Loïc Lagadec
email: loic.lagadec@ensta-bretagne.fr

PAnTHErS is a tool written in Python, intented to evaluate Homomorphic Encryption Schemes (HE Schemes). Its goal is to provide a fast insight of execution time and memory consumption for an application using homomorphic encryption.

PAnTHErS can then help users to choose the optimal HE Scheme to use for a given application. It also helps to choose the best parameters to use for a given HE Scheme. This document is decomposed as follows:

• Chapter 1 explains how to install PAnTHErS and prerequisites.

• Chapter 2 presents how to use PAnTHErS throught its graphical interface.

• Chapter 3 details how a user can add a new HE schemes into PAnTHErS library.

Chapter 1

PAnTHErS Installation 1.1 Getting Started

Here are the few steps required to get PAnTHErS up and running on your system.

Operating system

The install process described here have been tested on a stock 64 bits Debian Linux 9.5 system. The base system is installed using the Debian netinst installer.

Install required software

Sage Download Sage installer from SageMath website.

At the time we write this Readme, the latest Sage version is 8.2. You may try later versions of Sage, but the final result cannot be guaranteed.

Note that PAnTHErS was originally developped using Sage 7.6.

Here we download Sage 8.2 64 bits for Debian Linux 9 sage-8.2-DebianGNU Linux9-x86 64.tar.bz2 (1658.98 MB) dated from 2018-05-08 22:01.

MD5: fd83b2b63699b90c41e74e9988c705d2

For this installation process, we followed the official Sage installation guidelines.

Sage Software requirements

See Sage installation guide for more details $> sudo apt update $> sudo apt install binutils gcc make m4 perl tar git openssl libssl-dev

PAnTHErS interface uses Tk, the following package must be installed:

$> sudo apt install tk tk-dev

From a terminal, extract the Sage archive:

$> tar -jxvf sage-8.2-Debian_GNU_Linux_9-x86_64.tar.bz2

On the local folder, a SageMath directory is created

$> cd SageMath
Then start the build. To accelerate the build, you can add extra build jobs by providing a -j N option to the make command. Here we start the build with two jobs :

$> make -j 2

Note: the build process is very time consuming, it can last several hours. Then create a symbolic link named panthers on your home directory. This symbolic link is required for PAnTHErS graphical interface.

PAnTHErS installation

$> cd $> ln -s /path/to/PAnTHErS panthers

Starting PAnTHErS

Go to your Sage build folder and start Sage with the following command:

$> cd /path/to/SageMath $> ./sage
From Sage prompt, go to PAnTHErS interface folder and launch the interface:

$sage: cd $sage: cd panthers/Interface $sage: load("interface.py")

PAnTHErS interface should pop-up.

Note: current interface is pretty wide, a screen resolution at least 1600 pixels wide is required to be able to display the graphical interface.

Troubleshooting

User is not in sudoers file

To be able to run commands as root using the sudo command, a user needs to be registered in the sudoers file.

To do this, you first need to get a root terminal prompt:

$> su

Type your root password here, then from the root prompt:

#> visudo
You get to the sudoers file editor.

Below the line:

root ALL=(ALL) ALL
Add your user name (here the user is named "user"):

root ALL=(ALL) ALL user ALL=(ALL) ALL
Save the file and quit the editor.

The user is now able to run commands as root using sudo

You want to add Tk support to your already built Sage environment

As explained in the installation guide, you first need to download the Tk package:

$> sudo apt install tk tk-dev

Then rebuild Sage's Python:

$> sage -f python2 # rebuild Python $> make # rebuild components of Sage depending on Python

Copyright

PAnTHErS is licensed under the CeCILL 2.1 License Chapter 2

PAnTHErS HowTo

Prerequisites

First get a PAnTHErS installation up and ready, following instructions from README.md file.

Notations

HE scheme: Homomorphic Encryption scheme

Interface Startup

Begin by starting your PAnTHErS interface:

Go to your Sage build folder and start Sage with the following command:

$> cd /path/to/SageMath $> ./sage
From Sage prompt, go to PAnTHErS interface folder and launch the interface:

$sage: cd $sage: cd panthers/Interface $sage: load("interface.py")

PAnTHErS interface should pop-up.

PAnTHErS Interface at startup

Application Analysis or Execution

This part shows how to use PAnTHErS Interface in order to analyze or execute an application using one or several HE schemes.

Analysis selection

Select the kind of analysis you want to perform from the first interface pane:

Analysis selection from first pane

You can either choose:

• Execution: Execute all parameters combinations for a given application and HE schemes selection.

• Complexity analysis: Get an estimation of execution time in seconds required for all parameters combinations for a given application and HE schemes selection.

• Memory cost analysis: Get an estimation of memory cost in mebibytes (MiB) required for all parameters combinations for a given application and HE schemes selection.

Application and HE scheme(s) selection

Select the application and HE schemes to analyze or execute from the second and third interface pane:

Application and HE schemes selection: one scheme selected

You can either choose one or more HE schemes. For each scheme selected, its parameters show up in the 4th interface pane.

Validation of HE schemes parameters values

Optional: Check multiplicative depth

Before starting the execution or analysis, you can check that HE schemes parameters values provide sufficient multiplicative depth for the selected application. To check the multiplicative depth click on the Check depth button.

Checking HE schemes parameters multiplicative depth

If the multiplicative depth test fails, it means that theoretically at least one set of selected values will not provide enough multiplicative depth to perform homomorphic encryption. In this case you can go back to the value selection phase to select different values.

HE schemes parameters do not provide enough multiplicative depth

Start execution or analysis

Start the execution or analysis by clicking on the Start analysis button. A progress bar shows informations about execution/analysis evolution.

Start analysis or execution

Once execution/analysis is finished, a success message is prompted in the last interface pane, and a Display Graphs button appears.

Success message and Display Graphs button, shown at the end of analysis/execution process

Execution or analysis results

Results can be viewed as graphs by clicking on the Display Graphs button.

Results contained in a CSV file

Application Exploration

This part shows how to use PAnTHErS Interface in order to explore all parameters of one or several HE schemes to find optimal parameter sets for a given application.

Exploration selection

Select the exploration mode from the first pane of the interface.

Selection of the exploration mode

Select the kind of exploration you want to perform. You can choose from:

• Low complexity: Exploration will select results inducing lowest execution time.

