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Highlights 

An efficient approach based on nonlinear filtering has been implemented. 

The hypothesis test provides a local maximum likelihood estimation of the count rate. 

The filter ensures an optimal compromise between precision and response time. 
 

Abstract 

Nuclear counting is a challenging task for nuclear instrumentation because of the stochastic nature of radioactivity. Event 

counting has to be processed and filtered to determine a stable count rate value and perform variation monitoring of the 

measured event. An innovative approach for nuclear counting is presented in this study, improving response time and 

maintaining count rate stability. Some nonlinear filters providing a local maximum likelihood estimation of the signal have 

been recently developed, which have been tested and compared with conventional linear filters. A nonlinear filter thus 

developed shows significant performance in terms of response time and measurement precision. The filter also presents the 

specificity of easy embedment into digital signal processor (DSP) electronics based on field-programmable gate arrays 

(FPGA) or microcontrollers, compatible with real-time requirements. © 2001 Elsevier Science. All rights reserved 
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1. Introduction 

Disintegration of a radioactive source is a purely 

stochastic phenomenon because of the indeterministic 

nature and respective independence of unstable 

nuclei. Such a source is characterized by its half-life 

     and radioactive constant              . 

Nuclear measurement in pulse mode consists in 

estimating the output count rate   expressed in counts 

per second      , where   is the transfer function 

taking into account the radiation emission probability 

and the intrinsic and geometric efficiencies of the 

sensor. This study deals with filters allowing 

mailto:romain.coulon@cea.fr
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smoothing of the nuclear counting signal. The aim of 

this study is to accurately estimate the evolution of   

as a function of time  . Figure 1 illustrates the 

processing of a row-counting signal by two different 

filters. The first filter smooths the signal more 

efficiently than the second one, but involves a longer 

response time. A filter optimized according to this 

trade-off is thus introduced. 

 

Fig. 1. Illustration of nuclear counting filtering. 

 

As pulses are considered well separated and 

uncorrelated (no pile-up), the probability to count 

    events during an elementary integration time 

interval    follows the Poisson law (Eq. 1), where   

is the expected count rate:
1
 

 

              
     

  
        

 

Specificity of the Poisson distribution is the 

equality of the expected count value      and its 

variance      : 
 

                         
 

At low and constant  , the maximum likelihood 

estimate     
  of the count rate over a sample of   

measured count values          is given by the 

empirical mean calculated during the total integration 

time     (Eq. 3)
2
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According to Eqs. 2 and 3 and considering a null 

variance associated with   , the statistical variance of 

    
  is evaluated as follows: 

 

       
    

     
 

   

 

 

        
 

   
 
 

   

 

   

       

 

The relative standard deviation associated with the 

estimation of   with a given   is therefore expressed 

as 

       
  

    
 

 
 

     
     

         

The choice of the sample size   retained for the 

measurement therefore results in a trade-off between 

the response time     and the precision proportional 

to        , both to be minimized. As an example of 

Figure 1, the first and second filtered signals 

correspond to integration lengths     and 32, 

respectively. 

The organization of this paper is as follows. First, 

a state of the art regarding smoothing filters applied 

to nuclear instrumentation is introduced. Then, 

implementation of the proposed CST filter is 

described and the method used for benchmarking the 

different filters is detailed. Finally, the results are 

presented to highlight the performance of the CST 

filter compared with its counterparts. 

2. Related work 

The main filter used in industrial implementations 

is labeled “Moving Average” (MA) and exploits the 

empirical mean estimator. This filter provides a 

different estimation for every value of   . This linear 

low-pass filter is suitable for estimating a 

nonvarying  , but becomes nonspecific when an 

abrupt change in radioactivity occurs. Then, a trade-

off regarding the experimental conditions and the 

purpose of the measurement has to be found. Indeed, 
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if the requirement of the system lies only within the 

response time performance to a variation of  , a fixed 

value of   is set (“preset time ratemeter”). On the 

contrary, if the requirements are only to display a 

precise value (low fluctuation), the signal is 

integrated until a prefixed required statistical 

precision is achieved (“preset count ratemeter”).
3–5

 A 

way of reconciling both requirements may be to 

introduce a weighted function with factors          as 

described in Eq. 6 (these factors are also called 

forgetting factors): 

