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Abstract—In a couple of hours, farmers can lose everything
because of frost events. Handling frost events is possible by
using a number of countermeasures such as heating or removing
the surrounding air among crops. Given the socio-economical
implications of this problem, involving not only loss of jobs but
also valuable resources, there have been a number of efforts to
design a system to predict frost events, but with partial success:
either they are based on formulas needing many unknown
coefficients, or the prediction performance is poor. In this paper
we propose a new approach, which instead of using the sensor’s
past information for prediction, as state of the art methods do, we
assume that frost prediction in one location could be improved by
using the information of the most relevant neighboring sensors.

However, given the small amount of frost events during the
year, available data, even after incorporating information of
neighboring sensors, it is not enough to build an accurate frost
forecasting system, which defines an unbalanced dataset problem.
In order to overcome this disadvantage, we propose to use
machine learning algorithms such as Bayesian networks and
Random Forest where the training set includes new samples
using SMOTE (Synthetic Minority Oversampling Technique).
Our results show that selecting the most relevant neighbors and
training the models with SMOTE increases significatively the
frost detection rate of the predictor, turning the results into a
useful resource for decision makers.

Index Terms—machine learning, Bayesian networks, Random
Forest, SMOTE, precision agriculture, frost prediction

I. INTRODUCTION

In Mendoza, Argentina, one of the most relevant wine
production regions in Latin America [1], [2], frost events
resulted in a loss of 85% of the peach production during 2013,
and affected more than 35 thousand hectares of vineyards.
Furthermore, research work conducted by Karlsruhe Institute
of Technology (KIT) [3] warns that vineyards in Mendoza
and San Juan (Argentina) represent the highest risk regions
in the world for extreme weather and natural hazards. This
reality quantifies one of the aspects that a frost event can
generate, but the socio-economical consequences do hit not
only producers, but also transport, commerce and general
services, which take long recovery periods. Plants and fruits
suffer from frost events as a consequence of water icing inside
the internal tissues present in the trunk, branches, leaves,
flowers and fruits. However, water content and distribution is

different among them, generating different damage levels. The
most sensible sections are leaves and fruits. Leaves provide
photosynthesis surface, while fruits collect nutrients and water
from the plant. Individual damage levels can be assessed by
studying the effects of freezing those parts under controlled
conditions, but an integral plant view is necessary to measure
the economical loss at the end of the harvest period.

Frost events are difficult to predict, given that they are
a localized phenomenon. Frost can be a result into partial
damage in different levels in the same crop field, but a frost
event can destroy the entire production in a matter of hours:
even if the damage is not visible just after the event, the effects
can surface at the end of the season, both reducing the quantity
and quality of the harvest.

There are several countermeasures for frost events, which
include air heaters by burning gas, petrol or other fuels,
removing air using large fans distributed along the field or
turning on sprinklers. However, each of these countermeasures
are expensive each time they are used. As a consequence,
it is critical to predict frost events with the highest possible
accuracy, so as to initiate the countermeasure actions at the
right time, reducing the possibility of false negatives (a frost
event was not predicted and it happened) or false positives
(a frost event was predicted and did not happen). In the first
case, the production or part of it may be lost. In the second
case, the burned fuel will be useless. Both situations lead to
reduced yield or complete production loss.

Given the small amount of frost events during the year,
available data is scarce to build an accurate forecasting system,
which defines an unbalanced dataset problem. The more data
machine learning models have, the better they can improve
their accuracy. This is a relevant problem in regions where
the meteorological data is not continuous or it has a short
history. In these cases, there is a low amount data to build a
predictive model with high accuracy and/or precision.

