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CoMapping: Multi-robot Sharing and Generation of 3D-Maps applied
to rural and urban scenarios

Luis F. Contreras-Samamé, Salvador Domı́nguez-Quijada, Olivier Kermorgant and Philippe Martinet

Abstract— We present an experimental study for the genera-
tion of large 3D maps using our CoMapping framework. This
framework considers a collaborative approach to efficiently
manage, share, and merge maps between vehicles. The main
objective of this work is to perform a cooperative mapping
for urban and rural environments denied of continuous-GPS
service. The study is split in to 2 stages: Pre-Local and Local.
In the first stage, each vehicle builds a Pre-Local map of
its surroundings in real-time using laser-based measurements,
then relocates the map in a global coordinate system using
just the low cost GPS data from the first instant of the map
construction. In the second stage, vehicles share their pre-local
maps, align and merge them in a decentralized way in order
to generate more consistent and larger maps, named Local
maps. To evaluate performance of all the cooperative system
in terms of map alignments, tests are conducted using 3 cars
equipped with LiDARs and GPS receiver devices in urban
outdoor scenarios of the École Centrale Nantes campus and
rural environments.

I. INTRODUCTION

Urban and rural outdoor scenarios can be a real challenge
to perform mapping, since environment complexity, such
as terrain roughness or lack of structure or dimensions
can affect negative the task performance. Other aspects
as access to unexplored area, dimension of the region or
communication constraints can be considered in the process.
In the case of constructing maps for large areas, the idea
of using a set of vehicles for building accurate maps in
a reasonable amount of time is feasible [1], because a
cooperative mapping extends the capability of a single robot
by sharing and merging data between group members. When
all the data is analysed and merged in a single computation
unit, the process is called centralized multi-robot mapping
[2]. On the opposite, the goal here is to have each mobile
unit build its own map and merge them upon rendezvous,
which is a decentralized process [3], [1], [4].

This approach is considered in this article in order to
obtain the 3D map of an urban environment. Two vehicles,
the ZOE and FLUENCE, work independently during the
exploration and define a meeting point to allow direct ex-
change of data (such as pose, size, limits and maps) during
the map reconstruction. The mapping of a rural scenario was
also considered, in which was used Lidar-measurement data
performed by GOLFCAR robot. The mapping was based on
multi-robot approach because the GOLFCAR path was split
in two, simulating two robots for the task (see Fig. 1)
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Fig. 1. Scheme of the CoMapping System for different cases

Following this direction, we present the development and
validation of a Cooperative Mapping framework (CoMap-
ping) applied to outdoor scenarios based on 2 stages, where:

• In the first stage named “Pre-Local Mapping”, each
platform constructs its own map by processing range
measurements from a 3D LiDAR for a six degrees
of freedom (6-DOF) movement and using GPS data
(GPS/GGA) only in the beginning for representing the
map in robot common frame.

• In the second stage named “Local Mapping”, the robots
define which part of their pre-local maps are shared with
the other robots based on a Sharing algorithm from the
CoMapping framework. Finally the registration process
is executed, including an intersecting technique of maps
to accelerate the process.

We also propose some indicators to analyse the alignment
process in both stages. Our proposal has been tested and val-
idated in real situations. The results include maps developed
with data acquired on the surroundings of the ECN (École
Centrale Nantes) campus for the urban environment and a
farm for the rural experiment, corresponding to the ALFS
project.

II. RELATED WORKS

An important topic of the mapping problem is the type of
representation used for the environment. Generally 3 types of
representations are encountered: feature, grid and topological
maps [5]. Our system uses two types of map representation:
3D point cloud (feature) for the pre-processing in Pre-Local
Mapping and Octree format (grid) for the exchange of maps
in the Local Mapping stage later.

In a situation of collaborative mapping, the registration
method from a single robot is really important. Several
registration applications use Laser Range-finder sensor to
build 3D maps [6] [7]. In that case, a high laser scan
rate compared to its tracking can be harmful for this task,
since it may lead to distortion in the map construction,
in which methods based on Iterative Closest Point (ICP)
[8] can be used to match laser returns for different scans.
Implementations, with 2-axis and 3-axis lidar and matches
geometric structures of a set of local point generated to
finally get a point cloud, were presented in [9]. In all those
cases, the proposed methods used batch processing to build



the maps with accuracy, hence are not applicable to real-
time map construction. Regarding our Pre-Local Mapping
stage, we reconstruct the map of the environment as a point
cloud in real-time using a 3-axis lidar by extraction and
matching of geometric features in Cartesian space based on a
modified version of the registration method from [10]. Then
our system uses GPS position data to re-localize the cloud
in a global frame.

