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Abstract. Iterative linear algebra methods are the important parts of
the overall computing time of applications in various fields since decades.
Recent research related to social networking, big data, machine learning
and artificial intelligence has increased the necessity for non-hermitian
solvers associated with much larger sparse matrices and graphs. The
analysis of the iterative method behaviors for such problems is complex,
and it is necessary to evaluate their convergence to solve extremely large
non-Hermitian eigenvalue and linear problems on parallel and/or dis-
tributed machines. This convergence depends on the properties of spec-
tra. Then, it is necessary to generate large matrices with known spectra
to benchmark the methods. These matrices should be non-Hermitian and
non-trivial, with very high dimension. This paper highlights a scalable
matrix generator that uses the user-defined spectrum to construct large-
scale sparse matrices and to ensure their eigenvalues as the given ones
with high accuracy. This generator is implemented on CPUs and multi-
GPU platforms. Good strong and weak scaling performance is obtained
on several supercomputers. We also propose a method to verify its ability
to guarantee the given spectra.

Keywords: Parallel ·Non-Hermitian Matrix ·Matrix Generation · Spec-
trum.

1 Introduction

The eigenvalue problem can be defined as finding some pairs (λ, u) with λ ∈ C
and u ∈ Cm of matrix A ∈ Cm×m, that satisfy the relation Au = λu. Many ap-
plications from various fields can be expressed as eigenvalue problems or linear
system problems. In numerical simulations, Schrödinger equations, molecular
simulations, geology, etc. are usually analyzed by solving eigenvalue problems
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and linear systems. In machine learning and pattern recognition, both super-
vised and unsupervised learning algorithms, such as principal component anal-
ysis (PCA), Fisher discriminant analysis (FDA), and clustering, often require
solving eigenvalue problems. An insufficient accuracy and a failure of the solvers
usually result in, respectively, a poor approximation to original problems and
a failure of entire algorithms. A good selection of eigenvalue and linear system
solvers becomes especially essential. Researchers urgently require test matrices to
benchmark the numerical performance and parallel efficiency of these methods.

Nowadays, the size of eigenvalue/linear system problems and the supercom-
puter systems continues to scale up. The whole ecosystem of High Performance
Computing (HPC), especially the linear algebra applications, should be adjusted
to larger computing platforms. Under this background, there are four special re-
quirements for the test matrices to evaluate the numerical algorithms: 1) the
spectra must be known and can be customized; 2) sparse, non-Hermitian and
non-trivial; 3) a very high dimension, including the non-zero element numbers
and/or the matrix dimension to evaluate the algorithms on large-scale systems;
4) the controllable sparsity patterns. The matrix generator should be imple-
mented in parallel to profit from the distributed memory clusters.

Since the eigenvalue/linear system solvers and some of their preconditioners
are sensitive to a specific part of the spectra, the test matrices with customized
spectra can help to analyze and provide numerically robust solvers. In practice,
the spectrum is one of the important factors which influence the convergence of
different solvers. Although the impact of spectral distribution of linear system
on the Krylov solvers is complicated and cannot be ignored even for the normal
matrix [8], the existence of test matrix generator with customized eigenvalues
can still guide the study of numerical method. Moreover, the purpose of most
preconditioners such as ILU, Jacobi, and SOR is to convert the distribution of
related spectrum to another by right or left-multiplying a preconditioning ma-
trix. The spectral distribution of the preconditioned matrix might speed up the
convergence. As an example, X. Wu [14] et al. implemented a Unite and Conquer
hybrid method for solving linear systems with the combination of a Krylov lin-
ear system solver, an eigenvalue solver, and a Least Square polynomial method
proposed by Y. Saad [11] in 1987. In the preconditioning part of this method,
the dominant eigenvalues are used to accelerate the convergence. It is extremely
necessary to evaluate the influence of the distribution of dominant eigenvalues
on the acceleration. In addition, some scientific communities may be interested
in matrices with clustered, conjugated eigenvalues or other special spectral dis-
tributions. It is important to develop a very large set of non-Hermitian test
matrices whose eigenvalues can be customized.