In this paper, we propose to use a different approach: We
use machine learning algorithms based on Bayesian Networks
and Random Forest, over a balanced training set augmented
with new samples produced using the SMOTE (Synthetic Mi-
nority Oversampling Technique)[4] technique. This technique
increases the rate of frost detection (sensitivity) and decreases
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the observed root mean square error.
We chose Random Forest (RF) and Bayesian networks (BN)

because they are widely used algorithms for decision support
applications and both can resolve classification and regression
problems. RF ensures no-overfitting and has demonstrated
very good performance in classification problems. But RF
is like a black-box model, which means that is difficult for
end-users to understand how the model makes decisions. In
contrast, Bayesian networks provide a complete framework
for inference and decision making by modeling relationships
of cause-consequence between the variables. A nice property
of a Bayesian network is that it can be queried: We can ask for
the probability of an event given the current evidence (sensor
values). In real IoT applications it could happen that a sensor
brakes or looses the connection with the gateway, forcing the
network to deal with the problem of processing results with
incomplete information to make decisions. Bayesian networks
are also one of the most commonly used methods to modeling
uncertainty.

We are interested in evaluating the possibility of building
good predictors only with temperature and relative humidity
variables. These sensors are very common in most of the IoT
platforms or data loggers used for environmental measure-
ments. There are situations where the sensor networks cannot
have access to a gateway or central server; so we want to
know, not only if temperature and humidity values are enough
to get an accurate predictor, but also if the sensor’s neighbors
are informative (or not) for the prediction, as a first step to
prototype a in-network frost forecast.

Finally, we build a regression model to predict the minimum
temperature for the following day using historical information
from previous days including a set of variables such as
temperature and humidity from itself and from neighboring
sites. It is important to have an accurate prediction at least
24 h ahead because of the many logistic issues farmers must
resolve to apply countermeasures against frost (gasoline stock
for heaters, permit of irrigation to feed sprinklers, temporal
employees schedule).

The rest of the paper is organized as follows. In section
II we discuss previous works on daily minimum temperature
(frost) prediction. We introduce Bayesian networks in section
III-A and RF in III-B. We describe in section IV our scenario
of interest and datasets to be used to train the models. Then,
we explain our experimental setup in V, follows by the results
section VI. Finally, we share our conclusions in section VII

II. RELATED WORK

Current frost detection methods can be classified from the
data processing they use to generate the forecast: empirical,
numerical simulation and machine learning.

A. Empirical Methods

Empirical methods are based on the use of algebraic for-
mulas derived from graphical statistical analysis of a number
of selected parameters. The result is the minimal expected
temperature, such as the work from Brunt et al.[5] which is
applied in [6] and the work from Allen et al. [7]. A complete

review of classical frost prediction methods can be found from
Burgos et al.[8], where the common pattern among them is
the estimation of the minimal temperature during the night.
Furthermore, Burgos et al. highlight the work from Smith [9]
and Young [10], comparing the minimal prediction accuracy.
As a matter of fact, the United States National Weather Service
has throughly used Young’s equation with specific calibration
to local conditions and time of the year for frost forecasting.

The Allen method, created in 1957, is still recommended by
the Food and Agriculture Organization (FAO) from the United
Nations to predict frost events. This formula requires the dry
and wet bulb at 3PM of the current day as an estimation of
relative humidity and dew point, together with atmospheric
pressure and temperature.

All the former models must be adapted to local conditions
by calculating a number of constants that characterize each
geographical location. The result is the prediction of the
minimal temperature for the current night only. A number of
these formulas suffer restrictions since they are indicated only
for radiative (temperature-based) frost events.

B. Numerical simulation methods

Numerical simulations are widely used to predict weather
behavior. Prabha et al.[11] have shown the use of Weather
Research and Forecasting (WRF) models for the study of two
specific frost events in Georgia, U.S. The authors used the
Advanced Research WRF (AWR) model with a 1km resolution
scaling to the region of interest with a set of initial values,
land use characteristics, soil data, physical parametrization and
for a specific topography map resolution. The resulting model
obtains accuracies between 80% and 100% and a Root Mean
Square Error (RMSE) between 1.5 and 4 depending on the
use case.

