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Résumé
Les images hyperspectrales fournissent des détails de
la scène observée en exploitant les bandes spectrales
continues. Cependant, le traitement de ces images est
long à cause de leurs grandes dimensions. Donc, la sé-
lection des bandes est une pratique commune qui est
adopteé avant qu’un traitement soit fait. Ainsi, dans
ce travail une nouvelle approche non-supervisé pour la
sélection des bandes, basée sur le clustering et les ré-
seaux de neurones, est proposée. Une comparaison avec
quatre autres aproches de sélection de bandes montre
la validité de l’algorithme proposé.

Mots Clef
Sélection de bandes, non-supervisé, clustering.

Abstract
Hyperspectral images provide fine details of the obser-
ved scene by exploiting contiguous spectral bands. Ho-
wever, the processing of such images turns out to be
heavy, due to the high dimensionality. Therefore, band
selection is a common practice that has been adopted
before any processing takes place. Thus, in this work, a
new unsupervised approach for band selection based on
clustering and neural network is proposed. A compa-
rison with four other band selection approaches shows
the validity of the proposed framework.
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1 Introduction
Hyperspectral images (HSI) are composed of many
continuous bands of the electromagnetic spectrum [1].
Thus, a broad range this spectrum can be covered,
which provides lots of information about the scene un-
der analysis. Consequently, those images are useful to
Remote Sensing (RS), enabling tasks such as image
classification and target detection.

Nevertheless, a large amount of bands can bring pro-
blems for data processing, storage and transmission.
Moreover, the high dimensionality of HSI can cause
the curse of dimensionality [2]. Those facts may cause
difficulties in many RS applications, thus, dimensiona-
lity reduction is normally adopted.
When it comes to dimensionality reduction, feature
extraction (FE) is a commonly used method. Accor-
ding to the FE methodology, new features are created
by combining the original ones. The resulting features
lie in lower dimension, and still they keep much of
the original information. One very popular FS tech-
nique is Principal Component Analysis (PCA). Since
FS changes the original image information, it should
not be used in cases that demand the physical meaning
of individual bands [3].
Band selection (BS) is another approach for dimensio-
nality reduction. The dimension of the feature space
is decreased, whereas the original band information is
kept [4].
BS methods are classified in two types : supervised
and unsupervised. Normally, supervised BS approaches
yield better results compared to unsupervised ones
[5]. But, supervised methods need labeled training
samples, which are expensive to be collected. There-
fore, unsupervised methods are a wise alternative for
band selection.
Since unsupervised BS methods don’t have class labels
at their disposal, the band selection is made taking
into account the data structure [6].
K-Means algorithm is an unsupervised technique that
clusters data samples according to the data set struc-
ture in the feature space [31].
This paper proposes an easily implementable unsu-
pervised BS framework using K-Means clustering and
single-layer neural networks (SLN). Initially, the whole
data set is clustered by K-Means into two groups.
Then, a SLN is used to find a hyperplane that se-
parates those two clusters, and the bands linked to
the biggest and smallest coefficients of the hyperplane



equation are selected. This procedure is considered as
one iteration of the method, and two bands are selec-
ted at each iteration. If more bands are needed, ano-
ther iteration is started using either of the clusters just
generated, instead of the whole data set.
The contributions of this work are summarized as fol-
lows : i) It is a novel band selection framework ba-
sed on K-Means clustering and single-layer neural net-
works ; ii) We compare the proposed method with
other unsupervised band selection algorithms.
The rest of the paper is organized as follows : In Sec-
tion 2, a literature review is presented. Section 3 des-
cribes the proposed method. In Section 4, one can find
the dataset, classifiers used, the competitors and the
results. Finally, Section 5 provides a conclusion to his
paper.