Several methods have been proposed to merge maps. In
[2] and [11] techniques were proposed for 3D merging of
occupancy grid maps based on octrees [12]. Their merging
process refined the transformation estimate between maps by
ICP registration [8]. Specifically, in [11] an ICP version was
performed including an efficient technique to exchange maps
between robots in order to optimize the bandwidth resources
of a multi-robot network for decentralized cases. Those last
cases are experimentally studied in this paper.

A. Merging Indicators

Fig. 2. Transformation Matrices Relations

To evaluate the alignment post-ICP, we have first to
determine the transformation matrices between frames (see
Figure 2). Let us say the correct transformation matrix
T 1
exact (provided by Ground-Truth GPS data for instance)

is obtained by a matrix product, which is mathematically
denoted by (1).

Tmetrics =⇒ T ICP
exact = (T2

ICP )
−1 · (T 1

2 )
−1 · T 1

exact, (1)

where T2
ICP is the ICP alignment transformation matrix

and T 1
2 is the initial transformation estimate (provided by

GAA low lost GPS data for instance). T ICP
exact will represent

the transformation matrix used as metric to evaluate the
refinement. That matrix T ICP

exact will be denoted Tmetrics.
Very often, alignments are evaluated using Euler represen-

tation of 6 parameters. The matrix elements εx, εy and εz
could be used for the translation evaluation in the x, y, z
axis; and εroll, εpitch and εyaw for the orientation. However
in order to reduce the complexity of alignment analyse, we
propose two indicators: ε∗t and ε∗r . We can can have a better
idea of the orientation evaluation by re-expressing Tmetrics

in terms of an Axis-Angle representation (θ,u) as is shown
in (2). In the same way, translation evaluation can be reduced
to analyse only the module of the vector with components
εx, εy and εz (see (3)).

Tmetrics =

R3×3 εx
εy
εz

000 1

 , R3×3 → (θ,u) (2)

ε∗t =
√

(ε2x + ε2y + ε2z) , ε∗r = θ, (3)

TABLE I
INDICATORS: ICP ALIGNMENT EVALUATION IN SITUATIONS OF KNOWN

MAPS TRANSFORMATION

Table I shows the ICP alignment evaluation considering a
known initial transformation. We also made the comparison
between metrics before and after ICP. Analogously, in order
to obtain indicators for correct ICP refinement, it was deter-
mined that values of ε∗r 6 0.25 and ε∗t 6 6.14 are considered
as coherent merging results. In the real experiments where
the exact correct transformation is not known, we can use
the ICP matrix as a criterion of the error evaluation, in other
words: Tmetrics = T 2

ICP . In the following sections, our
metrics from (3) will be renamed as ε̄r∗ and ε̄t∗, associated
to experiments with unknown maps transformations.

III. METHODOLOGY

A. Pre-Local Mapping Stage
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Fig. 3. Architecture of Pre-Local Mapping Stage

In the Pre-Local Mapping stage, inspired by the work in
[11], its versatile configuration does not depend on a specific
LidarSLAM method. A modified version of 1 [10] was used
as LidarSLAM method for this article, considering its good
place in the KITTI ranking 2. Each mobile platform runs

1LOAM: https://github.com/laboshinl/loam_velodyne
2KITTI ranking: http://www.cvlibs.net/datasets/kitti/

eval_odometry.php

https://github.com/laboshinl/loam_velodyne
http://www.cvlibs.net/datasets/kitti/eval_odometry.php
http://www.cvlibs.net/datasets/kitti/eval_odometry.php


this Pre-Local Mapping node. The behaviour of this node is
illustrated in Figure 3, where P̂ represents the raw point cloud
obtained by a laser scan initially. The accumulated cloud
during each sweep k generates Pk, which is processed by
the Lidar-Odometry algorithm at a frequency around 10Hz.
The algorithm receives Pk and computes the lidar motion
between two successive sweeps, obtaining the transformation
Tk. Deformation in Pk is corrected using the estimated lidar
motion in order to use it at a frequency of 1Hz by the Lidar-
Mapping algorithm. This algorithm executes the matching
and registration of the non-distorted cloud onto a map. Both
algorithms (Lidar-Odometry and Lidar-Mapping) are solved
with a non-linear optimization, specifically the Levenberg-
Marquardt method [13]. Finally, using the GPS information
for identifying the initial vehicle pose, it is possible to
coarsely project the map of each robot into a common coordi-
nate frame. This projected cloud is denoted as the Pre-Local
map. This Pre-Local mapping node can work with different
kind of GPS data, either a Ground-Truth option (DGPS-
RTK) or an approach most economical, for example using
GPS-GGA type information (Global Positioning System Fix
Data).