Wen et al.[12] also base their study on WRF; however,
the authors integrate a number of weather observations from
the MODIS database as inputs, composed by multispectral
satellite images. Wen et al. highlight that the model improves
when they include local model observations. This model
predicts caloric balance flows, such as net radiation, latent
heat, sensible heat and soil heat flow.

Although this is a valuable modeling tool, Numerical simu-
lations and empirical formulas require a number of measure-
ments and parameters which are not always available to the
producer, such as solar radiation and soil humidity at different
depths.

C. Machine learning methods

There have been several pioneering efforts to apply ma-
chine learning techniques to the frost prediction[13], [14], [6],
[15], however, newer approaches have taken advantage of the
evolution of machine learning techniques and massive data
processing facilities to obtain higher accuracy on their results:

Maqsood et al.[16], provides a 24-hour weather prediction
south of Saskatchewan, Canada, creating seasonal models. The
authors used Multi-Layered Perceptron Networks (MPLN),
Elman Recurrent Neural Networks (ERNN), Radial Basis
Function Networks (RBFN) and Hopfield Models (HFM), all
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trained with temperature, relative humidity and wind speed
data.

Another example of applied machine learning to frost pre-
diction is the work from Ghielmi et al.[17]. In this work,
the authors build a minimal temperature prediction engine
in north Italy. The aim of this work is to predict spring
frost events, using temperature at dawn, relative humidity, soil
temperature and night duration from weather stations. Ghielmi
et al. considers input data from six sources to an MPLN and
compares the behavior with Brunt’s model and other authors.

Eccel et al. [6] has also studied minimal temperature pre-
diction on the Italian Alps using numerical models combined
with linear and multiple regression, artificial neural networks
(ANNs) and Random Forest. The most relevant finding from
this publication is the ability of the Random Forest method to
provide the most accurate frost event prediction.

Ovando et al.[18] and Verdes et al.[19] build a frost predic-
tion system based on temporal series of temperature-correlated
thermodynamic variables, such as dew point, relative humidity,
wind speed and direction, cloud surface among others using
neural networks.

Lee et al. [20] use logistic regression and decision trees to
estimate the minimal temperature from eight weather variables
for each station in South Korea, for frost events between 1973
and 2007, with the following results: average recall values
between 78% and 80% and false alarm rate of (in average)
between 22% and 28%.

We can observe that the currently proposed Machine Learn-
ing based methods for frost prediction concentrate on the use
of a single weather station to provide input to the model
without considering variables from other neighboring weather
stations. All the former proposals have used long periods of
captured data for training purposes, ranging from 8 to 30 years,
highlighting the local nature of the frost phenomena. It is also
noticeable from the literature that the most relevant parameters
found by these as inputs to the models are temperature and
relative humidity.

III. MACHINE LEARNING METHODS

A. Bayesian networks

The work of Aguilera et al.[21] on Bayesian networks (BN)
for environmental modeling mentions the benefits of using BN
in terms of inference, knowledge discovery and decision mak-
ing applications. BN is a type of probabilistic graphical model,
whose set of random variables and conditional independences
among them can be represented as a directed acyclic graph
(DAG), whose set of nodes V represent the variables, and
each directed edge from the set of edges A represents direct,
i.e., non-mediated, probabilistic influence. In an alternative of
the graph it can also represent cause-effect from one variable
to the other.

The DAG defines a factorization of the joint probability
distribution over random variables V = X1, X2, .., XM , also
known as global probability distribution, into a set of local
probability distributions, one for each variable. The factoriza-
tion form is given by the Markov property of BN, which states
that every random variable Xi directly depends only on its

parents πXi , P (X1, ..., XM ) =
∏M
i=1 P (Xi|πXi). We define

likelihood as the probability of observed data D given a model
M with parameters θ,

L(θ) = P (D|θ,M) = P (x1, x2, .., xm|θ) (1)

and maximum likelihood as L̂ = θ̂ML = argmaxθ L(θ)

The Markov blanket of a node Xi, also denoted as
MB(Xi), is composed by the parents of Xi, the children
of Xi, and the other parents for these children. The Markov
blanket implies a set of nodes that probabilistically separates
Xi from the rest of the graph, and therefore includes all the
knowledge needed to infer any probabilistic information of Xi.
Given its graphical representation, a graph can be produced
completely by its Markov blankets, so many structure learning
procedure learn Markov blanket (directly or indirectly). A
blanket example can be observed on Figure 1.