• Low memory cost: Exploration will select results inducing lowest memory consumption.

• Best compromise: Exploration will select results based on a tradeoff of the two criteria above.

Application selection

Select the application to explore from the second interface pane:

Application selection

After application selection, you have to select the level of security for the HE schemes (80 or 128 bits).

Level of security selection

The multiplicative depth is automatically updated to fit the application selected.

Multiplicative depth is automatically updated when an application is selected

Optional: You can choose a larger range for the multiplicative depth, but the lower depth bound must not be chosen under automatically selected value.

Choosing custom multiplicative depth

Finalize application selection by clicking on the Confirm depth button.

Validate the HE schemes parameters values using the Confirm button. In the last pane of the interface, a brief summary of exploration configuration is shown:

Validation of HE schemes parameters values

Start exploration

Start the exploration by clicking on the Start Exploration button. A progress bar shows informations about exploration evolution.

Start exploration

Once exploration is finished, a success message is prompted in the last interface pane, and a Display Graphs button appears.

Chapter 3

Adding a new Homomorphic Encryption scheme to PAnTHErS

This chapter explains how to integrate a new HE scheme into PAnTHErS.

Prerequisites

Before the integration, the new HE scheme algorithm must be decomposed into HE Basic, Specific and Atomic functions.

Adding a new Specific to PAnTHErS

Get the Specific algorithm template

A template to build a new Specific is available in PAnTHErS source files.

Copy the template file and name it upon your own Specific: $> cd /path/to/panthers/ $> cp Templates/template_Specific.sage mySpecific.sage Now edit the file mySpecific.sage and adapt it to your own Specific algorithm.

make_SpecificName function

#Rename the function to match your Specific algorithm name #Here the new specific created is named MySpecific def make_MySpecific(self) :

""" Build a SpecificFunction object having : -a list of input Parameters -a function containing its operations (ope function), -a list of output Parameters """ #Build a SpecificFunction object named "MySpecific" spec = self.builder.specificFunction("MySpecific")

#Create initial inputs Parameters #Here the input parameters are named q1 and q2 #If an input Parameter can have different type, put "NoType"

#Build q1 Parameter, #its name is "q1" #its type is "int" #its initial value is 0 #its dimension is 1,1 (row count, column count) #its degree is 0 q1 = self.builder.parameter("q1","int",0,1,1,0)

#Build q2 Parameter, #its name is "q2" #its type is "NoType" (the type can vary depending on the inputs) #its initial value is 0 #its dimension is 1,1 (row count, column count) #its degree is 0 q2 = self.builder.parameter("q2","NoType",0,1,1,0)

#List here the newly created parameters q1 and q2 inputs = [q1, q2] spec.inputs = inputs #Retrieve Atomics that you will use in your Specific prodScal = self.finder.atomic(self.allAtomics, "prodScal")

check_outputs function

The check_outputs function checks whether the provided outputs are simple strings or actual parameters.

#Build o1 Parameter, #its name is "OutSpecMySpecific_spec_O1_<Specific_call_counter>" #its type is "int" #its initial value is 0 #its dimension is 1,1 (row count, column count)
#its degree is 0 o1 = self.builder.parameter("OutSpecMySpecific_spec_O1_" + \ spec.count.str(),"int",0,1,1,0)

#Build o2 Parameter, #its name is "OutSpecMySpecific_spec_O2_<Specific_call_counter>" #its type is "int" #its initial value is 0 #its dimension is 1,1 (row count, column count) #its degree is 0 o2 = self.builder.parameter("OutSpecMySpecific_spec_O2_" + \ spec.count.str(),"int",0,1,1,0)

#List here newly created output parameters outputs = [o1, o2] spec.count = spec.count + 1 spec.outputs = outputs return outputs else :

#Replace strings by Parameter objects for i in range(len(outputs)): if isinstance(outputs[i], str) :

#Build generic Parameter with default values, #its name is the value provided in outputs[i]

#its type is "NoType" (generic type) #its initial value is 0 #its dimension is 1,1 (row count, column count) #its degree is 0 outputs[i] = self.builder.parameter(outputs[i],"NoType", 0, 1, 1, 0) return outputs

ope function

The ope function contains the list of operations performed by the new Specific algorithm.

Integrate your Specific in PAnTHErS library

Edit the specificfunctioncreator.sage file.

Register your Specific algorithm in the SpecificFunctionCreator class by adding the following line to the make_all function:

res = res + [self.make_MySpecific()]
Copy the code of your function make_MySpecific, and paste it after every other make_function functions.

class SpecificFunctionCreator(object):

def __init__(self, flag = "HEBasic", file = "") :

#... #.

Use your Specific in a HE scheme

To have access to your Specific in a HE scheme, you need to declare it by adding the following line in the __init__ function of the HE scheme class:

self.mySpecific = self.finder.specific(self.heMult.allSpecifics, "mySpecific")

Here is an example for the integration of the Specific algorithm mySpecific in a scheme SchemeName class:

class SchemeName(HEScheme) :

""" Describe your HE scheme here """

def __init__(self,

Create the analysis models for a new Specific

To be able to get theoretical analysis for memory cost and execution time estimations, the Specific algorithm have to be adapted. The algorithm duplication is required and must be integrated with some adaptations to perform the desired analysis process. This has to be done twice: once for memory consumption analysis and once for computational complexity analysis.

Specific: Memory consumption analysis

Here are described the steps required for providing memory consumption analysis for the Specific algorithm MySpecific.

Import the Specific algorithm code

The Specific algorithm code from your file mySpecific.sage must be imported in the file specificfunctionmemorycreator.sage. This file can be found on PAnTHErS source code:

/path/to/panthers/Memory/specificfunctionmemorycreator.sage

Now edit the file specificfunctionmemorycreator.sage to add your own code. Like for specificfunctioncreator.sage in section 3.2.5, you need to register your algorithm to the SpecificFunctionMemory Creator class by adding the following line to the make_all function:

res = res + [self.make_MySpecific()]
Then, copy the code of your function make_MySpecific, and paste it after every other make_function functions.

class SpecificFunctionMemoryCreator(object):

def

ope function

The ope function also need to be updated.