B. Local Mapping Stage
The architecture of Local Mapping Stage is described in

Figure 4, where the process run on a robot referenced as “i”,
which shared its map with a robot “n”.
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Fig. 4. Architecture of Local Mapping Stage for one robot “i”, receiving
map data from another robot “n”.

1) Map Sharing Step: Here lies the key of the efficiency
of the collaborative framework [11]. Once the Pre-Local
Maps are generated, the robots have to exchange their point-
clouds to start the map merging task. However in many
cases, the sharing and processing of big map data can
penalize the team performance with respect to memory usage
and execution time. The sharing technique overcomes this
problem, since each mobile platform just transfers a certain
volume of its Pre-Local map to the other mobile units. Before
the transfer of the map Previous the transference, a map
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Fig. 5. Graphical representation of the Map Sharing technique (Top view
of plane XY). Aminx, Amaxx, Bminx and Bmaxx represent the point
cloud limits along the x-axis.

compression step is executed in each vehicle, using octree
structure from the octomap package [12] as a format of
compression, optimizing the car-communication.

An overview of this sharing technique is showed in Figure
5, in which the point clouds A and B are the Pre-Local Maps
from two different cars “i” and “n” respectively. Both cars
receiving simple data about the 3D limits of the maps (i.e.
bounding cubic lattice of the point clouds) and the sharing
node determines what part of its map will be sent to the other
car. These limits are expressed as two vectors: in the first one
Amin, the components represent the lowest displacement
from the origin along each axis in the point cloud; and in
the second one, Amax, is related to the point of highest
displacement.

Algorithm 1: Selection of point cloud to share with another
robot.

The pseudo-code of the map sharing step is depicted in
Algorithm 1. First of all, the functions as GetV alues() sort
in ascending order the array of components along each axis
of the vectors Amin, Amax, Bmin, Bmax and returns
the 2nd and 3rd values from this sorted array, named (V 2)
and (V 3) respectively. Then for each axis, the mean of (V 2)
and (V 3) establishes the Cartesian coordinates (Cx,Cy ,Cz)



of the geometric center of the exchanged region (S). This
region S is a cube whose edge length is 2L and the points
from A contained in this region are extracted to generate a
new point cloud Asel. At each iteration, the cube region is
adjusted until the number of points from Asel is less than
a defined threshold (maximum number of points desired to
exchange Npmax). Once the condition is accomplished the
transfer begins. All the sharing process is analogous on the
other robot “n”. Finally, encoding of Asel and Bsel in octree
format is done to reduce the usage of bandwidth resources
of the network.

2) Registration step with ICP: The intersecting volumes
of Asel and Bsel are calculated and renamed as Aint

and Bint, which are down-sampled in order to reduce the
time execution of the registration. In the feature descriptors
estimation step, the surface normals and curvature of these
input clouds are computed in order to improve the feature
points matching, which is the most costly step of the ICP
[14] [15]. Normal-pointclouds AintN and BintN generated
after descriptors estimation are aligned with the ICP algo-
rithm. The ICP refines an coarse alignment between clouds,
estimating the best transformation to align a source cloud
BintN to a target cloud AintN by iterative minimization of
a cost function. Corresponding pairs (b’, a’) from AintN and
BintN are determined iteratively. Least squares registration
is executed and the mean squared distance E is minimized
with respect to translation t and rotation R:

E(R, t) =
1

Npb’

Npb’∑
i=1

‖ a’i − (R b’i + t) ‖2, (4)

where Npb′ is the number of points b’.
The resultant rotation matrix R and translation vector t are

applied to source cloud BintN . Again the matching between
points from AintN and BintN is re-computed, until the
variation of the mean square error between two consecutive
iterations is less than a threshold. The final ICP refinement
for n iterations is obtained by multiplying the individual
transformations: TICP =

∏n
j=1 Tj . TICP is applied to Bsel

to align and merge with the original cloud A, generating
finally the Local Map AL. Similarly, this merging process is
executed individually in the other mobile unit.

IV. RESULTS

Our experiments considered 3 vehicles: a Renault ZOE,
a Renault FLUENCE and a GOLFCAR equipped with a
Velodyne VLP-16 3D LiDAR of 360◦ horizontal and 30◦
vertical field of view.