BNs can be built manually by drawing the direct cause-
effect relationships between the variables using domain ex-
pert knowledge, or autonomously with structured learning
algorithms that elicitate the network structure completely
from input data. There are two major approaches for au-
tonomous structured learning: the score-based approach and
the constraint-based approach. The score-based approach as-
signs a score to each candidate BN to evaluate how well the
BN fits the data, typically measured with some version of the
likelihood of the data for that DAG, and then searches over
the space of DAGs for a structure with maximal score with
an heuristic search algorithm. Greedy search algorithms (such
as hill-climbing or tabu search) are a common choice, but
almost any kind of search procedure can be used. The global
distribution of a continuous variable Bayesian network model
is a multivariate normal and the local distributions are normal
random variables linked by linear constraints. These Bayesian
networks are called Gaussian Bayesian networks.

We propose to model a state-based Bayesian network which
represents the state of each variable at discrete time intervals;
as a consequence, the Bayesian network results into a series
of time slices, where each time slice indicates the value of
each variable at time t. Our approach involves the learning of
Gaussian Bayesian networks from real data using the follow-
ing score-based structure learning algorithms: Hill Climbing
(HC)[22] and Tabu Search (Tabu) from bnlearn, provided by
R as a package [23], [24]. Maximum Likelihood estimates are
used to fit the parameters of a Gaussian Bayesian network,
using the regression coefficients for each variable against its
parents. We have used the following scores, available from the
bnlearn package for HC and Tabu:

• The multivariate Gaussian log-likelihood score (loglik-g),
loglik = log L̂(θ).

• The corresponding Akaike Information Criterion score
(aic-g), with k = 1.

• The corresponding Bayesian Information Criterion score
(bic-g), with k = 1

2 log(D), where D is the number of
datapoints.

• A score equivalent Gaussian posterior density [25], [26]
(bge)
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aic-g and bic-g are computed as 2k ∗ nparams(V ) − 2 ∗
loglik(V ), with nparams as the number of parameters θ of
the model of V variables.

Fig. 1: Bayesian network example for eight variables. The
orange nodes are the Markov blanket of X6, MB(X6). The
distribution of X6 given its parents is P (X6|X3) ∼ N (θ0 +
θ1X3, σ

2), where θ0, θ1, σ2 are parameters learned/estimated
via maximum likelihood method. We factorize this BN as

P (X1, .., X8) = P (X1)P (X2)P (X3|X1, X2)P (X4|X1)

P (X5|X4, X6)P (X6|X3)P (X7|X6, X8)P (X8)

B. Random Forest

Random Forest (RF) [27] is a machine learning method that,
same as BN, can be applied to regression and classification
problems. The RF algorithm is a very well known ensemble
learning method which involves the creation of various deci-
sion trees models. Each tree is built as follows [28]:

1) Build the training set for RF by sampling the training
cases at random with replacement from the original data.
About one-third of the cases are left out of the sample.
This oob (out-of-bag) data is used to get a running
unbiased estimate of the classification error as trees are
added to the forest. It is also used to get estimates of
variable importance.

2) If there are M input variables, a number m << M is
specified such that at each node, m variables are selected
at random out of the M and the best split on these m
is used to split the node (decide the parent’s node and
leaves). The value of m is held constant during the forest
growing.

3) the best split of one of the m variables is calculated
using the Gini importance criteria.