The properties of being sparse, non-Hermitian and non-trivial together can
add many mathematical features for the test matrices. Additionally, they should
have very high dimensions for experiments on large scale platforms, which means
that the proposed generation method should be easy to parallelize. Furthermore,
since the enormous matrices are generated in parallel, their different slices are
already distributed over separate computing units. These data can be used di-
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rectly to evaluate the solvers, without having to load the large matrix from the
file system. It can save time and increase the efficiency of the applications.

In this paper, we present a Scalable Matrix Generator from Given Spec-
tra (SMG2S) to benchmark the linear/eigenvalue solvers on large-scale plat-
forms. Firstly, it has been implemented in parallel based on PETSc (Portable,
Extensible Toolkit for Scientific Computation) for homogenous platforms and
PETSc+CUDA (Compute Unified Device Architecture) for multi-GPU hetero-
geneous machines. Then an open source package4 is available, with specific com-
munication optimization based on MPI and C++ [13]. Its scalability and ability
to maintain the given spectra have been evaluated on different supercomputers.

This paper is organized as follows: Section 2 talks about the related work
on the test matrix collections. Section 3 gives an overview of the proposed algo-
rithm for matrix generation. The parallel implementation of SMG2S is discussed
in Section 4. In Section 5, we evaluate its strong and weak scalability on two
supercomputers. The eigenvalue accuracy of SMG2S is tested with different spec-
tral distributions in Section 6. Finally, we conclude in Section 7.

2 Related Work

It’s rare but there are already several efforts to supply test matrix collections.
SPARSEKIT [10] implemented by Y. Saad contains various simple matrix gen-
eration subroutines. The Galeri package of Trilinos provides to generate simple
well-known finite element matrices in parallel. Z. Bai [1] presented a collection
of test matrices for developing numerical algorithms for solving nonsymmetric
eigenvalue problems. There are also two widely spread matrix providers, the Tim
Davis [4] and Matrix Market collections [2]. They both contain many matrices
from scientific fields with various mathematical characteristics. But the spectra
of matrices in these collections are fixed, and cannot be customized. M.T. Chu [3]
provides an overview of the inverse eigenvalues problems concerning the recon-
struction of a structured matrix from prescribed spectrum without parallel im-
plementation. A test matrix generation suite with given spectra was introduced
by J. Demmel [5] in 1989 to benchmark the routines of dense matrices in LA-
PACK5. Their method uses an orthogonal matrix to transfer a diagonal matrix
with given spectrum into dense with the same spectrum, and then transform the
dense matrix into an unsymmetric one by Householder transform. This method
is not suitable and efficient to test the solvers for the sparse matrix, because it
requires O(n3) time and O(n2) storage even for generating a small bandwidth
matrix. Furthermore, it was implemented for the shared memory systems rather
than larger distributed memory systems, thus it is difficult to generate large-
scale test matrices targetting for extreme-scale clusters. That is the motivation
for us to propose SMG2S which can generate large-scale non-Hermitian matrices
with given spectra in parallel. This method requires much less time and storage,
and can be easily parallelized on modern distributed memory systems.

4 Released package download: https://smg2s.github.io/download.html
5 Linear Algebra PACKage



4 X. Wu et al.

3 Matrix Generation Algorithm

In this section, we introduce the proposed matrix generation algorithm. First of
all, in Section 3.1, we present a summary of its mathematical framework based
on the preliminary theorem proposed by H. Gachlier et al. [6].

3.1 Matrix Generation Method

Theorem 1. Let’s consider a collection of matrices M(t) ∈ Cn×n, n ∈ N∗. If
M(t) verifies: 

dM(t)

dt
= AM(t)−M(t)A,

M(t = 0) = M0.

Then M(t) and M0 are similar. M(t) has the same eigenvalues as M0.

Based on this theorem proposed by H. Gachlier [6], a matrix M0 with given
spectra can be transferred to another one M(t) that satisfies Theorem 1 and
keeps the spectra of M0. Due to page limitation, we do not give the definitive
proof of this theorem. We propose a matrix generation method by selecting many
parameters such as the matrices A and M0.

