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Abstract:  In this paper we present a new numerical 

technique to model the buckling phenomena under residual 

stresses induced by rolling process. This technique consists 

in coupling two finite element models: the first one consists 

in a three dimensional model based on 8-node tri-linear 

hexahedron which is used to model the three dimensional 

behaviour of the sheet in the roll bite; the second model is 

based on a shell formulation well adapted to large 

displacements and rotations, it will be used to compute 

buckling of the strip out of the roll bite. We propose to 

couple these two models by using Arlequin method.  
Keywords: Rolling, Residual stresses, Buckling, Arlequin 

Method, Asymptotic Numerical Method 

1. Introduction 
 Flatness defects are among the major problems 

encountered in strip rolling. Their direct origin is out-of-

bite stress gradients resulting in buckling in the 

compressive stress areas. The most important flatness 

defects are “edge-waves” and “center-waves” buckles. 
These waves are the result of buckling due to self-

equilibrating longitudinal residual stresses with a 

compressive longitudinal membrane force state in the 

middle of the strip (“center buckles”) or in the edge zones 

(“edge buckles”), respectively.  During the rolling process, 
the buckling waves are usually suppressed by global 

traction. Thus, in some cases, the sheet may appear more or 

less flat, or even perfectly flat on the rolling line. 

Nevertheless we can still talk about flatness defects, insofar 

as there may be residual stresses in the sheet. This is why 

the post-bite stress profile is called “latent flatness defects”. 
If defects are only latent, the stress field computed beyond 

the bite by a 3D finite element model (FEM) should be 

correct. One can find in the literature three ways to model 

rolling, depending on the manner to account for flatness 

defects. The first way is based on 3D FEM that generally 

do not permit to capture buckling effects; they can only 

predict latent defects. Other models permit to account for 

buckling in an uncoupled approach: the 3D model yields 

residual stresses that are further included as the starting part 

of a buckling analysis. Last, few FEM are able to model 

rolling and buckling in a coupled manner.  Several 

publications have been focused on uncoupled approaches. 

Counhaye [5] was the first to propose a coupling model of 

rolling process and buckling phenomena. The model is 

based on a stress–relaxation algorithm applied only in the 

out-of-bite areas. They added an additional term to the 

elastic/plastic strain rate decomposition which represents 

the local shortening of a material segment when it becomes 

wavy due to buckling. Abdelkhalek et al. [6] used a 

different approach for coupling 3D FEM and Asymptotic 

Numerical Method (ANM) using a shell formulation. In this 

approach, a full 3D model of rolling is computed; the post-

bite stress field obtained is introduced in the shell 

formulation where a buckling analysis under residual 

stresses is performed. The new distribution of the stress 

field obtained by buckling is considered as a new boundary 

condition for the 3D FEM. These computations are repeated 

until convergence.  

In the present work, we propose a new approach to simulate 

rolling process taking into account buckling phenomena. A 

simplified model is used which consists in coupling a 3D 

continuum model and a shell model using Arlequin method. 

The buckling is due to residual stresses which are 

introduced in the 3D model and propagated in the shell 

model during the simulation.  

2. Formulation 
 We propose an algorithm which consists in coupling 3D 

FEM and shell model by Arlequin method. So the idea is to 

combine these two models in the same finite element 

simulation that we solve by ANM. In the three dimensional 

part, we consider small strain and residual stresses which 

come from a full model taking into account the elastoplastic 

law adapted to rolling. 

                     

 where and are respectively the strain and the virtual 

strain tensors. Pext corresponds to the energy density due to 

external load, which is calibrated by a load parameter λ; σ 

and σres
 are respectively the Cauchy stress tensor and the 

residual stress. We use small strain in this part of the model 

since we assume that the sheet in upstream of the roll mill 

is flat. But progressively, the 3D model will transmit the 

residual stresses to the shell model. Thus only the shell 

model will buckle during the simulation. 

Finally in the shell part, we consider a geometrically 

nonlinear model. This shell model, proposed by Büchter el 

al. [7], avoids locking by incorporating an additional 

parameter describing the shell thickness variation. It is 

distinguished from classical shell models that are usually 

based on degenerated constitutive relations, since the 

present formulation uses the unmodified and complete 

three-dimensional constitutive law. 
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The total Green-Lagrange strain tensor is decomposed into 

the compatible strain γu
= γl

 + γnl
 and an additional assumed 

strain term . Stress tensor is the second Piola-Kirchhoff 

stress S and S
res

 the residual stress. 

 

3. Arlequin coupling 
The Arlequin method allows to couple two different 

mechanical states through reliable coupling operators as 

well as consistent energy distribution between the two 

coupling zones (see Fig. 1).  

 
Figure 1: The Arlequin method in a general mechanical 

problem; A general mechanical problem (a) becomes a 

superposed domains and that intersect in the gluing 

zone  

 

The central point of the model is the coupling operator 

which is selected by analogy with the deformation energy 

of the shell. Otherwise the coupling area varies during the 

rolling process. In this paper, we limit ourselves to the 

coupling, and hence 

        

We denote respectively u and µ the displacement and the 

Lagrange multiplier fields. 