The prototype of the function must be updated to accept a Memory object:

def ope(inputs, outputs = [], memory = spec.memory, count = spec.count) :

You also need to update all the operations performed by Atomics and Specifics. Replace all the calls by their memory analysis counterparts. For example:

[outputs[0]] = add.ope([q1,q2], [outputs[0]]) #Becomes [outputs[0]] = add.ope([q1,q2], [outputs[0]], memory)
Ensure that your updated function call matches the parameter order as described in the file Memory/atomicfunctionmemorycreator.sage. #Local variable example tmpAdd = self.builder.parameter("TmpVar_add_" + spec.count.str(), "poly", R(0),1,1,0) tmpMul = self.builder.parameter("TmpVar_mul_" + spec.count.str(), "poly", R(0

Specific: Computational complexity analysis

Here are described the steps required for providing computational complexity analysis for the Specific algorithm MySpecific.

Import the Specific algorithm code

The Specific algorithm code from your file mySpecific.sage must be imported in the file specificfunctioncomplexitycreator.sage. This file can be found on PAnTHErS source code:

/path/to/panthers/Complexity/specificfunctioncomplexitycreator.sage Now edit the file specificfunctioncomplexitycreator.sage to add your own code. Like for specificfunctioncreator.sage in section 3.2.5, you need to register your algorithm to the SpecificFunctionComplexity Creator class by adding the following line to the make_all function:

res = res + [self.make_MySpecific()]
Then, copy the code of your function make_MySpecific, and paste it after every other make_function functions.

class SpecificFunctionComplexityCreator(object):

def

Update your Specific algorithm code to evaluate computational complexity

Now from the file specificfunctioncomplexitycreator.sage, edit the code of your make_MySpecific function in order to adapt it for computational complexity analysis.

make_MySpecific function def make_MySpecific(self) :

#Build a SpecificFunctionComplexity object named "MySpecific" spec = self.builder.specificFunctionComplexity("MySpecific")

#Create a Complexity Object used for computational complexity tracking spec.complexity = Complexity() #No more changes required for this function #...

ope function

The ope function also need to be updated.

The prototype of the function must be updated to accept a Complexity object:

def ope(inputs, outputs = [], complexity = spec.complexity, count = spec.count) :

At the beginning of the ope function, add the following line to reinitialize the spec.complexity object.

spec.complexity.reset()

You also need to update all the operations performed by Atomics and Specifics. Replace all the calls by their computational complexity analysis counterparts. For example:

[outputs[0]] = add.ope([q1,q2], [outputs[0]]) #Becomes [outputs[0]] = add.ope([q1,q2], [outputs[0]], complexity)
Ensure that your updated function call matches the parameter order as described in the file Complexity/atomicfunctioncomplexitycreator.sage.

At the end of the ope function, you need to add the following line in oder to log computational complexity in output file: complexity.printInFile(spec, spec.name + " ")

The final ope function: #Log computational complexity in output file complexity.printInFile(spec, spec.name + " ") spec.outputs = outputs return spec.outputs ope function: loops analysis optimization Analyzing loops can be time consuming. It's possible to optimize their computational complexity analysis process. To do so, you have to retrieve the analysis results for one loop, and then, manually multiply it by the amount of loops that would have been performed.

Scheme integration using PAnTHErS template

Get the scheme template

A template for a new HE scheme is available in PAnTHErS source files.

Copy the template file and name it upon your own scheme: $> cd /path/to/panthers/ $> cp Templates/template_HE_Scheme_Class.sage myScheme.sage Now edit the file myScheme.sage and adapt it to your own scheme.

Class name

#Change class name with your own Scheme name class MyScheme(HEScheme) :

""" Describe your HE scheme here """ #Build p1 Parameter from listOfParams[0] (value of p1), #its name is "p1" #its type is "int" #its dimension is 1,1 (row count, column count) p1 = self.builder.parameter("p1", "int", listOfParams[0], 1, 1)

__init__ function

#Build p2 Parameter from listOfParams [1] (value of p2), #its name is "p2" #its type is "matrixPoly" #its dimension is 2,3 (row count, column count) p2 = self.builder.parameter("p2", "matrixPoly", listOfParams[1], 2, 3)

#

#Here update the type and dimensions of the generated Keys for the scheme # Private key is a poly of size 1,1 (row count, column count) with initial # value of 0 # Public key is a listPoly of size 1,2 (row count, column count) with # initial value of [] (empty list) # Evaluation key is a listPoly of size 1,2 (row count, column count) with # initial value of [] (empty list)

self.heKeyGen.inputs = self.inputs sk = self.builder.key("PrivateKey", "poly",0,1,1) pk = self.builder.key("PublicKey", "listPoly",[],1,2) rlk = self.builder.key("EvaluationKey", "listPoly",[],1,2) self.heKeyGen.outputs = [sk,pk,rlk]

keyGen.ope function

The keyGen.ope function describes the keys generation for the new HE scheme. The key generation must be described using exclusively Atomic and Specific algorithms. See the definition of ope function of a new Specific algorithm in section 3.2.4 for more examples.

def ope(inputs = self.inputs, sets = self.sets, count = self.heKeyGen.count) :

#Here define all the steps required for keys generation #These steps must be described using

depth function

def depth(self) :

"""Optional: calculates multiplicative depth of the scheme (thanks to a pre-calculated equation) """ res = 0 #Describe depth calculation here (without using Atomics or Specifics) return res

__repr__ function

#Here return the Name of the class def __repr__(self):

return "MyScheme"

Create the analysis models for a new HE Scheme

To be able to get theoretical analysis for memory cost and execution time estimations, the new HE Scheme have to be adapted. The scheme duplication is required and must be adaptated to perform the desired analysis process. This has to be done twice: once for memory consumption analysis and once for computational complexity analysis.

HE scheme: Memory consumption analysis

Here are described the steps required for providing memory consumption analysis for the HE Scheme MyScheme, defined in previous section (seciton 3.4).

Duplicate the HE Scheme source file

Your HE scheme source file myScheme.sage must be duplicated. Here we duplicate it under the name of mySchemeMemory.sage, the duplicated file is placed in PAnTHErS source Memory folder.

$> cd /path/to/panthers/ $> cp myScheme.sage Memory/mySchemeMemory.sage

Now edit the file mySchemeMemory.sage to adapt the code for memory analysis.