Denote a linear operator of matrix M determined by matrix A as ÃA =
AM − MA, ∀A ∈ Cn×n, M ∈ Cn×n, n ∈ N∗. Here AM and MA are the
matrix-matrix multiplication operation of matrices A and M . By solving the
differential equation in Theorem 1, we can firstly get the formule of M(t) with
the exponential operator and then extend it by the Taylor series formula:

M(t) = eÃA(M0)t,

M(t) =

∞∑
k=0

tk

k!
(ÃA)k(M0).

(1)

Through the loop Mi+1 = Mi + 1
i! (ÃA)i(M0), i ∈ (0,+∞), a initial matrix

M0 ∈ Cn×n can be transfered into a new non-trivial and non-Hermitian matrix
M+∞ ∈ Cn×n, which has the same spectra but different eigenvectors with M0.

It is not reasonable to generate a matrix by infinity times of iterations, thus

a good selection of matrix A which can make (̃AA)
i

tends to 0 in limited steps
is very necessary. In this paper, we define A as a nilpotent matrix, which means
that there exists an integer k such that: Ai = 0 for all i ≥ k. Such k is called
the nilpotency of A. In fact, the selection of nilpotent matrix will influence the
sparsity pattern of the upper band of the generated matrix.

The exact shape of A is given in Fig. 1a. Inside a n× n matrix A, its entries
are default 0, except on the upper diagonal of the distance p from the diagonal.
In this diagonal, its entries start with d consecutive 1 and then a 0, this term
repeats until the end. Matrix A can be nilpotent by well choosing the parameters
p, d and n. The determination of A to be nilpotent or not is complicated. Firstly,
d should be divisible by p, secondly, it should exist the integers e and f ∈ N∗
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that makes (d + 1)e be divisible by i + pf , for all i ∈ 1, 2, · · · , dp . But the cases
that p = 1 or p = 2 are very simple, which can completely fulfil our demands.

1
1

1
0

0
1

1
1

1

𝑝

𝑑

𝑛

…

(a) Nilpotent matrix

h h

l < 2pd

(b) Matrix Generation

Fig. 1: (a) gives the nilpotent Matrix, with p off-diagonal offset, d number of
continuous 1, and n matrix dimension; (b) shows the matrix generation example.

If p = 1, with d ∈ N∗, or p = 2 with d ∈ N∗ to be even, the nilpotency of
A and the upper band’s bandwidth of generated matrix are respectively d + 1
and 2pd. Obviously, there is another constraint that the matrix size n should
be greater or equal to the upper band’s width 2pd. For p = 2, if d is odd, the
matrix A will not be nilpotent, thus we do not take it into account.

3.2 Algorithm

As shown in Algorithm 1, the procedure of SMG2S is simple. Firstly, it reads an
array Specin ∈ Cn, as the given eigenvalues. Then it inserts entries in h lower
diagonals of the initial matrix M0 randomly or with selected strategies, and sets
its diagonal to be Specin, and scales it with (2d)!. Meanwhile, it generates a
nilpotent matrix A with the parameters d and p. The final matrix Mt can be
generated as Mt = 1

(2d)!M2d, where M2d is the result after 2d times of loop

Mi+1 = Mi + (
∏2d

k=i+1 k)(ÃA)i(M0). The slight modification of the loop for-
mula is to reduce the potential rounding errors coming from numerous division
operations on modern computer systems.

Algorithm 1 Matrix Generation Method

1: function matGen(input:Specin ∈ Cn, p, d, h, output: Mt ∈ Cn×n)
2: Insert the entries in h lower diagonals of Mo ∈ Cn×n

3: Insert Specin on the diagonal of M0 and M0 = (2d)!M0

4: Generate nilpotent matrix A ∈ Cn×n with selected parameters d and p
5: for i = 0, · · · , 2d− 1 do
6: Mi+1 = Mi + (

∏2d
k=i+1 k)(ÃA)i(M0)

7: Mt = 1
(2d)!

M2d

For Mt, if M0 is a lower triangular matrix having h non zero diagonals, it
will be a band diagonal matrix, whose number of new diagonals in the upper
triangular zone will be at most 2pd− 1. Thus the maximal number of the band-
width of matrix Mt is: width = h+ 2pd−1, as in Fig. 1b. In general, researchers
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use these matrices to test the iterative methods for sparse linear systems. The
h lower diagonals of the initial matrix can be set to be sparse, which ensures
the sparsity of the final generated matrix, as shown in Fig. 2. Moreover, the
permutation matrix can also be applied to further change the sparsity of the
generated matrix.