 

 

   
   

 

   

   
 
     

   
 
   

        

 

The most frequent implementation of this 

alternative to preset ratemeters is the exponential 

moving average (EMA), with exponential weight 

factors            , where   is the parameter of 

the filter.
6–8

 In general, finite impulse response filters 

have been studied earlier.
9–12

 Linear filters have 

shown limits with regard to the trade-off between 

precision and response time. More recently, edge-

preserving filters have been developed in nonlinear 

algorithms to deal with this issue. 

A nonlinear strategy has been developed (SPRT 

and GLR filters) by several authors,
15–19

 which 

consists in adapting the sample size   retained for a 

local maximum likelihood estimation according to 

the detection of any abrupt change in the Poisson 

statistics.
13,14

 The detection method is based on a 

hypothesis testing model, and allows for making a 

quick decision. A nonlinear filter implementing a 

hypothesis test labeled CST is described in this study. 

3. Implementation of the nonlinear filter 

The algorithm of the CST filter is divided into 

schematic steps for the ease of representation. These 

steps are as follows: reading the new sample, 

calculating the estimate vector, decision made after 

the hypothesis test, and action performed based on 

the test result (Fig. 2). 
 

 
 

Fig. 2. Schematic view of the CST algorithm. 

3.1. Reading and data management 

For every elementary time interval   , event 

pulses are counted; at the end   of the counting 

interval, the count number   
  is recorded at the front 

of a memory buffer containing   slots. Before any 

new acquisition, all recorded values are shifted as 

follows: 

 

                     
      

           
 

3.2. Calculation of the estimation vector 

A vector     containing count rate estimates    
  

with several retained sample sizes   associated with 

different response time and precision performances is 

found (Eq. 8). The scalar          is used to limit 

the size of the buffer window at time  . The primary 

aim of this filter is to estimate the value of   at every 

acquisition time  , ensuring the best compromise 

between response time and precision (Eq. 5): 

 

                      
  

 

 
   

 

 

   

        

 

3.3. Formalism of the hypothesis test 

The expected count value in counts per sample 

(cps) is defined as a function of the acquisition time   
with   . The detection test for a change in     is a 

classical hypothesis test with null hypothesis    
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indicating the absence of detection and detection 

hypothesis    indicating the presence of detection 

(Eq. 9), where    is the initial count rate level,    is a 

new signal level after variation, and    is the value 

of   at which the change occurs: 

 

              
                                                        

         
                                              

                                                      
                

    

 

3.4. Decision tests 

The first solution was proposed by Coop and 

Fehlau.
15,16

 They implemented a sequential 

probability ratio test (SPRT), where the background 

level    is determined from previous estimates and 

the expected jump level    is a preset parameter. In 

order to avoid presetting values for   , 

Apostolopoulos developed a window-limited 

generalized likelihood ratio (GLR) test
17–19

 based on 

the double maximization of a test function according 

to both unknowns     and   . An alternative 

hypothesis test named CST (Centered Significance 

Test) is proposed by the authors of this study.
20

 

The detection is based on a significance test on 

count rate difference. In order to determine the 

position of a significant change    at time  , based on 

the previously selected integration window   , every 

estimate    
  is compared with the estimate     

 . A 

variation vector      is expressed as follows: 

 

              
      

     
          

 

If    is verified as the difference of two count rate 

estimators under the same  , the value of    
  
  could 

be considered as null. The variance        
   is 

estimated as the sum of both count rate variances 

     
  
   and       

   (according to the Poisson 

distribution) as described in Eqs. 13 and 14: 

 

       
          

         
            

 

       
   

    
 

  
 
   
 

 
          

As a result, any change in     leads to the rejection 

of the null hypothesis. We introduce            
as the probability of false detection. The distribution 

associates a quantile    to the value of   governing 

the risk of not detecting a change in   under   . 