Update your HE scheme code to evaluate memory consumption

Now from the file mySchemeMemory.sage, edit the code of your HE scheme in order to adapt it for memory consumption analysis.

Class name

Update your class name to MySchemeMemory, also, make it inherit from HESchemeMemory.

#Change class name class MySchemeMemory(HESchemeMemory) :

__init__ function

At the beginning of the __init__ function, you must declare a Memory object that will be used to track memory consumption.

self.memory = Memory(flag, file)

You have to change the call to HEScheme.__init__ to HESchemeMemory.__init__.

HEScheme.__init__(self, [self.p1, self.p2], listOfSets) #Becomes HESchemeMemory.__init__(self, [self.p1, self.p2], listOfSets, self.memory)

At last, you must declare the module of your HE scheme to the Memory object. The module is taken from the input parameters. Here the parameter p1 is declared as the module for the HE scheme.

self.memory.module = self.p1

Here is the resulting __init__ function.

keyGen function

You need to change the line responsible of the creation of the heKeyGen object. The type of this object changes from HEKeyGen to HEKeyGenMemory.

self.heKeyGen = self.builder.heKeyGen() #Becomes self.heKeyGen = self.builder.heKeyGenMemory() Rigth after that line, you need to build a Memory object for the new HEKeyGenMemory object.

self.heKeyGen.memory = Memory(flag, file)

Here is the resulting keyGen function.

def keyGen(self) :

#Update the builder to create a HEKeyGenMemory object self.heKeyGen = self.builder.heKeyGenMemory() #Create the associated Memory object self.heKeyGen.memory = Memory(flag, file) #...

keyGen.ope function

Retrieve the Memory object at the beginning of the ope function.

memory = self.memory

Like for the Specific algorithm memory analysis function (section 3.3.1), the Specific and Atomic algorithm calls used in the keyGen.ope function need to be replaced by their memory consumption analysis couterparts. For example:

[sk] = addTimes.ope ([q1,q2,q2 At the end of the function, add some lines of code to keep track of memory consumption. You first need to report there the ouput parameters (as the keyGen.ope function stores its outputs in the inputs, the inputs are referenced here). memory.sortHEBasic(self.heKeyGen, "KeyGen : ", self.inputs) Then, add the two following lines to keep memory object updated. #Local variable example tmpAdd = self.builder.parameter("TmpVar_add_" + spec.count.str(), "poly", R(0),1,1,0) tmpMul = self.builder.parameter("TmpVar_mul_" + spec.count.str(), "poly", R(0),1,1,0) #Register local variables after their creation memory.add(tmpAdd) memory.add(tmpMul) memory.raise_memTmp(tmpAdd) memory.raise_memTmp(tmpMul) #... #function operations #... #At the function end, add local variables to the existing inputs memory.sortHEBasic(self.heKeyGen, "KeyGen : ", self.inputs + [tmpAdd, tmpMul]) #...

enc, dec, addHE and multHE functions

Describe the enc, dec, addHE and multHE functions using the same approach as for the keyGen function.

However, be sure to adapt the process for each function. For example, in the enc function, create a heEnc object of type HEEncMemory.

HE scheme: computational complexity analysis

Here are described the steps required for providing computational complexity analysis for the HE Scheme MyScheme, defined in section 3.4.

Duplicate the HE Scheme source file

Your HE scheme source file myScheme.sage must be duplicated. Here we duplicate it under the name of mySchemeComplexity.sage, the duplicated file is placed in PAnTHErS source Complexity folder.

$> cd /path/to/panthers/ $> cp myScheme.sage Complexity/mySchemeComplexity.sage

Now edit the file mySchemeComplexity.sage to adapt the code for computational complexity analysis.

Update your HE scheme code to evaluate computational complexity

Now from the file mySchemeComplexity.sage, edit the code of your HE scheme in order to adapt it for computational complexity analysis.

Class name

Update your class name to MySchemeComplexity, also, make it inherit from HESchemeComplexity.

#Change class name class MySchemeComplexity(HESchemeComplexity) :

__init__ function

You must update the __init__ function prototype to allow a Complexity object as input parameter.

def __init__(self, listOfParams, listOfSets, flag = "HEBasic", file = "", \ complexity = Complexity()) :

You have to change the call to HEScheme.__init__ to HESchemeComplexity.__init__.

enc, dec, addHE and multHE functions

Describe the enc, dec, addHE and multHE functions using the same approach as for the keyGen function.

However, be sure to adapt the process for each function.

Adding the new scheme to PAnTHErS graphical interface

To use your new HE scheme on PAnTHErS graphical interface, you need to manually add it in the source files.

In const_id.py file

Add a global identifier for your scheme in the file const_id.py.

Beware not to choose an identifier already affected to an existing scheme. It is recommended to use the value of the highest known scheme ID and increment it by one for your own scheme ID.

For example, for the application MyScheme, create a new global identifier called MYSCHEME_ID:

MYSCHEME_ID = 3

In the getSchemeName function, add the code required to find the name of the new scheme from its global identifier: elif scheme == MYSCHEME_ID : schemeName = "myScheme"

In Interface/interface.py file

In the file Interface/interface.py, add to the __init__ function:

"MyScheme" = scheme name # MYSCHEME_ID = global identifier for MyScheme #2 = nbOfParams (for the two params p1 and p2)

Chapter 4

Adding a new Homomorphic application to PAnTHErS

PAnTHErS is provided with some applications. They show some examples of how it is possible to evaluate homomorphic encryption usage. You can also integrate your own application within PAnTHErS with a few steps described in this chapter.

Write your Application code and convert it to PAnTHErS format.

You first need to get your own application working, written in C++, using Cingulata tool.

Then convert your application to BLIF format. A detailed example of application convertion to BLIF is presented on Cingulata website.

From your converted BLIF file, convert it using PAnTHErS embedded tool. The convertion tool is located on /path/to/panthers/Templates/Template_Appli/Tools.

To convert your application you need:

• parse_mapped_blif.rb: The convertion tool, written in Ruby.

• appli.blif: Your application, converted to BLIF format using Cingulata.

From a terminal, run PAnTHErS convertion tool. Here is an example of convertion for a sample appli.blif file: The tool will create a file called appli.sage, containing your converted application.

For example, for the application MyApp, create a new global identifier called MYAPP_ID: MYAPP_ID = 5 Also, you have to update the constant MAX_APP_ID. Its value must be equal to one above the maximum application ID value.