Fig. 2: Matrix Generation Sparsity Pattern Example.

The operation complexity of SMG2S is max(O(hdn),O(d2n)). The worst
case would require O(n3) operations and O(n2) memory storage with large d
and h. However, if we want to generate a band matrix with a small bandwidth,
or if the lower band of M0 is sparse, it becomes a O(n) problem with good
potential scalability and consuming O(n) memory storage.

4 Parallel Implementation

In this section, we will introduce parallel implementations of SMG2S on homo-
geneous and heterogeneous clusters. Firstly, we implemented SMG2S based on
PETSc on the CPUs, and based on MPI, CUDA, and PETSc on multi-GPU.
We chose PETSc because it provides several ways to verify the generated ma-
trices and the basic operations optimized for different computer architectures.
After the PETSc-based SMG2S validation, an open source parallel software with
specific optimized communication is also implemented based on MPI and C++.

4.1 Basic Implementation on CPUs

For the initial implementation, we chose PETSc instead of ScaLAPACK because
we want to evaluate the solvers for sparse linear systems. The kernels of SMG2S
are the sparse matrix-matrix multiplication (SpGEMM) AM and MA, and the
matrix-matrix addition (AYPX operation) as AM−MA. All the sparse matrices
during the generation procedure are stored by the block diagonal Compressed
Sparse Row (CSR) format which is supported in default by PETSc. This matrix
format keeps separately the block diagonal and off-diagonal parts of a matrix on
each process into two sequence CSR format matrices. We use the matrix opera-
tions SpGEMM and AYPX provided by PETSc to facilitate the implementation.

4.2 Implementation on mutil-CPU

PETSc does not support SpGEMM and AXPY operations on multiple GPUs,
so we implement them based on PETSc data structures, MPI, CUDA and, cuS-
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Fig. 3: The structure of a CPU-GPU implementation of SpGEMM, where each
GPU is attached to a CPU. The GPU is in charge of the computation, while the
CPU handles the MPI communication among processes.

PARSE. The implementation is given in Fig. 3, by an example of A×B. Firstly,
same as in PETSc, A and B are stored by the block CSR format, noted as Ai

dia,
Ai

off , Bi
dia and Bi

off the sequence matrices on process i. Then Bi
dia and Bi

off

are combined together as a novel sequence matrix as Bi
loc on each process i.

With MPI functionalities, each CPU gather all the remote data of matrix B
from the other processes, and construct them to a new sequence matrix Bi

oth.
These matrices from each process are copied to one attached GPU, and calcu-
late Ci = Ai

diaB
i
loc + Ai

offB
i
oth. The matrix operations on each GPU device is

supported by the cuSPARSE. The final result C can be obtained by gathering
all slices Ci from all the devices.

4.3 Specific Optimized Communication Implementation on CPUs

In fact, the parallel SpGEMM kernel’s communication can be specifically opti-
mized based on the particular property of nilpotent matrix A. Since A is deter-
mined by three parameters p, d and n as we mentioned in Section 3.1, it is not
necessary to explicitly implement this parallel matrix. We note this nilpotent
matrix as A(p, d, n). Denote J(i, j) the entry in row i and column j of matrix J ;
J(i, :) all the entries of row i; and J(:, j) all the entries of column j. As shown in
Fig. 4, the right-multiplcation A(p, d, n) will cause all the entries of the first n−p
columns of M to shift right by an offset p. Denote MA the result gotten by the

Proc 0

Proc 1

Proc 2

Proc 3

M

(a)

AM M MA

𝑝

(b)

𝑝

𝑝

𝑝

𝑑 +1 2𝑑+ 2

𝑑 +1

2𝑑+ 2

Fig. 4: (a) AM operation; (b) MA operation.
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right-multiplying A on M . We have MA(:, j) = M(:, j − p),∀j ∈ p, · · · , n − 1,
and MA(:, j) = 0,∀j ∈ 0, · · · , p − 1. Similarly, the left-multiplying A(p, d, n)
on M will shift up the whole entries of last n − p rows by an offset p. Denote
AM the matrix gotten by the left-multiplying A on M . We have AM(i, :) =
M(i+ p, :),∀i ∈ 0, · · · , n− p− 1, and AM(i :, ) = 0,∀i ∈ p, · · · , n− 1. Moveover,
the parameter d decides that MA(:, r(d+ 1)) = 0 and AM(r(d+ 1), :) = 0 with
r ∈ 1, · · · , b n

d+1c.

