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MULTIVARIATE TIME-SERIES ANALYSIS VIA MANIFOLD LEARNING

Pedro Luiz Coelho Rodrigues, Marco Congedo, and Christian Jutten

Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab, 38000 Grenoble, France

ABSTRACT

This paper presents a data-driven approach for analyzing
multivariate time series. It relies on the hypothesis that high-
dimensional data often lie on a low-dimensional manifold
whose geometry may be revealed using manifold learning
techniques. We define a notion of distance between multi-
variate time series and use it to determine a low-dimensional
embedding capable of describing the statistics of the signals
at hand using just a few parameters. We illustrate our method
on two simulated examples and two real datasets containing
electroencephalographic recordings (EEG).

Index Terms— Manifold Learning, Information Geome-
try, EEG Signal Analysis

1. INTRODUCTION

The age of big data has changed the way of doing experimen-
tal science, making it easier and cheaper than ever to record
physical phenomena simultaneously from several different
sensors. However, collecting more data does not necessarily
mean having more useful information available, since high-
dimensional samples often carry a lot of redundancy. One
clear example is the case of electroencephalographic (EEG)
recordings, where sensors located at close positions of the
scalp of a subject tend to record time series which are very
correlated to one another.

Because of this redundancy in information, it is common
to assume that samples of a dataset with n dimensions (n
large) actually live in a low-dimensional manifoldM embed-
ded in Rn [1]. Such intrinsic low-dimension may then be
explored for improving performance in classification, clearer
interpretations from data, etc..

Many algorithms have been proposed to reveal the geom-
etry ofM and let us work with a reduced-dimension version
of the samples. For instance, linear methods such as prin-
cipal component analysis (PCA) and multi-dimensional scal-
ing (MDS) [2] assume that the low-dimensional manifold is
a hyperplane, while Laplacian eigenmaps [3] and diffusion
maps [1] are non-linear methods (often called manifold learn-
ing techniques) that try to approximate the eigenfunctions of
the Laplace-Beltrami operator over M. All such methods
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rely on the definition of a notion of similarity between points
of the dataset and an optimization problem where one wants
to minimize the changes in similarities between each pair of
points in the original space and the embedded one.

Recently, there has been some interest in the study of time
series via manifold learning techniques, where the goal is to
describe changes in a time series’ statistics using just a few
dimensions. In [4], the authors analysed such changes using
a sliding-window approach, where each short interval of time
was described according to some features of interest. They
measured the similarity between different windows of data
with an adapted version of the Mahalanobis distance and used
the diffusion maps algorithm to embed the samples into a low-
dimensional space.

In this work, we introduce an unsupervised method for an-
alyzing multivariate time series based on the diffusion maps
algorithm, with a special emphasis on EEG recordings. We
consider two settings, one where the samples of the time se-
ries are all available in short trials and each corresponds to
one particular state (e.g., 30s of EEG during one sleep stage)
and one where we track the changes in the signals’ statistics
along time (e.g., switch between open and closed eyes every
one second).

Our main contribution is to endow the diffusion maps
algorithm with a notion of distance between multivariate time
series based on well-known results of statistical signal pro-
cessing [5] and information geometry [6]. For this, we use
Riemannian geometry to determine the distances between
features representing the statistics of the EEG signals at hand.

2. MATERIALS AND METHODS

2.1. Distances between multivariate time series

Let x(n) denote a Gaussian wide-sense stationary (G-WSS)
N -dimensional time series. All the statistical information
of x(n) is described by its mean vector and N × N auto-
covariance matrices, defined as:

Rxx(τ) = E
[
x(n)x(n− τ)T

]
(τ ∈ Z), (1)

or, equivalently, by its cross-spectral density matrices:

Sxx(f) =

+∞∑
k=−∞

Rxx(k)e−j2πfk, (2)



where f ∈ [0, 1] is the normalized frequency [5].
When comparing two zero-mean G-WSS time series

x1(n) and x2(n), one can define a distance based on the
description of their statistics via auto-covariance or cross-
spectrum matrices. This approach comes from Information
Geometry and is more meaningful than simply comparing the
samples of a realization of the time series, since it considers
the actual random processes that generated them [6].