For example, for the application MyApp, as we added one identifier, the MAX_APP_ID as to be updated :

MAX_APP_ID = 5 #BECOMES MAX_APP_ID = 6
Update the getApplicationName function. This function is used to easily retrieve the application name from its global identifier value.

Here is an example for the application MyApp.

elif appId == MYAPP_ID :

return MYAPP_APP_NAME Update the getApplicationDepth function. This function is used to easily retrieve the application multiplicative depth from its global identifier value.

Here is an example for the application MyApp.

 3.4.3 __init__ function . 3.4.4 defineInParams function . 3.4.5 keyGen function . 3.4.6 keyGen.ope function . 3.4.7 enc, dec, addHE and multHE functions . 3.4.8 depth function . 3.4.9 __repr__ function . 3.5 Create the analysis models for a new HE Scheme . 3.5.1 HE scheme: Memory consumption analysis

 def ope(inputs, outputs = [], count = spec.count) : outputs = check_outputs(outputs,count) spec.inputs = inputs #Report your input parameters here #The input parameters for the new Specific are q1 and q2 [q1, q2] = spec.inputs #Describe the specific algorithm here using Atomics and/or Specifics #Here the two outputs o1 and o2 are computed using Atomics #First output parameter o1 is the result of q1+q2 #The Atomic add is used [outputs[0]] = add.ope([q1,q2], [outputs[0]]) #Second output parameter o2 is the result of q1*q2 #The Atomic mult is used [outputs[1]] = mult.ope([q1,q2], [outputs[0]]) spec.outputs = outputs return spec.outputs spec.ope = ope return spec

 At the end of the ope function, you need to add the two following lines in oder to keep the Memory object sorted: spec.memory.allMem = [] memory.sortSpec(spec, spec.name + " : ") The final ope function: #Update the function prototype to accept a Memory object def ope(inputs, outputs = [], memory = spec.memory, count = spec.count) : #... #Update the add call for its memory analysis counterpart [outputs[0]] = add.ope([q1,q2], [outputs[0]], memory) #Update the mult call for its memory analysis counterpart [outputs[1]] = mult.ope([q1,q2], [outputs[0]], memory) #Add two lines sort parameters in Memory object spec.memory.allMem = [] memory.sortSpec(spec, spec.name + " : ") spec.outputs = outputs return spec.outputs ope function: local variables Another code update is required if you introduced local variables in your ope function. As they are not automatically tracked by the Memory object, you need to do it manually.

),1,1,0) #Register local variables after their creation memory.add(tmpAdd) memory.add(tmpMul) memory.raise_memTmp(tmpAdd) memory.raise_memTmp(tmpMul) #... #function operations #... #At the function end, add local variables to global memory spec.memory.allMem = [tmpAdd, tmpMul] #...

#

 Update the function prototype to accept a Complexity object def ope(inputs, outputs = [], complexity = spec.complexity, count = spec.count) : spec.complexity.reset() #... #Update the add call for its computational complexity analysis counterpart [outputs[0]] = add.ope([q1,q2], [outputs[0]], complexity) #Update the mult call for its computational complexity analysis counterpart [outputs[1]] = mult.ope([q1,q2], [outputs[0]], complexity)

#

 Loop optimization example for i in range(10) : [a] = add.ope([a,b], [a], complexity) #Becomes #The factor 10 is provided on the last add operation parameter [a] = add.ope([a,b], [a], complexity, 10)

 def __init__(self, listOfParams, listOfSets) : self.builder = Builder() self.finder = Finder() #List your input sets here #Here the new scheme have a set named R [self.R] = listOfSets #List your input parameters here #Here the new scheme have two parameters p1 and p2 [self.p1, self.p2] = self.defineInParams(listOfParams, listOfSets) #Put back your input parameters list here #Here put back the two parameters p1 and p2 HEScheme.__init__(self, [self.p1, self.p2], listOfSets) # ... # ... list of Atomics and Specifics available in PAnTHErS ... # ... 3.4.4 defineInParams function def defineInParams(self, listOfParams) : """ Build Parameter objects with input parameters values given in listOfParams See Parameter class for a list of all possible build values """ #Build two Parameter objects for the parameters p1 and p2

 Return newly created Parameters return [p1, p2] 3.4.5 keyGen function def keyGen(self) : """ Defines HEKeyGen object which has : -a list of Parameter inputs -a function containing operation of key generation. Outputs (keys generated) are put in self.inputs of the HEScheme class. """ self.heKeyGen = self.builder.heKeyGen()

 def __init__(self, listOfParams, listOfSets) : self.builder = Builder() self.finder = Finder() #Add a Memory object to track memory consumption self.memory = Memory(flag, file) #... #Change HEScheme to HESchemeMemory HESchemeMemory.__init__(self, [self.p1, self.p2], listOfSets, self.memory) #Define scheme module in Memory object #The module is taken from input parameters self.memory.module = self.p1 # ...

 Here is a full example of the const_id.py file after adding a global identifier for the applicationMyApp: THE NEW APPLICATION GLOBAL IDENTIFIER MYAPP_ID = 5 #INVALID MODE, only here to now the max app id #UPDATE THE MAX_APP_ID VALUE TO FIT THE MAX APP_ID VALUE +1 Croissant" #Add MyApp application name MYAPP_APP_NAME = "MyApp"

 3.5.2 HE scheme: computational complexity analysis . 3.6 Adding the new scheme to PAnTHErS graphical interface 3.6.1 In const_id.py file . 3.6.2 In Interface/interface.py file . 3.6.3 In Analyse/analyse.py file . 3.6.4 In every Analyse/appli_*.sage files . 3.6.5 In Analyse/parameterschoice.sage file . Add your application to PAnTHErS graphical interface

4 Adding a new Homomorphic application to PAnTHErS 4.1 Write your Application code and convert it to PAnTHErS format. 4.2 Add your application code to PAnTHErS . 4.2.1 Get application template files . 4.2.2 Create a global identifier for your application . 4.2.3 Update the templates with your application global identifier 4.2.4 Integrate your application code in the template . 4.2.5 Create your application input parameters . 4.3 4.3.1 Get the template file . 4.3.2 Update graphical interface source files .