Figure 3 shows the relationship between the 

probability   and the coverage factor    used in the 

test. Values of   are derived from a numerical 

calculation using randomly generated count values 

over a Poisson distribution. The data are scanned 

from the slot     to the slot      to process the 

detection tests presented in Eqs.15 and 16: 

 

                      
           

             

 

then the hypothesis    is accepted and    is rejected; 

 

                      
           

             

 

then the hypothesis    is rejected and    is accepted. 

 

 
Fig. 3. Relationship between confidence level   and coverage 

factor   . 

 

3.5. Action following the test 

Regarding the result of the test, one of the 

following actions is performed: 

 If    is accepted for all the slots     
  , the number of allocated buffer slots is 

extended:           . 
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 If    is accepted for a slot number   , a 

change in signal is considered significant. 

The number of allocated slots is reduced 

by   slots, where   equals the number of 

slots verifying the condition of rejection 

specified in Eq. 16: 

 

                       
 

The value   
     
  is finally transmitted at the output 

of the filter as the current count rate. 

4. Test bench for the filters 

A test bench was built to assess the performance 

of the following online filters: 

 The moving average (MA) most 

commonly implemented into preset time 

ratemeters
3
 (Eq. 3). 

 The exponential moving average 

(EMA)
6–8

 (Eq. 6), where   is the degree 

of freedom in the design. 

 The nonlinear filter introduced in ref. 

[19] and labeled GLR, where the 

threshold   is the degree of freedom in 

the design. 

 The nonlinear filter proposed in this 

study, previously introduced in ref. [20] 

and labeled CST, where the quantile    is 

the degree of freedom in the design. 

 

The counting signal is simulated using a Poisson 

distribution generated as a function of count 

expectation as presented in ref. [21]. All filters need 

to be assessed for precision, accuracy, and response 

time performance as defined in the international 

standard IEC 60325 related to radiation monitoring.
22

 

Filters are tested under two sets of simulated signals. 

The first is a static signal with a constant count 

expectation   , allowing the evaluation of precision 

and accuracy of the filter. The second is a dynamic 

signal where the expected count value is changed by 

one decade, allowing the estimation of response time 

of the filter. 

4.1. Static performance 

A counting signal with a constant count 

expectation is generated over   samples:    
           . The empirical mean    and standard 

deviation      over the different filter results     

obtained with the algorithms previously detailed are 

calculated by Eqs. 17 and 18, respectively, as 

follows: 

   
 

 
    

 

   

         

      
 

 
         

 
 

   

          

The mean provides by construction an unbiased 

estimate of the Poisson count rate. Both nonlinear 

filters GLR and CST are based on a moving average 

over an adaptable number of samples (   for the 

CST): these filters are therefore unbiased as long as 

their activity remains constant. 

 

The factor of merit   allows us to evaluate the 

level of precision achieved with a given filter. The 

filtering is repeated   times and the results are stored 

in frames labeled      .    is defined as the 

average ratio of the empirical standard deviation 

      for every   between   and   to the empirical 

mean     for every   between   and  : 
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4.2. Dynamic performance 

The response of the filter to an increase of one 

decade of the expected count rate         is 

studied according to international standard.
22

 Counts 

are generated in the following pattern: 

                                 

                                       

                              

 

Count values are generated following this pattern 

over   iterations. The increase time        (defined as 

the time necessary to account for a    to    

evolution) and decrease time of the frame  ,        

(defined as the time necessary to account for a    to 

   evolution) are calculated for every frame   
      (Eqs. 24 and 26): 

 

             
           

                    

             
            

                     

 

Fig. 4. Calculation of        and       . 

 

We introduce for every tabulated value of the 

response times      and      the number of 

occurrences      
 and      

. For both response 

times, we retain the values of       and       so that 

80% of the distribution falls below these thresholds 

(Fig. 5): 

 

            
    

       
     

    

 

              

            
    

       
     

    

 

               

 

Fig. 5. Calculation of   . 
 