In this work, we use two distances based on such premise:

• Distance based on the covariance matrices of xi(n):

d2C
(
x1(n),x2(n)

)
= δ2R(C1, C2), (3)

where Ci = E
[
xi(n)xi(n)T

]
for i ∈ {1, 2} and

δ2R(A,B) is the geodesic distance between two sym-
metric positive definite (SPD) matrices A and B [7]:

δ2R(A,B) =
∥∥∥ log

(
A−

1
2BA−

1
2
)∥∥∥2
F
. (4)

Distance (3) is also the distance induced by Fisher’s
metric on the statistical manifold of normal multivariate
random variables with zero mean [6].

• Distance based on the cross-spectrum of xi(n):

d2S
(
x1(n),x2(n)

)
=
∑
fk∈F

δ2R
(
S1(fk), S2(fk)

)
, (5)

where Si(fk) is the cross-spectrum of xi(n) at f = fk,
and F denotes a set of frequencies of interest.

When working with multivariate EEG recordings, each
coordinate of x(n) corresponds to the activity recorded on
one electrode positioned on a subject’s scalp. We expect the
statistics of x(n) to change according to the tasks performed
by the subject and assume that they can be tracked via its
auto-covariance or cross-spectrum at each time (we always
consider x(n) to be zero-mean).

2.2. Diffusion maps

The method of diffusion maps relies on the construction of a
pairwise affinity matrix of a set of pointsX = {X1, . . . , XK},
whose (i, j)-th element is given by:

W ij = exp

(
−d

2(Xi, Xj)

ε

)
, (6)

where d(·, ·) is a notion of similarity between two points in
X (usually a measure of distance) and ε is the scale of the
Gaussian kernel (which can be set as the median value of all
the pairwise distances in X [1]).

Let D be a diagonal matrix whose elements are the sums
of rows of W , and W norm = D−

1
2WD−

1
2 . The spectral

decomposition of W norm gives a sequence of eigenvectors
ϕj ∈ RK and eigenvalues λj such that

|λ0| ≥ |λ1| ≥ · · · ≥ |λK−1|,

where W normϕj = λjϕj .
One can show that λ0 is always equal to 1 and ϕ0 is the

diagonal of D1/2 [1]. The next d eigenvectors define a map
of the elements in X to a d-dimensional Euclidean space

Xi 7→ Φ(Xi) = (ϕ1(i), . . . , ϕd(i)) , (7)

where ϕk(i) denotes the i-th element of ϕk. This mapping is
what we call spectral embedding. The dimension d is chosen
according to the decay of the eigenvalues of W norm and is
usually much smaller than K. See [1] for more details.

2.3. Spectral embedding of EEG recordings

We consider two applications of spectral embedding via dif-
fusion maps.

In the first case, the dataset is composed of short record-
ings onN electrodes at different moments of time. We denote
the data points byXk ∈ RN×T , with k ∈ {1, . . . ,K}, and as-
sume they each represent T samples of a N -dimensional G-
WSS time series xk(n). We use distances (3) and (5) as mea-
sures of similarity in the affinity matrix W , where the covari-
ance matrices are estimated from the dataset and the cross-
spectrum is obtained using Welch’s method [5]. The spectral
embedding of the Xk’s will map similar points to close po-
sitions in the Euclidean space, which amounts to clustering
time series associated to the same physiological state.

We also consider how the statistics of a multivariate EEG
time series x(n) evolve in time. We assume that x(n) is G-
WSS in short windows containing L points and use a sliding-
window procedure to obtain K points Xk ∈ RN×L, each as-
sociated to a window of L points around a different instant of
time. We estimate the auto-covariances and cross-spectra us-
ing the samples of each window and embed them into a low-
dimensional Euclidean space with diffusion maps. The trajec-
tories identified in the embedded space describe the changes
in statistics of x(n) and can be used to study the dynamics of
latent variables.