4) Each tree is grown until there are no more m variables
to add to the tree. The algorithm continuous until ntree
constant number of trees were created. No pruning is
performed.

The RF algorithm can be used for selecting the most
relevant features from the training dataset by evaluating the
Gini impurity criterion of the nodes (variables).

25 0 25 50 75 100 km

Fig. 2: Map of the DACC’s stations located in Mendoza,
Argentina.

IV. OUR DATASETS

We worked with data from Dirección de Agricultura y
Contingencias Climáticas (DACC) [29], from Mendoza, Ar-
gentina. DACC provided data from five meteorological stations
located in Mendoza province in Argentina as depicted on
Figure2, which are listed below:

• Junı́n (33◦6′ 57.5′′ S,68◦29′ 4′′ W)
• Agua Amarga (33◦30′ 57.7′′ S,69◦12′ 27′′ W)
• La Llave (34◦38′ 51.7′′ S, 68◦00′ 57.6′′ W)
• Las Paredes (34◦31′ 35.7′′ S,68’◦25′ 42.8′′ W)
• Tunuyán (33◦33′ 48.8′′ S,69◦01′ 11.7′′ W)

Name Location Heigth (m)
Junı́n Junı́n 653
Agua Amarga Tunuyán 970
La Llave San Rafael 555
Las Paredes San Rafael 813
Tunuyán Tunuyán 869

Each location has temperature and relative humidity sensors.
The period we consider spans from 2001 until 2016. We create
a dataset summarizing for each day the average, minimum
and maximum of temperature and humidity, resulting in six
variables per location, per day.

Our datasets reflects the type of prediction we intended,
where the learned model should accurately predict the temper-
ature of a given day using thermodynamic information from
previous days. Each datapoint was constructed concatenating
the five thermodynamic variables of each of T previous days,
and labeled by the variable we want to predict at the right-most
position. In the experiments we considered T = 1, 2, 3, 4.

In part of our experiments, we analyze the impact of
humidity and temperature on the result. To achieve this goal,
we generated datasets containing only temperature information
(dacc-temp) and another one containing information on all the
sensors (dacc). Also, we considered another dataset containing
only data from the Spring season in Mendoza, Argentina
(dacc-spring), corresponding to: August, September, October
and November.
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V. EXPERIMENT SETUP

Our experiments involved several steps as depicted on
Figure 3. In order to train the machine learning models (RF
and BN), we split the dataset in train and testing sets. The first
one is used by the algorithms to fit the parameters to the data,
while the second one is used to validate the real behavior of
the models under unseen conditions. We setup to split 68% of
the first part of the dataset for the training phase and the rest
for testing purposes.

On the training phase we considered two setups: the orig-
inal dataset and one using the SMOTE. SMOTE involves
a combination of minority class over-sampling and majority
class under-sampling. We choose a three time over-sampling
of the minority class (an 300%), e.g if we have only 100
datapoints with frost days, the oversampling technique will
be create 300 frost datapoints and take another 300 from the
majority class. In this case, the days in T=0 with frost events
(meaning temperature below zero) were labeled in our dataset
prior to the use of SMOTE, to obtain a balanced train-set to
train the models. To achieve this goal, we used the R package
unbalanced [30].

For the Bayesian structure learning process we define a
white and a black list of variable relationships to model our
prediction problem, with the white list indicating the rela-
tionships that the structure learning algorithm must include,
and the black list indicating the forbidden ones. For our
prediction problem, the white list includes all edges running
between each thermodynamic variable during the previous
day into the corresponding variable at of the same node at
theprediction date, resulting in 5 edges for each day included
in the prediction, assuming only one prediction variable. The
black list instead, contains edges between variables at different
locations which correspond to the prediction date. All other
edges not included in either list are elicited from the data with
the structure learning algorithm.