Fig. 6. ZOE (left), FLUENCE (center) and GOLFCAR(right).

A. Urban scenarios: ECN campus case
1) For one robot: First of all, we analysed the impact

of GPS quality on the 3D map generation of each vehicle.

For that, we took as reference some tests executed with the
FLUENCE car in Table I and we performed randomly a path
with the robot around the surroundings of the ECN campus.
The generated map was twice re-projected on a global frame
using two types of GPS data: a high-accuracy DGPS-RTK
and standard low cost GPS-GGA. The map with the 1st type
of GPS was assumed as referential map, using this DGPS-
RTK data as correct transformation matrix T 1

exact. On the
other hand, the map re-located with GPS-GGA information
was considered as a map with a coarsely placement, used to
fill the initial transformation T 1

2 . Results of ICP alignment
between those 2 maps were addressed and substituted in (1),
to obtain our metrics proposed in (3)

TABLE II
ALIGNEMNT EVALUATION: OUR INDICATORS VS BENCHMARK[2]

Robot ε∗t ε∗r ε∗t [2] ε∗r [2]
FLUENCE 1.781047 0.003453 3.005938 0.013086

The first two values in Table II corresponds to translation
and orientation evaluation. Regarding the analysis performed
in Table I, we have coherent alignment results using GGA
vs Ground-Truth data because the values comply with the
conditions ε∗t 6 6.14 m and ε∗r 6 0.25 rad. For the moment,
we only show our indicator results with indicators proposed
by [2], corresponding to the 3rd and 4th values in Table II.
According to [2], coherent alignments must be ε∗t 6 0.9 and
ε∗r 6 0.21, so their metrics showed only correct alignments
in rotation.

2) For multi-robot team: In that case, our proposed sys-
tem was validated considering two vehicles: FLUENCE and
ZOE car. For both robots, ENU (East-North-Up) coordinate
system was considered as external reference of the world
frame {W}, where y-axis and x-axis correspond to the North
and East respectively, but coinciding its origin with the GPS
coordinates [Longitude: -1.547963; Latitude: 47.250229].

Experiments were realized in urban outdoor environment
for an area of approximately 1000m x 700m. For the valida-
tion, the robots build clouds from different paths (see Figure
7), running pre-local mapping process in real-time.

Fig. 7. Paths followed by the FLUENCE (green one) and the ZOE (red
one) during experiments. Image source: Google Earth.

Results of the Pre-Local Mapping of this experiment are
shown in Figure 8, which also illustrates the “sharing region”
determined during the map exchange process in each robot.
Pre-Local maps from the FLUENCE and ZOE cars were



projected on the global frame using Ground-Truth and GGA
GPS data respectively. In order to simulate constraints on the
network bandwidth and memory usage of the robot-team, the
maximum number of points exchanged between cars was set
to 410000.

Fig. 8. Top view of unaligned Pre-Local Maps generated by FLUENCE
(green one), and ZOE (red one) projected on a common coordinates system.

In the decentralized case, a meeting point for the robots
was defined so they can transfer their maps and perform
individually the relative registration process assuming its Pre-
Local map as target cloud for alignment reference. Each
mobile unit runs an intersecting algorithm, then an ICP
refinement obtains an improved transform between maps.
Figure 9 depicts the intersection between the shared point
clouds during the ICP-alignment process for each robot.

(a) (b)

Fig. 9. Urban case: Alignment of the intersecting regions with ICP
refinement performed in FLUENCE vehicle, when it received the ZOE map
(a) Green and red maps represent the target and source clouds pre ICP, top
view (b) Green and blue maps represent the target and aligned source clouds
post ICP, top view.

TABLE III
RELATIVE ICP TRANSFORMATION FOR FLUENCE CAR

Cars x y z roll pitch yaw
F-Z 0.62208 -1.07885 5.03433 -0.00907 0.00294 -0.00232

ε̄r∗ = 0.009814 and ε̄t∗ = 5.186073 (Our indicators)
ε̄r∗ = 3.028573 and ε̄t∗ = 6.735261 (Jessup’s indicators [2])

Quantitative refinement results are shown in Tables III
and IV. ICP transformations were converted in an Euler
parametrization (x, y, z, roll, pitch, yaw) in meters and radi-
ans. Table III corresponds to the refinement process for the
FLUENCE car, when it received the map from ZOE, and that
map is aligned to the own pre-local map from FLUENCE.