2.4. Numerical illustrations

2.4.1. Simulated data

We simulated data using a three-dimensional multivariate au-
toregressive process defined by

s(n) = A1s(n− 1) + A2s(n− 2) + u(n), (8)

with

A1 = diag
(

2r0 cos(2πf0), 2r1 cos(2πf1), 2r2 cos(2πf2)
)
,

A2 = diag(−r20,−r21,−r22),



where diag(a, b, c) denotes a 3 × 3 diagonal matrix with el-
ements a, b, and c. We fixed (f0, f1, f2) = (0.1, 0.25, 0.40)
and chose (r1, r2, r3) according to each example. The u(n)
time series is a Gaussian white noise with covariance matrix
Σuu = I3. The actual x(n) time series used in the examples
was obtained after three pre-processing steps on s(n):

(1) Divide each signal si(n) in s(n) by its standard devia-
tion so to fix the signal variance to one.

(2) Determine a mixing matrix M with dimensions 3× 3.

(3) Generate the mixed signals: x(n) = Ms(n).

In the example portrayed in Fig. 1, we considered three
conditions (states) for the signals generated by (8):

S1 : (r1, r2, r3) = (0.00, 0.95, 0.95)
S2 : (r1, r2, r3) = (0.95, 0.00, 0.95)
S3 : (r1, r2, r3) = (0.95, 0.95, 0.00)

(9)

We generatedK = 150 trials (50 for each condition) contain-
ing T = 512 samples each. Matrix M was the same for all
trials and its elements were randomly obtained from a Gaus-
sian distribution with zero mean and unit variance. The ex-
ample in Fig. 2 contains 2800 samples of a single-trial time
series generated with (r1, r2, r3) = (0.95, 0.95, 0.95) and a
time-varying mixing matrix

M(n) = m(n)M1(n) +
(
1−m(n)

)
M2(n), (10)

where

M1 =

 1 0 0
1 1 0
0 0 1

 M2 =

 1 0 0
0 1 0
1 0 1

 ,
and m(n) is a parameter that toggles between 0 and 1 every
400 samples.

2.4.2. Real EEG data

We analyzed two datasets containing physiological record-
ings from human subjects.

The example in Figure 3 used data available at the Phys-
ionet database [9, 10]. It contains recordings from 9 EEG and
2 EOG electrodes on a subject sleeping for approximately 8
hours. The original sampling frequency was 512 Hz but we
downsampled it to 128 Hz after band-filtering the EEG sig-
nals between 8 Hz and 40 Hz and the EOG signals between
0.05 Hz and 10 Hz. A specialist in sleep data analysis was re-
sponsible for cutting the recordings into several 30-sec clips
and then classifying them according to which sleep stage (S1,
S2, S3, and REM) they belonged. We ended up with a dataset
containing K = 564 trials of L = 3840 samples each.

The example depicted in Fig. 4 used recordings from 16
EEG electrodes of a healthy subject instructed to change be-
tween open or closed eyes every eight seconds. The sampling
frequency was 128 Hz and was filtered between 8 Hz and 40
Hz. The dataset had a single-trial with 11520 samples (90
seconds).
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Fig. 1. Spectral embedding of the signals specified by (9) us-
ing only two dimensions (d = 2). Each point corresponds to a
trial Xi ∈ R3×512 and the colors indicate to which condition
it is associated (S1 is yellow, S2 is red, S3 is green). We used
diffusion maps with three types of distance: (A) Euclidean
distance between the Xi matrices, (B) distance defined in (3),
and (C) distance defined in (5).

3. RESULTS AND DISCUSSION

We observe in Fig. 1 that choosing an adequate distance be-
tween time series is of prime importance, as seen by the lack
of a clear pattern in the spectral embedding using the Eu-
clidean distance between time series (Fig.1(A)) or the dis-
tance (3) between covariance matrices (Fig.1(B)). This hap-
pens because all the Xi’s generated in the example have the
same covariance matrix for all three states Si. Only the cross-
spectrum is capable of differentiating each state.