4.3. Figure of merit 

An indicator has to be built to quantify the trade-

off between precision and response time. A figure of 

merit labeled     is computed for any given filter   

by multiplying the precision obtained in static 

conditions   and the summation of the increase time 

     and decrease time     . The obtained product is 

normalized by the MA filter product as follows: 

       
                     

                        
           

Considering that individual terms are uncorrelated, 

the cumulative variance            associated 

with the     is determined as: 
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                          .      (29) 

    =   indicates that the filter provides no 

significant gain in comparison to the reference MA 

filter;     >   indicates non specificity of the filter; 

and     <   quantifies the improvement ensured by 

the filter in comparison to the MA filter concerning 

the compromise between response time and 

precision. 

5. Results 

5.1. Influence of parameters 

Every filter was tested for different values of the 

parameters, and compared to the MA filter using a 

number of recorded count rate values of   =   . The 

parameters   ,   , and      are defined by the index 

  as follows: 

           

                

                 

                 
 

Figure 6 shows the evolution of precision   as a 

function of parameters used in each filter for an 

activity of 100 cps. We can observe that the precision 

of the EMA filter decreases continuously with the 

increase of  . On the contrary, CST and GLR filters 

exhibit a drastic improvement of precision with the 

increase of    and   reaching the asymptotic minimal 

standard deviation when the index   reaches a value 

>8 and >10, respectively, which corresponds to 

     and    . A stable curve is observed when a 

change in count rate occurs. 

 

Fig. 6. Relative standard deviation as a function of parameters 

at a count rate of 100 cps (M = 64). 

The evolution of increase time as a function of the 

parameters is presented in Figure 7. The response 

time to an increase step of activity is monotonously 

decreased by the increase of   for the EMA filter and 

monotonously increased by the increase of    and   

for the CST and GLR filters. If    or   is chosen 

below the index value    , a significant 

improvement of the response time is observed by the 

use of nonlinear filters compared with the linear ones. 

A similar improvement is noted for decrease time 

(Fig. 8). A stable curve is observed when a change in 

count rate occurs. 

 

Fig. 7. Increase time as a function of parameters for an increase 

step of activity such as        cps and         cps (  
   ). 
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Fig. 8. Decrease time as a function of parameters for an 

increase step of activity such as        cps and       cps 

(    ). 

 

Optimal values for the parameters eventually have 

to be determined according to the best compromise 

between precision and response time, which 

corresponds to the “elbow” of the characteristics 

displayed in Figure 9. The values of the relative 

standard deviation     are displayed as a function of 

response time    , where   and   are averaged over 

different expected count values 

(                  cps). An average behavior of 

the filters is thus obtained. It can be immediately 

observed that the coordinates of the elbows on the 

CST curves fall below the coordinates of the elbows 

on the GLR and EMA curves. Therefore, in order to 

provide the best compromise between precision and 

response time, the following parameters are retained 

for each filter: 

 EMA filter:          , 

 GLR filter:          , 

 EMA filter:                   . 
 

 

Fig. 9. Relative standard deviation    
 as a function of 

response time     for different parameter values (    ). 

 

These values of the parameters are used in the rest 

of this dissertation. 

 

5.2. Influence of count rate expectation 

The evolution of the precision   as a function of 

the expected count rate    varying between 0.1 and 

1000 counts per sample is presented in Figure 10. As 

theoretically known from Eq. 5, the precision follows 

a law in the inverse of the square root of the expected 

count rate. For a given count rate intensity and using 

the parameters previously determined, the best 

precision is achieved by the MA estimation, followed 

by the GLR, CST and EMA. The precisions of the 

different filters are compared with the reference 

precision obtained with the MA filter. The results are 

presented as follows: 

 

             , 

             , 

             . 

 

 
Fig. 10. Relative standard deviation $P$ as a function of the 

expected count rate    (    ). 

 

The evolution of response time      to an increase 

step of activity (such as         ) as a function of 

the initial count rate value    from 0.01 to 1000 

counts per sample is presented in Figure 11. The MA 

filter provides the longest response time: between 95 

and 60 samples below a count rate    = 1 cps and 

60 samples above it. The EMA filter exhibits a 
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response time compromised between 20 and five 

samples over the entire range of count rates. The 

EMA filter is dramatically faster than the MA filter 

(12 times faster with a five times poorer precision). 