 You can now use and test your new Specific algorithm MySpecific with an existing PAnTHErS application. However, no theoretical analysis is associated with your algorithm yet. For now, you can only use it for practical executions.

listOfParams, listOfSets) : self.builder = Builder() self.finder = Finder() #... #...

#Definition of Atomics and Specifics available in PAnTHErS library

self.add = self.finder.atomic(self.heKeyGen.allAtomics, "add") self.mult = self.finder.atomic(self.heKeyGen.allAtomics, "mult") self.sub = self.finder.atomic(self.heKeyGen.allAtomics, "sub") #... #... self.addTimes = self.finder.specific(self.heKeyGen.allSpecifics, "addTimes") self.distriLWE = self.finder.specific(self.heKeyGen.allSpecifics, "distriLWE") self.powersOf = self.finder.specific(self.heKeyGen.allSpecifics, "powersOf") #... #... #Declare here the new Specific algorithm to use it in SchemeName self.mySpecific = self.finder.specific(self.heMult.allSpecifics, "mySpecific") #... #...

Update your Specific algorithm code to evaluate memory consumption

 Now from the file specificfunctionmemorycreator.sage, edit the code of your make_MySpecific function in order to adapt it for memory analysis.

	#Here paste the code from the mySpecific.sage file
	def make_MySpecific(self) :
	#... content of mySpecific.sage file
	2. 2.1 make_MySpecific function
	def make_MySpecific(self) :
	#Build a SpecificFunctionMemory object named "MySpecific"
	spec = self.builder.specificFunctionMemory("MySpecific")
	#Create a Memory Object used for memory consumption tracking
	spec.memory = Memory()
	#No more changes required for this function
	#...
	__init__(self) :
	#...
	#...
	def make_all(self) :
	res = []
	res = res + [self.make_addTimes()]
	res = res + [self.make_distriLWE()]
	res = res + [self.make_doubleDistriLWE()]
	#...
	#...
	#Register your Specific to the SpecificFunctionMemoryCreator
	#Add following line:
	res = res + [self.make_MySpecific()]
	return res
	def make_addTimes(self) :
	#...
	def make_distriLWE(self) :
	#...
	#...
	def make_msbToPolynomial(self) :
	#...
	def make_msbToPolynomial(self) :
	#...

7 enc, dec, addHE and multHE functions

 Describe the enc, dec, addHE and multHE functions using the same approach as for the keyGen function.

	3.4.#The same work has to be done for the following functions
	#using Atomics and Specifics available in PAnTHErS
	def enc(self) :
	#describe the encrypt function
	#...
	def dec(self) :
	#describe the decrypt function
	#...
	def addHE(self) :
	#describe the Homomorphic Addition function
	#...
	def multHE(self) :
	#describe the Homomorphic Multiplication function
	#...
	#Private Key generation
	[sk] = addTimes.ope([q1,q2,q2], [sk])
	#Put more operations here
	#...
	#Public Key generation
	[pk] = addTimes.ope([q1,q2,q2], [pk])
	#Put more operations here
	#...
	#Evaluation Key generation
	[rlk] = addTimes.ope([q1,q2,q2], [rlk])
	#Put more operations here
	#...
	#The 3 keys (sk, pk and rlk) are added to the general inputs of the class
	self.inputs = self.inputs + [sk,pk,rlk]
	self.heKeyGen.count = self.heKeyGen.count + 1
	self.heKeyGen.ope = ope

Atomics and Specifics available #in PAnTHErS

#if a temporary variable is required, #you can use the following name generator to avoid name collisions : # "TmpHEBasicKeyGen_" + self.heKeyGen.count.str()

 Here is the resulting keyGen.ope function. Another code update is required if you introduced local variables in your keyGen.ope function. As they are not automatically tracked by the Memory object, you need to do it manually.

	self.heKeyGen.memory = memory
	self.memory.update(memory)
	def ope(inputs = self.inputs, sets = self.sets, count = self.heKeyGen.count) :
	#Retrieve the Memory object
	memory = self.memory
	#Private Key generation
	#Update addTimes with its memory consumption analysis couterpart
	[sk] = addTimes.ope([q1,q2,q2], [sk], memory)
	#...
	#Public Key generation
	#Update addTimes with its memory consumption analysis couterpart
	[pk] = addTimes.ope([q1,q2,q2], [pk], memory)
	#...
	#Evaluation Key generation
	#Update addTimes with its memory consumption analysis couterpart
	[rlk] = addTimes.ope([q1,q2,q2], [rlk], memory)
	#...
	#Add this line to keep memory object sorted
	#For the keyGen.ope only, report the inputs on last parameter
	memory.sortHEBasic(self.heKeyGen, "KeyGen : ", self.inputs)
	#Add the two following lines to keep track of memory consumption
	self.heKeyGen.memory = memory
	self.memory.update(memory)
	keyGen.ope function: local variables

 At the end of each functionHE.ope function, take care to report the ouput parameters and every local variable you may have created. For example for the enc function:

	def enc(self) :
	#Update the builder to create a HEEncMemory object
	self.heEnc = self.builder.heEncMemory()
	#Create the associated Memory object
	self.heEnc.memory = Memory(flag, file)
	And so on for each following functions.
	def enc(self) :
	#describe the encrypt function
	#...
	def dec(self) :
	#describe the decrypt function
	#...
	def addHE(self) :
	#describe the Homomorphic Addition function
	#...
	def multHE(self) :
	#describe the Homomorphic Multiplication function
	#...
	memory.sortHEBasic(self.heEnc, "MyFunction: ", self.outputs + [tmp1, tmp2, \
	tmpN, ...])
	2.6 __repr__ function

#Here return the Name of the class def __repr__(self):

return "MySchemeMemory"

 At the end of the function, add the following line to log computational complexity information in output file.

	complexity.printInFile(self.heKeyGen, "KeyGen ")
	Here is the resulting keyGen.ope function.
	def ope(inputs = self.inputs, sets = self.sets, \
	complexity = self.heKeyGen.complexity) :
	#Reset complexity object
	self.heKeyGen.complexity.reset()
	#Private Key generation
	#Update addTimes with its computational complexity analysis couterpart
	[sk] = addTimes.ope([q1,q2,q2], [sk], complexity)
	#...
	#Public Key generation
	#Update addTimes with its computational complexity analysis couterpart
	[pk] = addTimes.ope([q1,q2,q2], [pk], complexity)
	#...
	#Evaluation Key generation
	#Update addTimes with its computational complexity analysis couterpart
	[rlk] = addTimes.ope([q1,q2,q2], [rlk], complexity)
	#...
	#Add this line to log computational complexity data to output file
	complexity.printInFile(self.heKeyGen, "KeyGen ")
	HEScheme.__init__(self, [self.p1, self.p2], listOfSets)
	#Becomes
	HESchemeComplexity.__init__(self, [self.p1, self.p2], listOfSets, complexity)
	Here is the resulting __init__ function.
	def __init__(self, listOfParams, listOfSets, flag = "HEBasic", file = "", \
	complexity = Complexity()) :
	self.builder = Builder()
	self.finder = Finder()
	#...