The integration domain is three-dimensional and the 

Lagrange multiplier is discretized using shell kinematic. 

We note that the integration points and interpolation, for 

Lagrange multiplier, are not necessarily the same as for 

the shell domain. 

In addition we introduce weighting functions in order to 

share the energy between the two models in the coupling 

area. These weighting functions are used respectively for 

strain energy and for work induced by external forces. 

They satisfy the following relations : 

                                

Find the global displacement field in the domain Ω is 
therefore to weight the displacement u

3D
 and u

shell
 

respectively in the domains Ω1 and Ω2.  

By introducing the weighting functions in equations 1 and 

2, the Arlequin method allows us to write the following 

variational form :                                           

 

 

4. Asymptotic numerical method 

ANM is a technique for solving nonlinear equations based 

on the Taylor expansion to high order [3]. The technique 

consists in transforming a given nonlinear problem into a 

sequence of linear ones to be solved successively, leading 

to a numerical representation of the solution in the form of 

power series truncated at relatively high orders. Compared 

to iterative methods, ANM allows significant reduction of 

computation time since only one decomposition of the 

stiffness matrix is used to describe a large part of the 

solution branch. Thus, the procedure allows developing the 

unknown variables of the problem in the form of power 

series with respect to a path parameter "a" (see [1, 3] for 

more details). 

 

5. Results 
The presented test case concerns flatness defects generated 

by a rolling process. The procedure we proposed is non-

iterative coupling:  (i) first a rolling calculation (LAM3) 

allows us to provide residual stresses, (ii) to compute 

flatness defects, a second calculation using the coupling 

code 3D/shell/Arlequin is then performed considering 

residual stresses resulting from the previous calculation.  

The results are compared with Counhaye’s [5] and 
Abdelkhalek’s [6] models and with experimental 
measurements.  

Note that Counhaye’s model is a modification of rolling 
code LAM3 which only relax membrane stresses in 

compression zones but the model is limited for the 

representation of flatness defects in the sheet.   

Moreover, the procedure proposed by Abdelkhalek is based 

on an iterative coupling between the rolling code LAM3 

and a thin shell code. It is also able to relax the excessive 

stresses and predicts flatness defects of various shapes. But 

compared to our new procedure, it has some limitations. 

Firstly, it’s too complicated; the first iteration is a complete 

rolling calculation, the following describes only the 

downstream domain of the structure. Secondly, the transfer 

of the data between subdomains is not really standard. In 

particular, clamped boundary condition which is used on 

the shell model side of the bite is not very convincing. 

We apply the proposed model to a rolling case described in 

Table 1, which refers to the rolling pass, the last stand of a 

tinplate sheet mill with very low thickness.  

Let us call the method proposed in this work, Kpogan’s 
model. 
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Table 1. Characteristics of investigated rolling pass 

  

Figure (2) shows the post-buckled state of the sheet. As 

Counhaye's model is limited to represent flatness defects, 

we compare the post-buckled state of the sheet with 

Abdelkhalek's model. Figures (2.a) and (2.b) show 

respectively the results of Kpogan and Abdelkhalek's 

model. We obtain, as Abdelkhalek's model, longitudinal 

folds near the roll mill. 

 
Figure 2. Vertical displacement of the sheet buckled under 

residual stresses ; Figure (a) : Kpogan’s model ; Figure (b) : 
Abdelkhalek’s model 

        
Figure 3. Comparisons of results with reference models ; 

Figure (a) : : Kpogan’s model; Figure (b) : Abdelkhalek’s 
model ; Figure (c) : Counhaye’s model ; Figure (c) : LAM3 

code without buckling 

 

Figure (3) illustrates σxx profiles for Kpogan, Abdlekhalek 

and Counhaye’s models. Figure 15a shows the results 
obtained with Kpogan’s model. We notice that with 
Kpogan’s model, the stresses are relaxed and they are close 

to the experimental measurements. Compared to the results 

of Abelkhalek (Fig. 15b) and Counhaye’s (Fig. 15c) 
models, Kpogan’s model gives results much closer to the 
experiment.  

 

6. Conclusion 
We have proposed in this study a numerical model which 

consists in coupling Arlequin and asymptotic numerical 

methods to simulate flatness defects observed in rolling 

process. Our attention was focused on very thin sheets 

where these phenomena are often observed. Note that in 

thin sheet rolling, we need tri-dimensional model to 

compute correctly the deformations in the bite and a shell 

model far from the rolls to compute buckling modes. It is 

not obvious for a unique model to capture all these 

phenomena. Both models are coupled by using Arlequin 

method. This method allows us to model the entire structure 

while distinguishing upstream and downstream domain of 

the sheet. 

 We performed an industrial rolling test case taking into 

account complex residual stresses obtained by the rolling 

code LAM3. The results were compared with experimental 

data. The model we proposed gives satisfactory results. It 

predicts the relaxed stresses after buckling and shows the 

corresponding flatness defects.  
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