2 State-of-the-art approaches
The proposed band selection framework is unsupervi-
sed, so only recent state-of-the-art unsupervised ap-
proaches are cited in this Section. In the literature,
one finds lots of works addressing BS following many
different perspectives and methodologies.
Due to the high HSI dimensionality, the different
classes present in the image may lie in manifolds em-
bedded in subspaces of the original feature space. Fur-
thermore, it is also possible to explore the sparsity of
the data set in order to find a more meaningful data re-
presentation. For example, in [14], the authors propose
a new method in which they look for salient bands.
The number σ of selected bands is user-defined. Then,
the band selection algorithm has two steps. Firstly,
β bands are selected by means clone selection algo-
rithm, which seeks to minimize the Euclidean distance
amongst elements of the same class, whereas maximi-
zing the distance of elements from different classes.
After that, if β < σ, those β bands already chosen will
serve as seeds to a Manifold Ranking (MR) algorithm.
MR sorts the remaining bands, and the most dissimi-
lar band is added to the β group. This step is repeated
until β = σ. In [15], the authors propose a BS frame-
work based on sparsity. Initially, the most represen-
tative bands are obtained according to the correlation
matrix, whereas the block-diagonal structure is measu-
red to segment bands into subspaces. Then, a method
for band selection based on trace LASSO and spectral
clustering is used. In [16], the authors propose a me-
thod that initially represents data instances as sparse
coefficient vectors by solving a L2-norm optimization
using the least squares regression (LSR) algorithm.
Then, a correct segmentation of band vectors is made
using the resulting LSR matrix with sparse and block-
diagonal structure. After that, a similarity matrix is
constructed by angular similarity measurement, and
then the size of the band subset is calculated by the
distribution compactness plot algorithm. In [17], the

authors state that all HSI bands can be represented by
a band subset. Thus, they propose a sparse represen-
tation of bands with row-sparsity constraint. Besides,
a dissimilarity-weighted regularization term is integra-
ted with the self-representation model, to avoid conti-
guous bands. The problem is solved by the alternating
direction method of multipliers, and the representa-
tive bands can be chosen. In [18], a fast and robust
self-representation framework to select a band subset
is proposed. It is assumed the separability structure
of the spectral bands, thus the problem may be seen
as non-negative matrix factorization. After that, an
optimizing convex problem is addressed and augmen-
ted Lagrangian multipliers are used to select the band
subset. In [19], the authors propose a BS framework
that can capture the inter-band redundancy through
low-rank modeling. Then, by using an affinity matrix
and concepts of data quality, the most representative
bands are selected. In [20], a BS method based on co-
lumn subset selection is proposed. By means of co-
lumn subset selection problem, it is possible to select
some bands maximizing the volume of the selected
subset of columns. The high dimensionality decreases
the contrast amongst bands, thus Manhattan distance
is used to get a higher quality in the BS process. In
[21], the authors propose a framework that removes
low-discriminating bands that normally need to be dis-
carded manually. Based on the spatial structure of the
data set, it is possible to determine which bands have
low-discriminating power. Then, a new clustering al-
gorithm is proposed in order to define the optimum
number of bands to be selected.

Another criterion that can be used in BS strategies
is the HSI data information analysis. For example, in
[22], the authors propose a framework that integrates
both the overall accuracy and redundancy. Thus, an
optimization problem using adaptive balance parame-
ter is devised to handle the trade-off between the ove-
rall accuracy and redundancy. Furthermore, an unsu-
pervised overall accuracy prediction method was adop-
ted. In [23], the authors propose a framework that
merges the concept of noiseadjusted principal compo-
nents with maximum determinant of covariance ma-
trix. A new index to measure the HSI quality is also
proposed, taking into account signal-to-noise ratios
(SNR) and correlation of bands. Based on the new
index, the authors devise an unsupervised band selec-
tion method, which considers the quality of the data
set as selection criterion. It selects bands with both
high SNR and low correlation. In [24], the authors pro-
pose a BS method based on the dissimilarity amongst
neighboring bands. They use an intermediary repre-
sentation named spectral rhythm, which can take ad-
vantage of a pixel sampling strategy, what ends up
improving its efficiency without reducing the selected
bands quality. In [25], the authors propose a method