We then train the Bayesian network models using HC and
Tabu from bnlearn R package [24], [23] with their default
values for all the selected scores and the following experiment
parameters:
• No restarts where considered for HC and Tabu.
• Equivalent sample size in BGe (iss) is 10.
• The prior φ matrix formula to use in the BGe score:

Heckerman method is used which computes the posterior
Wishart probability.

We use the randomForest R package [31] to implement RF
experiments. We tried different values of mtry (from 10 to 20
in steps of 1) and ntrees (500,1000,1500,2000,2500), where
mtry is the number of variables which are selected for the
decision tree split node, and ntree is the maximum number of
generated trees.

The rf-local configuration involves only the local variables
not neighbors, as the local configuration for BN. In this case
the mtry is setup by default as the squared root of the number
of input variables.

VI. RESULTS

In order to analyze how well the models predict the temper-
ature, we choose RMSE and r2 as regression metrics. Given

Data 
cleaningdata

trainset

testset

SMOTE 
process

balanced 
trainset

models

datasets

normal 
config.

Evaluate

ML 
algorithm

Random 
Forest 

Bayesian 
networks: 
structure 
learning and 
parameter fitting

Fig. 3: Experiment work-flow diagram.

Fig. 4: Confusion matrix for a binary classifier

the test set, Yreal is a vector with the real values from the test
set (the minimum temperature of one location that we want to
predict) and Ypred a vector with the predicted values from a
model. We use the following metrics to analyze the results:
• RMSE: root mean square error, RMSE =√

1
n

∑
(Ypred − Yreal)2

• r squared or Pearson coefficient of correlation.
We analyze how well the models perform in terms of frost

prediction by using a confusion matrix, which is a summary of
prediction results on a classification problem. The number of
correct and incorrect predictions are summarized with count
values and broken down by each class. We define a frost event
as below zero degree Celsius to build the confusion matrix, and
we consider the frost event as the positive class. We discretized
the values of Ypred and Yreal vectors to analyze the results as
a binary classifier.

Given a confusion matrix, Figure 4, for a binary classifier,
we can compute the following metrics:
• Sensitivity: TP

TP+FN also known as true positive rate,
probability of detection and recall. Higher values of
sensitivity indicates that we have a good predictor of the
positive class.

• Precision: TP
TP+FP reflects how accurately is the predictor

for predicting the positive class. The higher is this value
the lower the chances of false positives.

• Accuracy: (TP + TN)/(TP + TN + FP + FN)
• Specificity: TN/(FP +TN), probability of detection of

the negative class
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Fig. 5: Sensitivity by dataset in BN experiments
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Fig. 6: Precision of the best models selected by scenario
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Fig. 7: Sensitivity by Bayesian network structure learning
algorithm and score

location dataset days alg ntree mtry score rmse r2 sensitivity accuracy precision specificity

J unin dacc-temp 2 rf 1500 23 2.17 0.9 0.84 0.94 0.7 0.95

J unin dacc-temp 2 hc loglik-g 2.14 0.9 0.77 0.94 0.76 0.97
Agua 
Amarga dacc-temp 3 tabu bge 2.23 0.89 0.81 0.93 0.73 0.95
Agua 
Amarga dacc-temp 1 rf 2000 11 2.24 0.88 0.85 0.93 0.73 0.95

Tunuyan dacc 2 hc bge 2.59 0.87 0.85 0.91 0.87 0.94

Tunuyan dacc-temp 1 rf-local 2500 2.97 0.83 0.88 0.9 0.81 0.91

La Llave dacc 3 hc loglik-g 2.94 0.85 0.84 0.9 0.76 0.92

La Llave dacc 3 rf-local 1500 2.97 0.84 0.86 0.91 0.75 0.92
Las 
Paredes dacc 2 tabu aic-g 2.82 0.84 0.79 0.91 0.73 0.93
Las 
Paredes dacc-temp 1 rf 1500 15 3.08 0.81 0.79 0.91 0.72 0.93

Fig. 8: Table of the best models for each location in terms of
sensitivity and precision. All the models have used SMOTE
during the training phase

Figures 5,6,7 synthesize all the results we obtained from the
experiments and table 8 groups the best models per scenario.

