound. For A12 the input parameters (β and λ) are

directly linked to the original parameters δ, ε, k Feldman et al. (2011).
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Table 5: Concurrent approaches: Cumulative averaged time (s) over the 8 data sets

A1 A2 A3 A4 A5 A6 A7

0.004 7.7 858 52 4951 2.3 9651

A8 A9 A10 A11 A12 DENDIS

27 2.4 4.3 6.0 2.7 0.5

means clustering were considered but the whole tests have been restricted to

the k-means algorithm as some data are not tractable with the hierarchical one.460

The results of these extensive experiments are summarized to highlight the main

trends.

The sampling time and the quality of representation are analyzed.

Sampling time. Table 5 summarizes the average (over all the experiments in-

cluding the different data and partitions) sampling times in seconds. As ex-465

pected the URS, A1, is the fastest algorithm, but DENDIS is quite swift too,

faster than the grid ones (A6, A9) and other competitors (A10 to A12). These

six algorithms are the only ones with a time ratio less than 1 for the k-means

clustering.

This is obviously not the case when the clustering algorithm is hierarchical,470

all the algorithms are efficient even if A5 and A7 are still limited by a high

sampling time.

Quality of representation. The results reported in Table 6 are the best RI, on

average, over the 8 real data sets, of all the tested configurations. The maximum

of the RI for each data set is highlighted in bold font. When several algorithms475

have reached the same accuracy, and DENDIS is among this group, the bold

font is used in the DENDIS row.

In four of the eight cases, DENDIS is among the most accurate algorithms.

This explains the higher accuracy on average.

The algorithms are quite accurate, few RI are below 0.85. The URS is480

a powerful algorithm, but it requires more representatives when the data are
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Table 6: Best Rand Index on average over the real data for each algorithm

R#1 R#2 R#3 R#4 R#5 R#6 R#7 R#8 Mean

A1 0.92 0.92 0.91 0.85 0.93 0.92 0.90 0.99 0.92

A2 0.93 0.93 0.93 0.86 0.84 0.90 0.89 1.00 0.91

A3 0.90 0.91 0.88 0.83 0.87 0.86 0.88 1.00 0.89

A4 0.96 0.93 0.94 0.90 0.94 0.91 0.86 1.00 0.93

A5 0.94 0.93 0.94 0.88 0.93 0.91 0.89 1.00 0.93

A6 0.88 0.86 0.86 0.86 0.83 0.85 0.87 0.99 0.87

A7 0.96 0.93 0.94 0.90 0.94 0.91 0.86 1.00 0.93

A8 0.94 0.93 0.95 0.89 0.93 0.95 0.87 1.00 0.93

A9 0.94 0.91 0.91 0.86 0.94 0.94 0.89 1.00 0.92

A10 0.90 0.91 0.94 0.86 0.99 0.91 0.87 1.00 0.92

A11 0.90 0.94 0.88 0.86 0.83 0.93 0.83 1.00 0.90

A12 0.94 0.90 0.92 0.86 0.98 0.92 0.92 1.00 0.93

DENDIS 0.95 0.94 0.96 0.89 0.95 0.95 0.90 1.00 0.94

structured.

The algorithms’ performances are highly dependent on the setting as they re-

quire several parameters that need to be combined. The concern is particularly

checked for the leader methods: they are the most difficult to parameterize as485

illustrated in Figure 10. The dm parameter was estimated on a random sample,

10% of the whole set, and computed as: dm = max d(µ, xi), µ being the aver-

age of the set of vectors xi. The results for different values of λ∗ are shown in

Figure 10. The left part shows the sample size (% of the whole), the right part

illustrates the RI variation according to λ∗: no monotonicity can be deduced;490

the best value depends on the data.

A6 is fast but yields the poorest results. It is difficult to tune especially to find

’generic’ grid parameters.

The bias level, b, is quite influential: low negative values give the best average

results. This is the case with approaches A5 to A9.495
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Figure 10: Leader behavior according to λ∗

Table 7: Best concurrent approaches: Detailed comparisons with noise

Sr-(%) time RI Sr-(%) time RI Sr-(%) time RI

A9 0.5 318 0.956 0.6 314 0.945 0.83 376 0.948

A10 0.49 541 0.900 1 1663 0.932 5 30056 0.952

A12 0.33 1163 0.967 0.59 1225 0.971 1.09 1365 0.986

DENDIS 0.15 44 0.964 0.23 93 0.987 0.35 113 0.995

A5 and A7 are too computational expensive. Without additional optimization

like the bucketing algorithm, which is itself a pre-processing step, they are not

scalable.

The k-means (A4) and tree (A8) algorithms are always faster than the former

ones, and can yield high RI, but with a higher sample size. The competitors500

that meet both criteria of scalability and accuracy are A9, A10 and A12.

Complementary comparison of the best algorithms. The best algorithms (A9,

A10, A12 and DENDIS) are now compared according to their behavior in

presence of noise.

