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Abstract: This paper presents a bi-view (front and side) audiovisual1

Lombard speech corpus, which is freely available for download. It con-2

tains 5,400 utterances (2,700 Lombard and 2,700 plain reference utter-3

ances), produced by 54 talkers, with each utterance in the dataset fol-4

lowing the same sentence format as the audiovisual Grid corpus (Cooke5

et al., 2006). Analysis of this dataset confirms previous research, show-6

ing prominent acoustic, phonetic, and articulatory speech modifications7

in Lombard speech. In addition, gender differences are observed in the8

size of Lombard effect. Specifically, female talkers exhibit a greater9

increase in estimated vowel duration and a greater reduction in F2 fre-10

quency.11

c© 2018 Acoustical Society of America.

a)Author to whom correspondence should be addressed.
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1. Introduction12

The Lombard effect (Lombard, 1911) is a reflexive adaptation to speech production which13

occurs when communicating in adverse conditions. Lombard speech is characterized by14

a collection of acoustic and phonetic modifications, including an increase in fundamental15

frequency (F0) and signal energy, a shift in the centre frequency of the first and second16

formants (F1 and F2), a tilt of the speech spectrum, and an increase in vowel duration17

(Junqua, 1993; Lu and Cooke, 2008). In the visual domain, greater face and head motion18

(Vatikiotis-Bateson et al., 2007) and a greater global change in the movement of the jaw and19

lips (Garnier et al., 2010) have been reported. When presented at the same signal-to-noise20

ratio, Lombard speech (uttered in the presence of noise) is usually more intelligible than21

plain speech (uttered in quiet)(Cooke et al., 2014).22

Although studies of Lombard speech have been consistent in their general characteri-23

sation of the effect, there have been widely varying reports of even the most basic character-24

istics, e.g., reports of the level increase when speaking in 80 dB of noise vary (Pittman and25

Wiley, 2001; Summers et al., 1988; Tartter et al., 1993). Some of this variability is due to26

the manner in which individual speakers respond to noise. However, previous studies have27

typically used small numbers of speakers, making it hard to get a good characterisation of28

these across-speaker effects. Pooling results across studies is not typically valid because the29

Lombard reflex is sensitive to the characteristics of the communication environment, includ-30

ing noise type (Lu and Cooke, 2008), the noise immersion method (Garnier et al., 2010),31

noise level (Šimko et al., 2016), communication task (Garnier et al., 2010), and communi-32

5



JASA-EL/Sample JASA-EL Article-revised2

cation modality (Fitzpatrick et al., 2015), variables which typically vary from one study to33

the next.34

This paper aims to provide a more detailed characterisation of the across-speaker35

variation in the Lombard effect by collecting and analysing a corpus of plain and Lombard36

speech from a total of 54 speakers uttering a total of 5400 utterances. The amount of data37

collected significantly exceeds that used in previous controlled Lombard studies. It is also38

the first collection that has been designed with precise video analysis in mind. In particular,39

the collection uses head-mounted cameras that allow highly accurate measurement of the40

visual Lombard effect from both a frontal and profile view.41

The data are being made publicly available for the benefit of other researchers. In42

particular, the dataset is an extension of the audio-visual Grid corpus (Cooke et al., 2006)43

that has been widely used in the study of speech intelligibility in noise and the perception44

of simultaneous speech signals. The data are also suitable for development of novel speech45

processing algorithms. In particular, the Lombard effect has major implications for the de-46

sign of automatic audio/audiovisual speech recognition systems. Such systems are typically47

trained on clean speech datasets or on datasets to which noise has been artificially added.48

The performance of these systems can then deteriorate under real Lombard conditions that49

have not been observed during training. Although there are audio-video speech datasets50

that have been recorded in noise, e.g., AVICAR (Lee et al., 2004), these datasets lack con-51

trolled non-Lombard reference signals against which to make accurate measurements of the52

adaptation.53
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The paper first describes the design and collection of the new dataset. It then presents54

an initial analysis of the acoustic, phonetic, and articulatory speech modifications under55