The best results in terms of sensitivity and recall factors (for
Random Forests and Bayesian networks) is generated by the
application of SMOTE to the training set, as seen on Figure 5.
We have also noticed that, by applying SMOTE to the training
set, the training set reduces its size to 50% at most. We found
that better than increasing the amount of data to build a larger
training set, it is important to add meaningful information to
the problem.

The effect of SMOTE on the training results is to increase
the sensitivity while reducing precision, as it is observed on
Fig. 6. This is due to the fact that the algorithm learns by
repetition, so diversity (meaning a variety of frost events) is
reduced. An increase on diversity can be obtained using a
longer period of training data to provide a wider range of
frost events. However, historical data availability from weather
stations is not a general rule in practice.

Comparing the datasets, we noticed dacc-spring dataset has
the worst performance in average in terms of precision and
recall (which can be observed on Figures 5 and 6). As a
consequence, the data from the other seasons is relevant to the
learning process. Mendoza has a dry and desert-type weather
with high temperature span during the day. This could be the
reason why the dacc-temp dataset has performed better in most
scenarios (see Table 8).

The Bayesian Network experiments did not show statisti-
cally significant changes between the scores and the algorithms
applied to the input data, as depicted on Figure 7. This means
that there is no score and algorithm combination showing a
better than average result. To the contrary, local configuration
reduces sensitivity, so the consideration is to use multiple
sources in Bayesian Networks.

On the table shown on Figure 8, we select the best models
per scenario, and for each of them, the best Bayesian Network
and the best Random Forest model. When sensitivity is taken
into account, Random Forest models have a better prediction
capability than Bayesian Networks, however, Bayesian Net-
works stand out in terms of precision.

Finally, RF has a trend to select local data sources as the
best performing one (rf-local), while Bayesian Networks tend
to use local and neighbor data sources to improve prediction
performance. This happens because RF finds the local vari-
ables as the most important. In contrast, the structure learning
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approach assigns more score to the non-local configuration.

VII. CONCLUSION AND FUTURE WORK

In this paper we have created a forecasting system which
gathers environmental data to predict frost events using ma-
chine learning techniques. We have shown that our prediction
capability outperforms current proposals in terms of sensitiv-
ity, recall and accuracy. Furthermore, the proposed system can
be applied to decision support systems as a product.

In particular, the application of SMOTE during the training
phase has shown in both RF and BN models, an improved
performance in terms of recall. The best BN models were
competitive in terms of sensitivity and precision.

We also show that, in specific cases, the inclusion of neigh-
bor information helps to improve the accuracy of the forecast
model. In these cases, including the spatial relationships, there
is a resulting improvement in model performance. We hope to
contrast this approach with other scenarios in the future.

Our future work will include testing HC and Tabu using
different value configurations, by adding random restarts.
Since both are heuristic search algorithms, they stop when the
optimum value is found, even if it arrives to a local optimum.
Restarts forces the algorithms to change the space search
direction for the optimum, increasing the chances of arriving
to the global optimum. We are also interested on trying
others training phase configuration (cross-validation, other
oversampling techniques) and structure learning approaches.
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[3] M. Lehné, “Winemakers lose every year millions of dollars
due to natural disasters,” April 2017. [Online; posted
26th-April-2017]http://www.kit.edu/kit/english/pi 2017 051
winemakers-lose-billions-of-dollars-every-year-due-to-natural-disasters.
php.

[4] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:
synthetic minority over-sampling technique,” Journal of artificial intel-
ligence research, vol. 16, pp. 321–357, 2002.

[5] D. Brunt, Physical and dynamical meteorology. Cambridge University
Press, 2011.