A synthetic dataset (40000 patterns in R2) with natural clusters of different505

cardinalities (from 1000 to 5000 items) was generated. An important level

of noise, 4%, has been added. Noise values are computed independently in

each dimension, according to the whole range of the given feature: noisej =

minj +U [0,+1] ∗ (maxj −minj). Each sampling algorithm is applied and the

k-means algorithm is run with k = 10.510
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Figure 11: DENDIS representatives for the noise data (gr = 0.01)

In order to limit the number of tests, only the input parameter that most

influences (directly or indirectly) the amount of representatives was considered:

λ for A9, A10, and A12 and gr for DENDIS. The others were fixed at nominal

values. These values were selected from the previous tests as the ones that

lead to a good trade-off between accuracy and tractability in average. They515

respectively correspond to Nr = 20 for A9 and β = 20 for A12.

Different experiments have been carried out with the objective to reach the

best RIs with the smallest sample sizes. They are summarized in Table 7

where three of them are reported. In the first one, columns 2-4 in Table 7, the

corresponding input setting for these methods is: λ ' 135 (in the range [134, 137]520

for the four sets and gr = 0.1. Then the input parameter has been set to get a

higher sample size, up to 5% for A9, A10, A12. The DENDIS granularity was

0.03 and 0.008. The reported results in the two last trials are kept in a range

where the RI is improved. Beyond this range, even with a 5% size sample, no

improvement can be observed, only the running time is different. Using A9 the525

sample size which yields the best results is below 1%. Using DENDIS, one
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can note that the sample size increases with the granularity parameter, but not

in a proportional way.

A12 and DENDIS appear to be the most robust to noise as they yield the

best results for all the trials. This is not so surprising as both are based upon530

similar concepts. In the A12 approach, dense areas are first covered by a uniform

random sampling, then the initial patterns represented in the sample are no

more considered in the next iterations. The corresponding sample sizes are also

comparable, even if DENDIS samples are always smaller. The main difference

between both algorithms is the computational time: A12 is significantly slower535

than the proposal.

Figure 11 shows that DENDIS is still able to identify and represent the

data structure even with a high level of noise. The 129 representatives, plotted

in orange, only belong to the clusters and ensure shape coverage.

7. Conclusion540

A new sampling for clustering algorithm has been proposed in this paper.

DENDIS is an hybrid algorithm that manages both density and distance con-

cepts. Even if the basics of these concepts are known, their specific use produces

a really new algorithm able to manage high density as well as sparse areas, by

selecting representatives in all clusters, even the smaller ones.545

It is density-based: at each iteration the new representative is chosen in the

most populated group. It allows for catching small clusters: the new represen-

tative is the furthest, from the representative, of the attached patterns. There

is no need to estimate local density, neither to define a neighborhood. The at-

traction basin is dynamically determined thanks to hidden parameters induced550

from the data.

DENDIS is driven by a unique, and meaningful, parameter called granular-

ity: it is dimensionless and represents the minimal proportion of data a group

has to include to be split. Combined with the data size, it is quite similar to

the minimal size of a node in a tree. Without any additional constraint, the555
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representatives would tend to have a similar number of patterns. To manage

different local densities, and to avoid over representation in high density areas,

a volume restriction is added for group splitting. It is based upon the average

induced volume estimated by the maximum within group distance. This makes

the sample size independent on the data size, depending only on the data struc-560

ture. Others parameters are used, but they are inferred from data. This makes

the algorithm really easy to tune.

The inner structure of the algorithm, especially the selection of the furthest

item in the group as a new representative, favors the use of the triangle inequality

because a new representative only impact its neighborhood. Even if the exact565

number of avoided computations cannot be rigorously defined, an upper bound

can be estimated under weak assumptions. It shows that only 5% of the total

number of distances are really computed.

The algorithm behavior has been studied using 12 synthetic and 8 real world

datasets. It has been compared to 12 concurrent approaches using the real world570

data sets according to three criteria: the sample size, the computational cost

and the accuracy. The latter was assessed by the Rand Index, for two types

of clustering algorithms, k-means or hierarchical: the partitions resulting from

the clustering on the sample against the ones yielded by the same clustering

method on the whole set.575

These experiments show that DENDIS has some nice properties. It is par-

simonious. The sample size is not an input parameter, it is an outcome of the

sampling process. It is, as expected, smaller than the theoretical bound sug-

gested in (Guha et al., 1998) for uniform random sampling. DENDIS yields

comparable accuracy to the most popular concurrent techniques with a similar580

number, or even fewer, representatives. It is fast. Thanks to an internal opti-

mization, it has a very low computational cost. This scalability property allows

for its use with very large data sets. It is robust to noise: a post-processing step

remove representatives labeled as noise.

Future work will be mainly dedicated to improve the hybrid algorithm to585

become self-tuning, capable of finding by itself the suitable granularity to reach
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a given level of accuracy. Even if the dimensionless parameter is meaningful

to the user and impacts accuracy, the relationship between both is not really

modeled. From an empirical point of view, the challenge consists in finding the

appropriate mechanisms without penalizing the running time which is a quite590

interesting feature of the proposal. The first iterations of the algorithm are the

most computationally expensive. The starting steps can be improved.

From a more conceptual view, a similar approach than the one used to

estimate the number of distances could be useful to investigate other research

directions, for instance the relationship between the granularity, the sample size595

and the accuracy, based on a real time estimation of clustering cost of the whole

data.
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