Algorithm 2 Parallel MPI AM Implementation

1: function AM(input: matrix M , matrix row number n, p, d, proc number m;
output: matrix AM)

2: Distribute t row blocks Mk of M to MPI process k
3: for p + 1 ≤ i < t do
4: for 0 ≤ j < n do
5: if M(i, j) 6= 0 then
6: AMk(i− p, j) = Mk(i, j)

7: for 0 ≤ i < p do
8: if k 6= 0 then
9: isend ith row Mk(i) to k − 1

10: if k 6= m− 1 then
11: irecv ith row Mk(i) from k + 1
12: AMk(t− p + i) = Mk(i)

Algorithm 3 Parallel MPI MA Implementation

1: function MA(input: matrix M , matrix row number n, p, d, proc number m;
output: matrix MA)

2: Distribute t row blocks Mk of M to process k
3: for 0 ≤ i < t do
4: for p + 1 ≤ j < n do
5: if Mk(i, j) 6= 0 then
6: MAk(i, j + p) = Mk(i, j)

For the parallel implementation on distributed memory systems, the three
parameters p, d and n can be shared by all MPI processes, then operations AM
and MA are different from a general parallel SpGEMM. Firstly, the matrix M is
one-dimensional distributed by row across m MPI process. As shown in Fig. 4b,
for MA, there is no communication inter different MPI processes since the data
are moved inside each row. Ensure that b nmc ≥ p, for AM , the intercommunica-
tion of MPI takes place when the MPI process k (k ∈ 1, · · · ,m− 1) should send
the first p rows of their sub-matrix to the closest previous MPI process num-
bering k − 1. The communication complexity for each process is O(np). When
generating the band matrix with low bandwidth b, it tends to be a O(bp) with
p = 1 or 2. The MPI-based optimization implementations of AM and MA are
respectively given by Algorithm 2 and 3. The communication inter MPI process
is implemented by the asynchronous sending and receiving functions. In this al-
gorithm, Mk, MAk and AMk imply the sub-matrices on process k with t rows.
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The rows and columns of these sub-matrices in Algorithm 2 and 3 are all indexed
by the local indices.

The communication-optimized SMG2S is implemented based on MPI and
C++. The submatrix on each process is stored in ELLPACK format, using the
key-value map containers provided by C++. The key-value map implementation
facilitates the indexing and moving of the rows and columns. We did not imple-
ment a GPU version of SMG2S with this kind of communication optimization
since its core is the data movement among different computing units, which is
not well suitable for the multi-GPU architecture.

5 Performance Evaluation

5.1 Hardware Environment

In experiments, we install SMG2S on the supercomputers Tianhe-2 and Romeo.
Tianhe-2 is installed at National Super Computer Center in Guangzhou, China,
with 16000 compute nodes. Each node composes 2 Intel Ivy Bridge 12 cores @
2.2 GHz. Romeo is located at University of Reims Champagne-Ardenne, France,
which is a heterogeneous system with 130 BullX R421 nodes. Each node com-
poses 2 Intel Ivy Bridge 8 cores @ 2.6 GHz and 2 NVIDIA Tesla K20x GPUs.

5.2 Strong and Weak Scalability Results and Analysis

Table 1: Details for weak scaling and speedup evaluation.
(a) Matrix size for the CPU weak scaling tests on T ianhe-2.

CPU number 48 96 192 384 768 1536

matrix size 1× 106 2× 106 4× 106 8× 106 1.6× 107 3.2× 107

(b) Matrix size for the CPU weak scaling on ROMEO.

CPU number 16 32 64 128 256

matrix size 4× 105 8× 105 1.6× 106 3.2× 106 6.4× 106

(c) Matrix size for the GPU weak scaling and speedup evaluation on ROMEO.