Lombard conditions across the dataset talkers. Results of this analysis are compared to56

previous research conducted on a smaller numbers of talkers (Junqua, 1993; Junqua et al.,57

1999; Lu and Cooke, 2008; Pisoni et al., 1985; Vatikiotis-Bateson et al., 2007), in which58

clear modifications in Lombard speech were reported. Finally, the larger number of speakers59

also enables us to report on the gender differences for both the audio and visual aspects of60

Lombard speech.61

2. Corpus62

2.1 Sentence design63

The sentences in the corpus conform to the Grid corpus syntax (Cooke et al., 2006). These64

are six-word sentences, for example ‘bin blue at A 2 please’, with the following structure:65

<command: bin, lay, place, set> <color: blue, green, red, white> <preposition: at, by,66

in, with> <letter: A-Z (excluding W)> <digit: 0-9> <adverb: again, now, please, soon>.67

Three of these words – color, letter, and digit – are considered to be “keywords,” while the68

remaining words are “fillers.” The original Grid corpus was collected from 34 talkers reading69

34,000 sentences selected from 64,000 possible combinations of the Grid word sequences. For70

the new Lombard Grid corpus, 55 talkers1 uttered sets of sentences from the pool of the71

remaining 30,000 Grid word-sequence combinations (i.e., those that were not used in the72

original Grid corpus). Each talker was assigned to a unique set of 50 sentences featuring73

a uniform representation of Grid keywords, including twelve to fourteen instances of each74
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color, two instances of each letter, five instances of each digit, and representative coverage75

of the Grid filler words2.76

Following other studies, e.g. Lu and Cooke (2008), speech-shaped noise (SSN) was77

used to induce the Lombard effect. In this study, SSN was created by filtering white noise78

to match the long-term spectrum of a speech corpus that includes 1,000 Grid sentences of a79

selected talker (ID = 1). Linear predictive coding was used to obtain the spectral envelope of80

the speech corpus. In previous Lombard-related studies, noise has been presented to talkers81

at a variety of levels, including 80 dB SPL (Summers et al., 1988), 85 dB SPL (Junqua,82

1993), and 89-96 dB SPL (Lu and Cooke, 2008). For the current study, 80 dB SPL was83

chosen as the noise level: this is loud enough to induce a robust Lombard effect while still84

being at a level low enough to avoid hearing damage or undue vocal/auditory fatigue.85

2.2 Talker population86

The talkers who participated in the experiment consisted of 55 native speakers of British87

English (both male and female), all of whom were staff or students at the University of88

Sheffield in the 18 – 30 year age range. The hearing of the talkers was screened using a pure-89

tone audiometric test. All participants were paid for their contributions; ethics permission90

was obtained by following the University of Sheffield Ethics Procedure.91

2.3 Collection92

The recordings were made in a single-walled acoustically-isolated booth (Industrial Acoustics93

Company [IAC]). The speech material was collected at a sampling rate of 48,000 Hz and a94

resolution of 24 bits using a C414 B-XLS AKG microphone placed 30 cm in front of the talkers95
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and digitized using the MOTU 8-pre 16 × 12 Audio Interface. The talkers wore Sennheiser96

HD 380 pro headphones. The SSN was mixed with the audio signal of their speech to provide97

self-monitoring feedback at a level that compensated for headphone attenuation.98

The level of playback of the talkers’ speech was carefully adjusted so that their per-99

ception of talking with and without the headphones would be comparable. The process100

was subjectively measured; the talker wore one headphone over one ear while the other ear101

remained uncovered. The talker was requested to speak while the playback of his/her voice102

was presented at gradually increasing levels via the headphones. The talker was asked to103

indicate the level at which balanced auditory feedback was received across his/her left and104

right ears. This level (which had relatively little variation amongst participants) was then105

recorded and used to present the self-monitoring feedback in the headphones. The noise106

presentation level was adjusted to 80 dB SPL using a Cirrus Optimus Yellow Class 2 sound107

level meter. In this process, a MATLAB routine automatically tuned the level of the Lom-108

bard inducing noise until a reading of 80 dB was achieved. This level was then recorded and109

fed to a MATLAB routine that controlled the presentation of the SSN during the recording110

experiment.111

In addition to the audio recordings, simultaneous audiovisual recordings were made112

using a custom-made helmet rig system that was worn by the talkers. The system consisted113

of a lightweight bicycle helmet on which were mounted two Logitech HD Pro USB Webcam114