At low count rate (<1 cps), the GRL does not show 

any significant improvement in terms of response 

time and the CST does not achieve the responsivity 

of the EMA, although it still provides a noticeable 

gain compared with the MA filter (two to three times 

faster). At medium and higher count rates (>1 cps), 

the nonlinear filters GLR and CST present an 

important gain in response time when compared with 

linear filters. Indeed, the CST and GLR response 

times represent only two samples, whereas the EMA 

requires five samples and the MA filter about 60 

samples. A similar behavior is observed for the 

response to a decrease step of activity (Fig. 12). 

 

 
Fig. 11. Response time      as a function of the initial count 

rate    (    ). 

 
Fig. 12. Response time      as a function of the initial count 

rate    (    ). 

 

In order to consider both precision and response 

time, the     are presented in Figure 13 and the key 

features are reported in Table 1. At low count rates 

(<1 cps), where the lack of information to describe 

the signal is critical (several null counts), all filters 

encounter difficulties. Under this range of count 

rates, the GLR filter presents a poorer     than the 

MA filter. Moreover, EMA and CST filters show 

only a slight gain compared with the time destructive 

MA filter. At medium and high count rates (>1 cps), 

a significant gain is showed by the nonlinear filters 

GLR and CST (          ,           ) 

compared with the linear MA and EMA filters. 

Therefore, advantages of nonlinear filters for 

ratemeter applications are clearly demonstrated. We 

can also conclude that the CST filter appears to 

present the highest performance combining a 

satisfactory compromise between response time and 

precision over the whole range of studied count rate 

values. This filter thus overcomes the problems 

associated with nuclear counting over a large and 

abrupt dynamic of count rates. 

 
Fig. 13. Figures of merit     obtained as a function of count 

level (      ). 

 

Table 1. Key features of the test bench. 
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Count rate 

range 

Filter Prec. 

  

(%) 

Inc. time 

     

(sample)  

Dec. time 

     

(sample)  

Fig. of 

merit 

    

Low count 

rate 

        cps 

MA 48.5 71.7 63.1 1.00 

EMA 238 8.2 51.8 0.48 

GLR 97.9 45.0 23.2 1.24 

CST 69.4 23.2 51.7 0.47 

Med./High 

count rate 

         

cps 

MA 2.1 58.7 59.0 1.00 

EMA 10.4 5.2 5.67 0.45 

GLR 2.5 2.3 3.33 0.06 

CST 3.7 2.3 4.00 0.09 

 

5.3. Influence of buffer size 

The size of the memory buffer governs the value 

of the best achievable precision. It is therefore 

necessary to implement the algorithm with the largest 

size of buffer available at the hardware level. Figure 

14 shows the evolution of     as a function of 

buffer size   for an activity of 50 cps. It is 

interesting to note that the improvement ensured by 

the nonlinear filters is already significant for a small 

buffer size (    samples). 

 

 
Fig. 14. Figures of merit     obtained at 50 counts as a 

function of buffer size  . 

 

5.4. Conclusion 

When compared to conventional linear filters, 

nonlinear filters based on a hypothesis test method 

exhibit significantly improved figures of merit: an 

important gain in response time compared with linear 

filters is observed, together with a reasonable 

degradation of precision. For applications in the 

fields of homeland security and health physics, 

guaranteeing a high sensitivity in a short timescale is 

critical. Thus, the fast response ensured by a 

nonlinear filter algorithm makes any detector based 

on this technique compatible with implementations 

requiring human responsiveness. 

 

The simplicity of this implementation makes the 

CST algorithm relevant for a broad range of 

industrial applications, including process monitoring, 

area monitoring, health physics monitoring, and 

embedded detection.
23,24

 The CST filter was 

implemented into a Geiger–Müller probe and set on a 

robot designed to address safeguard and security 

issues, and it is proved effective for tracking and 

detecting a radioactive source during a terrorist attack 

simulation.
25–27
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