#Change HEScheme to HESchemeComplexity

HESchemeComplexity.__init__(self, [self.p1, self.p2], listOfSets, complexity) # ...

 At the end of each functionHE.ope function, take care to report the related function call to log the results. For example for the enc function:

	#describe the Homomorphic Addition function
	#...
	def multHE(self) :
	#describe the Homomorphic Multiplication function
	#...
	complexity.printInFile(self.heEnc, "Enc ")
	2.6 __repr__ function
	#Here return the Name of the class
	def __repr__(self):
	return "MySchemeComplexity"
	def enc(self) :
	#Update the builder to create a HEEncComplexity object
	self.heEnc = self.builder.heEncComplexity()
	#Create the associated Complexity object
	self.heEnc.complexity = Complexity(flag, file)
	And so on for each following functions.
	def enc(self) :
	#describe the encrypt function
	#...
	def dec(self) :
	#describe the decrypt function
	#...
	def addHE(self) :

For example, in the enc function, create a heEnc object of type HEEncComplexity.

Application and HE schemes selection: several schemes selected

Fill HE schemes parameters variation

Fill HE schemes parameters with default values and ranges of values.

Important: You need at least one parameter with a range of values per HE scheme.

Important: For each parameter value you have to provide a default value. This value is used when the HE scheme is executed or analyzed using varying values for another parameter.

Selection of custom parameter values or range of values for HE schemes

Parameters values can be globally reset to 0 using the Reset button:

Reset HE schemes parameter values

Parameters values can be set to a default value using the Default Value button. These default values can be used to quickly test the interface.

Default values are currently only valid for the FiveHB Application.

Set default values for HE schemes parameters

Validate the HE schemes parameters values using the Confirm button. In the last pane of the interface, a brief summary of all analysis configuration is shown:

Results shown after clicking on Display Graphs button

All result values are stored in CSV files in following directory:

/path/to/panthers/Interface/Res Graphs obtained from these results can be found in following directory:

/path/to/panthers/Interface/Res/Graphs

CSV files containing execution/analysis results

Selection of the exploration type

Optional: You can set constraints on the results selected by the exploration by providing maximum values allowed for execution duration and/or memory cost.

Selection of optional constraints

Validation of multiplicative depth by clicking on Confirm depth button

HE schemes and parameters variation selection

After confirmation of mutiplicative depth, all available HE schemes are selected for current exploration.

After multiplicative depth confirmation, all HE schemes are selected

Optional: You can deselect unwanted schemes by unticking them from the HE schemes pane

Deselection of unwanted HE schemes

The parameter values for selected HE schemes are automatically filled with chosen values.

Optional: You can change the size of the exploration space by selecting parameters variation as detailed for Analysis/Execution mode.

Selection of custom parameter values or range of values for HE schemes

Success message and Display Graphs button, shown at the end of the exploration process

Exploration results

Results can be viewed as graphs by clicking on the Display Graphs button.

Results of exploration shown after clicking on Display Graphs button

All explorations result values are stored in CSV files in following directory:

/path/to/panthers/Interface/Res/Exploration Graphs obtained from these results can be found in following directory:

/path/to/panthers/Interface/Res/Graphs

CSV files containing exploration results

Results contained in a CSV file

keyGen function

You need to change the line responsible of the creation of the heKeyGen object. The type of this object changes from HEKeyGen to HEKeyGenComplexity. self.heKeyGen = self.builder.heKeyGen() #Becomes self.heKeyGen = self.builder.heKeyGenComplexity() Rigth after that line, you need to build a Complexity object for the new HEKeyGenComplexity object.

self.heKeyGen.complexity = Complexity(flag, file)

Here is the resulting keyGen function.

def keyGen(self) :

#Update the builder to create a HEKeyGenComplexity object self.heKeyGen = self.builder.heKeyGenComplexity() #Create the associated Complexity object self.heKeyGen.complexity = Complexity(flag, file) #...

keyGen.ope function

You must update the keyGen.ope function prototype to allow a Complexity object as input parameter.

def ope(inputs = self.inputs, sets = self.sets, complexity = self.heKeyGen.complexity) :

At the beginning of the keyGen.ope function add the following line to reset the complexity object: self.heKeyGen.complexity.reset() Like for the Specific algorithm memory analysis function in section 3.3.1, the Specific and Atomic algorithm calls used in the keyGen.ope function need to be replaced by their computational complexity analysis couterparts. For example:

[sk] = addTimes.ope ([q1,q2,q2]

Ensure that your updated function call matches the parameter order as described in the files Complexity/atomicfunctioncomplexitycreator.sage and Complexity/specificfunctioncomplexitycreator.sage.

#["p1", "p2"] = varying input parameters names of current scheme self.myScheme = SchemeInterface(self.schemeFrame, self.paramFrame, "MyScheme", \ MYSCHEME_ID, 2, ["p1", "p2"], self.nbOfRow) self.updateNbOfRow(self.myScheme) Also add your scheme to the list schemeList:

In the function defaultValues, add the default values for the varying input parameters of your scheme. These values will be used when clicking on the Default Value button of the graphical interface.

In Analyse/analyse.py file

At the beginning of the file Analyse/analyse.py, add the lines: load("../myScheme.sage") load("../Memory/mySchemeMemory.sage") load("../Complexity/mySchemeComplexity.sage")

In every Analyse/appli_*.sage files

In every function named computeApplication*, add the following condition to test if the given scheme is an instance of myScheme, and then define the type of parameter used for ciphertexts :

#Here MyScheme ciphertexts are matrixPoly if isinstance(scheme, MyScheme) or isinstance(scheme, MySchemeComplexity) or \ isinstance(scheme, MySchemeMemory) : typeCipher = "matrixPoly"

In Analyse/parameterschoice.sage file

Create a function named chooseMySchemeParameter (p1, p2, secu = 80). Here we provided two input parameters (p1 and p2).