C920s connected using 8-inch GoPole Arm Helmet Extension armatures. This allowed one115

camera to be positioned directly in front of the face and one at a fixed position to the side116
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of the face. Head-mounting ensured that the viewing angles remained fixed regardless of117

head motion thus allowing for more precise comparison of Lombard and non-Lombard visual118

speech. Four light sources were positioned so as to produce roughly uniform illumination119

across each talker’s face; a plain white background was placed behind and at the right side120

of the talker’s seat.121

The audiovisual recordings from the webcams were collected onto two computers via122

USB 2.0 interfaces. The audiovisual stream from the front webcam was collected at 480p123

resolution (720 x 480), in full frame, at a variable frame rate fluctuating around 24 frames124

per second (mean FPS = 23.93; mean bitrate = 2817.82 kb/s). The recording software125

encoded the video stream using the built-in H.264 encoder and the audio stream using the126

AAC encoder at a sampling rate of 44,100 Hz. The video stream from the side webcam was127

collected at 480p (864 x 480) and in full frame at 30 FPS. The recording software encoded128

the video stream using the WMV encoder and the audio stream using wmav2 at a sampling129

rate of 48,000 Hz.130

Each talker produced 100 utterances by reading his/her sentence list in both plain131

and Lombard conditions. The collection of the utterances in each condition was made in132

5 blocks of 10 utterances. The plain and Lombard blocks were presented in an alternating133

order. Each block of 10 utterances was preceded by 5 ‘warm-up’ utterances that were used to134

allow talkers to attune to the change in condition (i.e., from noise present to noise absent and135

vice versa). These initial utterances were discarded after recording. The Lombard-inducing136

10



JASA-EL/Sample JASA-EL Article-revised2

noise was controlled by a computer (using a MATLAB routine as previously described) and137

was present throughout the Lombard blocks and turned off during the non-Lombard blocks.138

The talkers read the sentences to the researcher, who acted as a listener. Having139

a listener was necessary because the Lombard effect is triggered both as an unconscious140

reaction to noise and by the need to maintain intelligible communication in noise (Lu and141

Cooke, 2008). The talkers sat inside a booth facing a screen, where the sentences were142

presented; the listener sat outside the booth listening to the talkers’ speech, presented at 60143

dB SPL, via a pair of Panasonic RP HT225 headphones connected to the audio interface. The144

presentation of the prompt sentences, as well as the listener’s messages to each talker, were145

both controlled by a MATLAB script. The talkers were instructed to speak at a normal pace146

and in a natural style and were given 5 seconds to read each sentence. To aid this process,147

the talkers were prompted by a progress bar on the screen with a duration of 5 seconds. If the148

talker misread the prompt, then the listener presented the same sentence again. During the149

Lombard blocks, the listener asked the talkers to repeat an utterance every 5 to 7 sentences150

by indicating that she could not hear the talker. The purpose of this step was to maintain151

the public Lombard loop, which is driven by communication needs (Lu and Cooke, 2008).152

2.4 Post-processing153

First, the audio and visual signals were temporally aligned. This was achieved automatically154

by comparing the high quality audio (i.e., as captured by the desk microphone) and the155

audio embedded in the front and profile video signals. Specifically, for each of the two video156
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channels, a search was made for the temporal offset that maximised the correlation between157

the hiqh quality audio signals and the audio in the video channel.158

Second, each utterance was automatically end-pointed (delimited in time). For each159

session, an analysis of the speech energy envelope was employed to make an initial estimate160

of the utterance and end times. The automatic end pointing was then reviewed by a human161

annotator who corrected any gross end-pointing errors. The Kaldi toolkit (Povey et al., 2011)162

was then used to automatically determine vowel boundaries and end-points. A typical GMM-163