CPU or GPU number 16 32 64 128 256

matrix size 2× 105 4× 105 8× 105 1.6× 106 3.2× 106

In this section, we will use double-precision real and complex values to eval-
uate the strong and weak scalability of SMG2S’s different implementations on
CPU and multiple GPUs. All the test matrices in this paper are generated with
the h set to be 10 and d to be 7. The details of the weak scaling experiments are
given in Table 1. The matrix size of the strong scaling experiments on Tianhe−2
with CPUs, ROMEO with CPUs and ROMEO with GPUs are respectively
1.6× 107, 3.2× 106 and 8.0× 105. The results are given in Fig. 5. The weak
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scaling for the PETSc implementation of SMG2S on Tianhe-2 trends to be bad
when MPI processes number is larger than 768, where the communication over-
head becomes dominant for computation. But for the communication optimized
SMG2S, both the strong and weak scaling perform well when the MPI process
number is larger than 768. The experiments show that SMG2S implemented with
GPUs can still have good strong and weak scalability. In conclusion, SMG2S has
always good strong scaling performance when d and h are much smaller than
the dimension of the matrix n, because it turns to be a O(n) problem. The weak
scalability is good enough for most cases. The reason is that the nilpotent matrix
A in SpGEMM is simple with not many non-zero elements, therefore there is
not enormous communication among different computing units. The weak scal-
ability has its drawback in case that the computing unit number come to be
huge for the SMG2S implementation based on PETSc, where the communica-
tion overhead become dominant. The special implementation of communication-
optimized SMG2S makes his strong and weak scalability better. It is also shown
that the double precision complex type matrix generation takes almost two times
time over the double precision real type for the basic SMG2S implementation,
but the time consumption of complex and real type matrix generation of op-
timized SMG2S seems similar. The reason is that there is no numerical values
multiplication anymore in the optimized implementation of SMG2S.

5.3 Speedup Results and Analysis

The speedup of both SMG2S on multi-GPU and communication-optimized SMG2S
on the CPUs compared with the PETSc-based implementation on CPU are also
tested on Romeo. According to the previous evaluation that complex and real
value types have always good scalability, we select the double precision com-
plex values for the speedup evaluation. The details of experiments are also given
in Table 1c. The results are shown in Fig. 6. We can find that the GPU ver-
sion of SMG2S has almost 1.9× speedup over the PETSc CPU version. The
communication-optimized SMG2S on CPUs has about 8× speedup over the ba-
sic PETSc CPU version.

6 Accuracy Verification

In the last section, we presented the good parallel performance of SMG2S, then it
is necessary to verify if the generated matrices are able to keep the given spectra
with enough accuracy. Generally, the iterative eigenvalue solvers such as the
Arnoldi or other Krylov methods [9] are applied to approximate the dominant
eigenvalues. But the accuracy verification is an opposite case. Now there exists
a value, we want to check if it is an eigenvalue of a given matrix. These iterative
methods cannot directly and efficiently deal with this kind of verification. In
this section, we present a method for the accuracy verification using the Shifted
Inverse Power method, which was easily implemented in parallel.
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(a) CPU strong scaling on Tianhe-2.
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(b) CPU weak scaling on Tianhe-2.
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(c) CPU strong scaling on ROMEO.
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Fig. 5: Strong and weak scaling results of SMG2S on different platforms. A base
2 logarithmic scale is used for X-axis, and a base 10 logarithmic scale for Y-axis.
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12 X. Wu et al.

6.1 Verification Method

The Power method is an algorithm to approximate the greatest eigenvalue.
Meanwhile, the Inverse Power method is a similar iterative algorithm to find
the smallest eigenvalue. The middle eigenvalues can be obtained by the Shifted
Inverse Power method [7]. The Shifted Inverse Power method is able to compute
the eigenpair whose eigenvalue is the nearest to a given value in a few iterations.