It could be argued that the quality of the clustering with
each type of distance also depends on the number of eigen-
vectors considered from the diffusion maps (Fig.1 shows the
results with just the first two). To verify this hypothesis, we
assessed the quality of the clustering performed by a Gaussian
Mixture Model (GMM) [2] on the embedded space consider-
ing an increasing number of dimensions. Assuming as true
labels the classes given by a specialist, we did not observe any
improvement on the modified Rand scores [11] when consid-
ering more eigenvectors for any of the distances.

Our next simulated example demonstrates that diffusion
maps can be useful for studying the temporal dynamics of
the statistics of a time series. Fig. 2 shows the values of
the first coordinate of the embedding of a sliding-window
and compares them with a latent parameter responsible for
changing the statistics of x(n) along time. We estimated
only the covariance matrices of the windows of data and used
them to embed the time series with distance (3). We could
have used cross-spectrum matrices as well. However, cross-
spectral quantities estimated from short-windows of data are
often very poor estimators and do not improve significantly
the analysis. In fact, covariance matrices contain informa-
tion about the sum of the contribution on each frequency of
x(n)’s spectrum, a feature that is often enough to track im-
portant changes to its statistics.

The results on sleep recordings are displayed in Figure 3.
We did not include the “S1” sleep stage trials because they are



Fig. 2. Spectral embedding of the samples in a sliding-
window (L = 100 and 90% overlap) running over the signals
generated by (10). The blue curve corresponds to the first di-
mension of the spectral embedding of a window of data using
distance (3) and the dashed line indicates the values of param-
eter m(n).

Fig. 3. Spectral embedding (d = 2) of the sleep data de-
scribed in Sec. 2.4.2. Each point is a 30-sec clip and the col-
ors indicate to which sleep stage it is associated (yellow for
REM, red for S2, and green for S3). We used diffusion maps
with two types of distance: (A) distance defined in (3) and (B)
distance defined in (5).

associated to light sleep and can not be assumed G-WSS. We
carried out the spectral embedding using distances (3) and (5)
and observed a better separation of points with the latter. We
link this to the traditional way of doing classification of sleep
stages, which relies on the spectral content of the trials and
indicates that their spectrum is an useful feature to classify
them. These results are interesting because they show the
possibility of extracting information from a dataset containing
sleep recordings based only on an adequate notion of similar-
ity between signals. The modified Rand score for a GMM
clustering using distance (5) on the two first eigenvectors is
0.65 (in a scale from 0 to 1, where 1 is the best). We consider
this a satisfying score because very few assumptions about
the dataset were made and the classification was completely
unsupervised.

In our last analysis, we wanted to track the statistics of
the EEG of a subject when he was asked to toggle between
eyes open or closed. We used a sliding-window containing
128 points (equivalent to 1 second) and applied the diffusion
maps algorithm to embed the windows of data into a lower-

Fig. 4. First dimension of the spectral embedding of the sam-
ples in a sliding-window (L = 128 and 75% overlap) running
over the EEG data described in Sec. 2.4.2. Each point of the
blue curve corresponds to a different window of time. The
dashed line indicates when the subject had the eyes open (0)
and closed (1).

dimensional Euclidean space. The values of the first eigen-
vector of such spectral embedding are portrayed in Fig. 4,
where we see a curve that clearly accompanies the changes
in conditions of the subject’s eyes.

The results presented above show that diffusion maps can
be an useful tool for exploratory analysis of datasets contain-
ing time series. A remarkable feature of such approach is the
lack of any model and very few assumptions about the time
series. However, we should point out two drawbacks: there
is no explicit mapping of the datapoints into the embedded
space and it is often very difficult to give a physical interpre-
tation to the axis of the spectral embedding.

4. CONCLUSION

We presented a new tool based on diffusion maps for ana-
lyzing multivariate time series. This method reduces dras-
tically the number of dimensions necessary to analyse the
dataset and allows for a concise description of its main fea-
tures. We used two notions of distance between time series
and discussed how to choose them according to the type of
data and the kind of analysis one wants to perform. We illus-
trated our proposal on two examples with simulated signals
and two with real data. Future investigations will focus on
using our approach for improving classification pipelines of
multivariate time series. We also intend to further investigate
what information the trajectories in the embedded space can
give and how they can be interpreted physiologically in the
case of EEG time series.
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