HMM setup was employed to force-align the acoustic recordings to phonetic transcriptions of164

the utterances. Training was performed using maximum likelihood linear transform (MLLT)165

model adaptation and feature-space maximum likelihood linear regression (fMLLR) speaker-166

adaptive training3.167

Finally, for each speaker, the 100 non-warm-up utterances were automatically ex-168

tracted from the continuous audio and video signals using an extraction tool based on the169

FFMPEG 4 framework. Prior to extraction, a 200 ms margin was added by the extraction170

tool to the start and end times to capture the immediate context (i.e., so that pre-emptive171

visual cues are preserved). The audio stream was downsampled to 16 kHz and the start172

and end times were used to extract each utterance. The corresponding segments were also173

extracted from the video sequences (using H.264 codec) by adjusting the timings to compen-174

sate for the computed audio-visual offsets. In cases where the subject spoke the utterance175

multiple times (e.g. due to being asked to repeat or because of a reading error) the first176

correct rendition of the utterance was extracted and the repeats were discarded.177
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3. Analysis of the Lombard Effect178

Acoustic, phonetic, and articulatory parameters were extracted from the plain and Lombard179

recordings of 54 talkers to study the Lombard effect. Three acoustic parameters from the180

Geneva Minimalistic Acoustic Parameter Set (GeMAPS) (Eyben et al., 2016) were extracted181

using the openSMILE toolkit5. These acoustic parameters, calculated as means for each182

audio utterance, included a fundamental frequency-related parameter, namely the F0 mean,183

an energy-related parameter, namely the loudness mean, and a spectral parameter, namely184

the alpha ratio mean (Sundberg and Nordenberg, 2006) (the ratio between the energy from185

50–1000 Hz and 1–15 kHz). Four additional parameters were estimated to characterise186

the vowels: the average of vowel duration, the ratio of total vowel duration to utterance187

duration, and the average first and second formant frequencies (estimated using Praat‘s188

(Boersma, 2006) formant tracker. Settings: default; max formant for female talkers = 5500189

Hz; max formant for male talkers = 5000 Hz). One articulatory parameter, the vertical190

mouth aperture, was extracted using the Dlib toolkit (King, 2009); the standard deviation191

of this parameter across frames was calculated for each video utterance as a measure of192

‘visual energy’. Each talker’s mean (i.e., the mean of these parameters across utterances193

produced by that talker) was calculated.194

Figure 1 shows the talkers’ means in plain and Lombard conditions for each of the195

eight parameters. Table 1 shows across-talker means and standard deviations (SDs). Paired-196

samples t-tests were employed to determine the significance of differences between the across-197
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talker means, across-female-talker means, and across-male-talker means in plain and Lom-198

bard conditions. Table 1 also summarizes the results of the statistical analysis.199

The Lombard speech adaptations reported in previous studies (see Section 1) were200

observed in the Lombard recordings of this corpus. All parameters, except for the F2 fre-201

quency, demonstrated significant increases. The mean F1 frequency is expected to increase202

under the Lombard effect (Junqua, 1993; Lu and Cooke, 2008; Pisoni et al., 1985; Summers203

et al., 1988; Kirchhuebel, 2010). Mixed findings, however, have been reported regarding F2204

adaptation to noise: Junqua (1993) reported an increase by female talkers; Pisoni et al.205

(1985) and Lu and Cooke (2008) reported a decrease by both genders; Kirchhuebel (2010)206

found variable effects. In this paper, the mean F2 frequency showed a non-significant overall207

decrease, a similar finding to Pisoni et al. (1985) and Lu and Cooke (2008)6, but this decrease208

was significant for female talkers.209

Consistent with Junqua et al. (1999)’s findings, individual differences in coping with210

the SSN noise were found. Gender differences were also noticed in the size of Lombard effect.211

For example, female talkers showed greater increase in loudness, estimated vowel duration,212

estimated vowel-to-utterance ratio and mouth aperture, and a greater decrease in vowels213