Only provide input parameters that can be varied (during an analysis).

The purpose of this function is to generate/create the parameters listOfParams and listOfSets. Parameters that can be varied are provided as input parameters. Other fixed value parameters required by the HE scheme have to be generated/initialized here.

You can see examples in other choose*Parameter functions already available in this file.

In the function named chooseParameter, add a condition with your own scheme identifier:

elif scheme == MYSCHEME_ID : #Here MyScheme takes 2 input parameters if len(params) != 2 : raise Exception("chooseParameter : there is not 2 parameters (but {}) in \ params".format(len(params)))

#Retrieve scheme parameters here

#call chooseMySchemeParameter with p1 and p2 return chooseMySchemeParameter(p1,p2,secu)

In the function createSchemeObject, add a conditional branch for your scheme. The three lower conditional branches are required to generate an appropriate HE scheme object depending on the kind analysis chosen.

elif scheme == MYSCHEME_ID : if whichAnalysis == EXECUTION_ID : #execution return MyScheme(params, sets, "HEBasic", "") elif whichAnalysis == COMPLEXITY_ANALYSIS_ID : #complexity return MySchemeComplexity(params, sets, "HEBasic", "") elif whichAnalysis == MEMORY_ANALYSIS_ID : #memory cost return MySchemeMemory(params, sets, "HEBasic", "")

Here is an example of the content for a sample appli.sage file:

Add your application code to PAnTHErS

Get application template files

Get 2 template files from /path/to/panthers/Templates/Template_Appli:

• appli_TOREPLACE.py

• exec_TOREPLACE.py

Copy them to /path/to/panthers/Analyse and rename it with your app name.

Here is an example for a sample application named MyApp.

$> cd /path/to/panthers $> cp Templates/Template_Appli/appli_TOREPLACE.py Analyse/appli_MyApp.py $> cp Templates/Template_Appli/exec_TOREPLACE.py Analyse/exec_MyApp.py

Edit the code from the new created files.

First edit the file appli_MyApp.py and exec_MyApp.py, replace every instance of the string TOREPLACE with the name of your application. You can do it using the following sed command:

$> cd /path/to/panthers/Analyse $> sed -i 's/TOREPLACE/MyApp/g' appli_MyApp.py exec_MyApp.py

Create a global identifier for your application

Edit the file const_id.py, and add a global identifier for your application.

Beware not to choose an identifier already affected to an existing application. It is recommended to use the value of the highest known application ID and increment it by one for your own application ID.

#ANALYSIS_MODES / EXPLORATION_MODES

Update the templates with your application global identifier

Edit the template files appli_MyApp.py and replace the occurences of APPNUMBER_ID with your application identifier.

$> cd /path/to/panthers/Analyse $> sed -i 's/APPNUMBER_ID/MYAPP_ID/g' appli_MyApp.py

Integrate your application code in the template

Edit the file appli_MyApp.py and paste your converted application code from the file appli.sage at the end of the function named computeApplicationMyApp, between the KEYGEN() function call and the return statement.

KEYGEN() #PASTE YOUR CODE HERE return

Before the code of your application, you need to assign all inputs parameters. For the example application the following line is used:

At the end of the application code, the outputs also need to be gathered to be returned from the function.

For this example application, the following lines are used:

#return decrypted byte return res

Here is an extract of the resulting computeApplicationMyApp for the MyApp application:

def computeApplicationMyApp(scheme, plaintexts, R, progressBar = 0, step = 0) : #... #return decrypted byte return res

KEYGEN() #PASTE YOUR APPLICATION CODE HERE #Add the list of your input parameters here

Create your application input parameters

Then you need to provide plaintext input for your application. The function setPlaintextsAppliMyApp is responsible for generating plaintext input, and store them in a list called plaintexts.

Cingulata converted application usually takes input parameters split in single bits.

Take care of the order of the output parameters. The order as to be the same as used when you retrieve the parameters in the function computeApplicationMyApp.

In this example, the function takes input parameters and split them in single bits:

Add your application to PAnTHErS graphical interface 4.3.1 Get the template file

Copy the TOREPLACEScript.sagescript template file located in Templates/Template_Appl, rename it with your application name and put it in the Interface folder.

Here is an example for the sample application MyApp: $> cd /path/to/panthers $> cp Templates/Template_Appli/TOREPLACEScript.sagescript Interface/MyAppScript.sagescript Edit the newly created MyAppScript.sagescript file, and replace all instances of TOREPLACE with your app name.

Here is an example for the sample application MyApp using a single sed command $> sed -i 's/TOREPLACE/MyApp/g' MyAppScript.sagescript

Update graphical interface source files

Analyse/parameterchoice.sage file In the parameterchoice.sage file, update the executePracticalAnalysis function.

Add a elif statement matching your application global identifier. The purpose of this function is to launch the application analysis process.

Here is an example for the sample application MyApp: elif appli == MYAPP_ID : print("executePracticalAnalysis : MyApp") out = check_output(["sage", "-c", "os.system(sage < MyAppScript.sagescript)"])

Interface/interface.py file

Update the showApp function. The purpose of this function is to create graphical elements for the graphical interface (buttons, labels,...).

You have to add some lines of code to add buttons for your application.

Here is an example for the sample application MyApp:

#Create a radio button for MyApp self.appFrame.boutonAppMyApp = Radiobutton(self.appFrame, variable=self.valueBtnApp, \ value =MYAPP_ID, text=MYAPP_APP_NAME+" Application", command=self.askForDepth) #Position the new button on the interface self.appFrame.boutonAppMyApp.grid(row=fromRow+MYAPP_ID-1, column=1, columnspan=7)

Analyse/analyse.py file

At the beginning of the analyse.py file, add an attach statement to load your application.

The statement for the application MyApp should be: attach("../Analyse/appli_MyApp.py") Next, update the bench function. Add a new elif statement to allow starting new analysis for your application.

Here is the resulting code for the MyApp application.

#If