TABLE IV
RELATIVE ICP TRANSFORMATION FOR ZOE CAR

Car x y z roll pitch yaw
Z-F 0.27346 0.48724 -6.05394 0.00346 0.00691 -0.00145

ε̄r∗ = 0.007873 and ε̄t∗ = 6.079665 (Our indicators)
ε̄r∗ = 3.023563 and ε̄t∗ = 6.814636 (Jessup’s indicators [2])

We can also see either in Table III or Table IV that
our proposed indicators confirm coherent merging results
because the values are in the range ε∗r 6 0.25 and ε∗t 6 6.14
established from Table I. On the other hand, indicators from
[2] do not work for this application because their results are
not even in the ranges of translation (ε∗t 6 0.9) or rotation
(ε∗r 6 0.21) established by themselves.

Fig. 10. Top view of final 3D Local Map of ZOE car.

Finally, Figure 10 depicts one of the final merging results,
specifically the final 3D Local map from the ZOE projected
on a 2D map in order to make qualitative comparisons.

B. Rural scenarios: farm case
For that case, our proposed system was validated using the

GOLFCAR robot, but in order to do a collaborative mapping
approach, the robot path was split in two for simulating two
mobile units (see Figure 11(a)). All data come from the rural
outdoor environment in an area of approximately 300m x
150m. The external reference of that world frame was also
parallel to ENU coordinate system, with a GPS origin given
[Longitude: -1.355357; Latitude: 46.809106].

Initial Pre-Local maps and “sharing region” for each
simulated robot are exposed in Figure 11(b). Those maps
were projected on the global frame using GGA GPS data in
both cases. For this scenario, the maximum number of points
was set to 50000. Similar to the urban case, each platform
mobile executes the intersecting algorithm and then an ICP
alignment (see Figure 12)

TABLE V
RELATIVE ICP TRANSFORMATION FOR GOLFCAR(1)

Cars x y z roll pitch yaw
G1-G2 0.1461 0.3570 0.5108 -0.01526 -0.04404 0.00138

ε̄r∗ = 0.046647 and ε̄t∗ = 0.640166 (Our indicators)
ε̄r∗ = 3.119865 and ε̄t∗ = 1.014078 (Jessup’s indicators [2])

Regarding the ICP transformation, quantitative alignment
results relatives to GOLFCAR1(G1) are shown in Table V.
All the ICP transformations are also expressed in Euler



(a) (b)

Fig. 11. (a) Paths followed by GOLFCAR1 (green one), GOLFCAR2
(red one) during experiments. Image source: Google Earth. (b) Top view
of unaligned Pre-Local Maps generated by GOLFCAR1 (green one), and
GOLFCAR2 robot (red one) projected on a common coordinate system.

(a) (b)

Fig. 12. Rural case: Alignment of the intersecting regions with ICP
refinement performed in GOLFCAR1, when it received the GOLFCAR2
map (a) Green and red maps represent the target and source clouds pre ICP,
top view (b) Green and blue maps represent the target and aligned source
clouds post ICP, top view.

representation. Table V exposes also ICP alignments results
with the respective indicators. Again indicators from [2] are
not applicable on this case; on the other hand our proposed
indicators confirm coherent merging results since values
accomplish the conditions for translation and rotation (ε∗t
6 6.14 , ε∗r 6 0.25). Finally, Figure 13 shows the final 3D
map reconstruction for this scenario.

Fig. 13. Top view of final 3D Local Map for the rural environment

Tests demonstrated the influence of working with inter-
secting techniques, because it allows accelerating the reg-
istration by reducing the number of points for processing.
In this context, experiments also showed the relevance of

the map sharing algorithm by optimizing the performance of
the robot-team by reducing the amount of data transferred
on the network. Finally, the CoMapping framework remains
an appropriate candidate to exchange and generate efficiently
large maps with an approach multi-robot suitable for different
kind of environments.

V. CONCLUSION AND FUTURE WORK

A cooperative framework for large scale maps applied
to urban and rural environments was presented. In this
framework, each robot generates its Pre-Local map using
3D-Lidar range measurements and executes individually the
merging process considering initially a coarse map alignment
with an optimum data exchange. The experimental results
highlight the efficiency and versatility of the framework
for cooperative mapping with three vehicles in different
scenarios. Indicators were also proposed to demonstrate the
success of the map merging process for the group of robots.
Future work will be addressed to analyse the Sharing step
and propose metrics to evaluate the map compression.
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