F2 frequency. A one way MANOVA found a statistically significant difference in speech214

parameters’ adaptations to noise based on talkers’ gender (F (8, 45) = 2.994, p =.009):215

gender has a statistically significant effect on estimates of both vowel duration adaptation216

(F (1, 52) = 4.96; p = 0.03) and F2 frequency adaptation (F (1, 52) = 6.68; p = 0.01). Gender217

differences may have resulted from articulation differences between male and female talkers,218

14



JASA-EL/Sample JASA-EL Article-revised2

as female talkers speak with a higher degree of articulation than male talkers (Koopmans219

van Beinum, 1980), a strategy that might be more exaggerated under the Lombard effect220

(Junqua, 1993). Junqua (1993) also found that Lombard speech produced in multi-talker221

noise by female talkers is more intelligible than male talkers. Gender difference has also222

been reported when the auditory feedback is delayed (Howell and Archer, 1984). This could223

suggest that male and female talkers may differ in their strategic responses to the auditory224

feedback that mediates the Lombard effect.225

4. Corpus description226

The corpus is being made freely available for download under a Creative Commons Attri-227

bution 4.0 International license. The download consist of 5400 utterances where for each228

utterance there is an audio file, front view video file and a profile view video file. The229

downloads are accompanied by a JSON format file storing associated metadata including230

the gender of each speaker and the utterance recording sequence. The corpus is available231

from http://spandh.dcs.shef.ac.uk/lombardgrid/.232

5. Summary233

This study has presented a bi-view audiovisual Lombard speech dataset collected under234

high-SNR levels. The dataset, which is an extension of the popular Grid corpus, includes235

audio, front-video, and side-video recordings of 54 talkers uttering 5,400 plain and Lombard236

sentences. Analysis of this dataset showed prominent acoustic, phonetic, and articulatory237

speech modifications in Lombard speech, which confirms previous research on the subject.238
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Fig. 1. Estimated acoustic, phonetic and visual features across talkers: Lombard (�); plain (×).

In each sub-figure: female talkers (left); male talkers (right).

The large number of speakers has also enabled the testing of gender differences in the size of239

Lombard effect, with female speakers showing a greater increase in estimated vowel duration,240

and a greater decrease in F2 frequency. The complete dataset has been made publicly241

available for future research.242243
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talkers, female (F) talkers and male (M) talkers. P: plain, L: Lombard. Columns t summarize the

results of statistical analyses (t-tests) between plain and Lombard conditions. Symbols: increase:

↑ , decrease: ↓; All tests were significant (p < 0.001) except those marked with ? (p > 0.5)

F0 (semitones 0→ 27.5Hz) Vowels F1 (Hz) Vowels F2 (Hz)

P L t P L t P L t

All 30.0± 4.9 31.9± 4.9 ↑ 493± 46 547± 54 ↑ 1828± 158 1819± 149 ↓?

F 34.0± 1.9 35.9± 2.3 ↑ 521± 36 579± 39 ↑ 1943± 105 1922± 102 ↓

M 25.0± 2.2 27.0± 2.2 ↑ 458± 31 507± 42 ↑ 1683± 70 1689± 82 ↑?

Vowel duration (ms) Vowel-to-utterance ratio Alpha ratio

P L t P L t P L t

All 126± 17 148± 21 ↑ 0.4045± 0.021 0.4254± 0.021 ↑ −12.17± 3.25 −7.67± 2.83 ↑

F 133± 14 157± 16 ↑ 0.4153± 0.017 0.4367± 0.017 ↑ −12.63± 3.74 −8.17± 3.05 ↑

M 118± 18 136± 22 ↑ 0.3910± 0.019 0.4113± 0.017 ↑ −11.59± 2.36 −7.037± 2.38 ↑

Loudness Mouth aperture (pixel)

P L t P L t

All 0.145± 0.058 0.306± 0.110 ↑ 10.777± 3.43 11.914± 3.66 ↑

F 0.139± 0.041 0.313± 0.109 ↑ 10.967± 3.29 12.204± 3.61 ↑

M 0.153± 0.074 0.298± 0.110 ↑ 10.540± 3.59 11.552± 3.69 ↑
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