In details, for checking if the given value λ is the eigenvalue of a matrix, we
select a shifted value σ which is close enough to λ. An eigenpair (λ′, v′) with the
relation Av′ = λ′v′ can be approximated in very few steps by Shifted Inverse
Power method, with λ′ is the closest eigenvalue to σ. Since σ is very close to λ,
it should be that λ and λ′ are the same eigenvalue of a system, and v′ should
be the eigenvector related to λ. In reality, even if the computed eigenvalue is
very close to the true one, the related eigenvector may be quite inaccurate. For
the right eigenpairs, the formula Av′ ≈ λv′ should be satisfied. Based on this
relation, we define the relative error as Formula (2) to quantify the accuracy.

error =
||Av′ − λv′||2
||Av′||2

(2)

If λ′ = λ, this error should be 0, if not, this generated matrix will not have
an exact eigenvalue as λ. In real experiments, the exact solution cannot always
be guaranteed with the arithmetic rounding errors of floating operations during
the generation. A threshold could be set for accepting it or not.

6.2 Experimental Results

In the experiments, we test the accuracy of SMG2S with four selected cases
among the various tests of different spectral distributions. Fig. 7a and Fig. 7b
are cases of clustered eigenvalues with different scales. Fig. 7c is a special case
with the dominant part of eigenvalues clustered in a small region. Fig. 7d is
a case that composes the conjugate and closest pair eigenvalues. These figures
compare the difference between the given spectra (noted as initial eigenvalues
in the figures) and the approximated ones (noted as computed eigenvalues) by
the Shifted Inverse Power Method. Clearly, the matrices generated by SMG2S
can keep almost all the given eigenvalues in the four cases even they are very
clustered and close. The acceptance threshold is set to be 1.0× 10−3.

This acceptance for cases of Fig. 7a, Fig. 7b, Fig. 7c and Fig. 7d are respec-
tively 93%, 100%, 94% and 100%. The maximum error for them are respectively
3× 10−2, 7× 10−5, 3× 10−2 and 3× 10−7. After the tests, we conclude that
SMG2S is able to keep accurately the given spectra even for the very clustered
and closest eigenvalues. In some cases, a very little number of too clustered eigen-
values may result in the inaccuracy of given ones, but in general, the generated
matrix can fufil the need to evaluate the linear system and eigenvalue solvers.
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(a) Clustered Eigenvalues I: acceptance =
93%, max error = 2× 10−2
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(b) Clustered Eigenvalues II: acceptance
= 100%, max error = 7× 10−5
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(c) Dominant Clustered Eigenvalues: ac-
ceptance = 94%, max error = 3× 10−2
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(d) Conjugate and Closest Eigenvalues:
acceptance = 100%, max error = 3×10−7

Fig. 7: Verification using Different Types of Spectra.

6.3 Arithmetic Precision Analysis

Any floating operations will introduce rounding errors, which is not negligible for
the generation of large matrices. Regarding the non-Hermitian matrix, its eigen-
values may be extremely sensitive to perturbation. This sensibility is bounded
by bound(λ) ≤ ||E||2Cond(λ), with Cond(λ) the condition number of related
eigenvalue λ which can be excessively high for the non-Hermitian matrix and
||E||2 the Euclidean norm of errors [12]. One solution is to use the integer values
for the matrix generation, since only integers and the operations +, −, and ×
on the microprocessor can make absolutely exact computations. As shown in
Algorithm 1, most of the operations in SMG2S are +, − and ×, except the
step 7 with a division operation. Without step 7, we could introduce a special
SMG2S fully using integers to avoid the risks of rounding errors. The spectra of
the generated matrix will be (2d)! times scaled up over the given one.
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7 Conclusion and Pespectives

In this paper, we presented a scalable matrix generator and its parallel im-
plementation on homogeneous and heterogeneous clusters. It allows generating
large-scale non-Hermitian matrices with customized eigenvalues to evaluate the
impact of spectra on the linear/eigenvalue solvers on large-scale platforms. The
experiments proved its good scalability and the ability to keep the given spectra
with acceptable accuracy. For large matrices, the I/O operation on supercomput-
ers is always a bottleneck even with the high bandwidth. The matrices generated
in parallel by SMG2S, with data already allocated on different processes, can
be used directly to evaluate the numerical methods without concerning the I/O
operation. The interfaces of SMG2S to C, Python and scientific libraries PETSc
and Trilinos are provided. Interface to Fortran will be implemented in future.
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