[6] E. Eccel, L. Ghielmi, P. Granitto, R. Barbiero, F. Grazzini, and D. Cesari,
“Prediction of minimum temperatures in an alpine region by linear
and non-linear post-processing of meteorological models,” Nonlinear
processes in geophysics, vol. 14, no. 3, pp. 211–222, 2007.

[7] R. L. Snyder and C. Davis, “Principles of frost protection,” Long
version–Quick Answer FP005) University of California, 2000.

[8] J. J. J. J. Burgos, Las heladas en la Argentina. No. 632.1, Ministerio
de Agricultura, Ganaderı́a y Pesca, Presidencia de la Nación,, 2011.

[9] J. W. Smith, Predicting Minimum Temperatures from Hygrometric Data:
By J. Warren Smith and Others. US Government Printing Office, 1920.

[10] F. Young, “Forecasting minimum temperatures in oregon and california,”
Monthly Weather Rev, vol. 16, pp. 53–60, 1920.

[11] T. Prabha and G. Hoogenboom, “Evaluation of the weather research and
forecasting model for two frost events,” Computers and Electronics in
Agriculture, vol. 64, no. 2, pp. 234–247, 2008.

[12] X. Wen, S. Lu, and J. Jin, “Integrating remote sensing data with wrf for
improved simulations of oasis effects on local weather processes over
an arid region in northwestern china,” Journal of Hydrometeorology,
vol. 13, no. 2, pp. 573–587, 2012.

[13] R. J. Kuligowski and A. P. Barros, “Localized precipitation forecasts
from a numerical weather prediction model using artificial neural
networks,” Weather and forecasting, vol. 13, no. 4, pp. 1194–1204, 1998.

[14] I. Maqsood, M. R. Khan, and A. Abraham, “Intelligent weather moni-
toring systems using connectionist models,” NEURAL PARALLEL AND
SCIENTIFIC COMPUTATIIONS, vol. 10, no. 2, pp. 157–178, 2002.

[15] I. Maqsood, M. R. Khan, and A. Abraham, “Neurocomputing based
canadian weather analysis,” in Second international workshop on Intel-
ligent systems design and application, pp. 39–44, Dynamic Publishers,
Inc., 2002.

[16] I. Maqsood, M. R. Khan, and A. Abraham, “An ensemble of neural
networks for weather forecasting,” Neural Computing & Applications,
vol. 13, no. 2, pp. 112–122, 2004.

[17] L. Ghielmi and E. Eccel, “Descriptive models and artificial neural
networks for spring frost prediction in an agricultural mountain area,”
Computers and electronics in agriculture, vol. 54, no. 2, pp. 101–114,
2006.

[18] G. Ovando, M. Bocco, and S. Sayago, “Redes neuronales para modelar
predicción de heladas,” Agricultura Técnica, vol. 65, no. 1, pp. 65–73,
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tingencias climáticas,” April 2017. [Online 27th-November-
2017],http://www.contingencias.mendoza.gov.ar.

[30] A. D. Pozzolo, O. Caelen, and G. Bontempi, “unbalanced: Racing for
unbalanced methods selection,” 2015. R package version 2.0.

[31] F. original by Leo Breiman, R. p. b. A. L. Adele Cutler, and M. Wiener,
“Breiman and cutler’s random forests for classification and regression,”
2015. R package version 4.6-12.

http://www.kit.edu/kit/english/pi_2017_051_winemakers-lose-billions-of-dollars-every-year-due-to-natural-disasters.php
http://www.kit.edu/kit/english/pi_2017_051_winemakers-lose-billions-of-dollars-every-year-due-to-natural-disasters.php
http://www.kit.edu/kit/english/pi_2017_051_winemakers-lose-billions-of-dollars-every-year-due-to-natural-disasters.php
https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm
https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm

	Introduction
	Related work
	Empirical Methods
	Numerical simulation methods
	Machine learning methods

	Machine learning methods
	Bayesian networks
	Random Forest

	Our datasets
	Experiment setup
	Results
	Conclusion and Future Work
	Acknowledgments
	References