based on information-assisted density peak index. It
takes into account the intraband information entropy
into the local density and intercluster distance to en-
sure cluster centers with a high quality. Besides, the
channel proximity and band distance are integrated
to control the local density compactness. The bands
with top-ranked scores may get clear global distinc-
tion, good local density and also high informative qua-
lity. In [26], the authors formulate the BS as a channel
capacity problem. After constructing a band channel
with the original bands. Then, some bands are selec-
ted by Blahut’s algorithm, which iteratively finds a
feature space that provides the best channel capacity.
Thus, neither band prioritization nor interband decor-
relation are required. Two iterative methods are de-
vised to find the best band subset, which avoid an
exhaustive search.
Using graph theory, in [27] the authors propose a
multigraph determinantal point process (MDPP). The
aim is to capture the structure amongst bands and find
the optimal band subset. For this, multiple graphs are
designed to capture the intrinsic relationship amongst
bands. Besides, the proposed MDPP is used to mo-
del the multiple dependencies in graphs, providing an
efficient search strategy for the BS process.
Evolutionary computation with optimization have
been largely used by BS methods. For example, in [9],
the authors propose an incorporated rank-based mul-
tiobjective band selection framework, to avoid conflic-
ting objective functions, such as Jeffreys-Matusita
(JF) and Bhattacharyya distances. During the proces-
sing, the spectral bands are transformed into binary
vectors, whose elements are subjected to flipping with
a certain probability. In [10], the authors propose a
framework that handles two conflicting objective func-
tions. One function is designed to represent the infor-
mation contained in the selected bands, by means of
entropy. The other function is set as the number of
selected bands. Both objective functions are optimi-
zed simultaneously by a multiobjective evolutionary
algorithm. In [11], the authors propose a framework
for band selection which employs two objective func-
tions using JF. During the search process, the spectral
bands are treated as firefly variables. In [12], a frame-
work for band selection based on fuzzy clustering and
swarm optimization in proposed. The authors devise
a modified fuzzy clustering method for band selection,
whose drawbacks are alleviated by swarm optimiza-
tion. In [13], the authors proposed a BS framework
based on memetic algorithms (MA). Firstly, MA is
used to select a subset of spectral bands. Also, a ob-
jective function is designed to select bands considering
both bands information and redundancy deduction.
The authors claim that this method is not only com-
putationally faster than exhaustive search approaches,
but also has comparable performances.

Finally, clustering techniques can also be used in
band selection methods. For instance, in [28] the au-
thors propose a framework that removes redundancy
amongst bands by means of clustering. Then, from
each cluster one representative band is selected. Af-
ter that, the bands are ranked according to their clas-
sification capabilities. In [29], the authors propose a
framework based on dual clustering that takes into
account the contextual information. For this, a novel
descriptor that reveals the image context is devised,
in order to select the representatives of each cluster,
taking into consideration the mutual effects of each
cluster.
This paper uses K-Means to generate clusters accor-
ding to intrinsic structure of the data set in the feature
space, taking into account only the spectral informa-
tion.

3 Proposed Framework
3.1 Definitions
Let C(0) be the whole data set corresponding to a hy-
perspectral image, whose elements are vectors xi ∈
R1×d that contain spectral signatures, where d is the
number of bands.
Let S be the set containing the selected bands, and G
the set with bands highly correlated to those in S. Let
A be the set that has the original spectral bands ak,
with k = 1, 2, ..., d. And let σ be a previously determi-
ned quantity of bands to be selected.
Let f : F −→ L be a single-layer neural network, and
F is the feature space comprised by A \ (S ∪G), and
L = {0, 1}. The input to f is a vector x and its output
is a scalar defined by

L̂ = f(z) = 1
1 + e−z

, (1)

with z = WTx + b, where W and b are the weights
and bias of the neural network, respectively.
According to (1), L̂ ∈ [0, 1], and to give it a binary
value, these criteria are used :

— if z < 0 =⇒ f < 0.5 =⇒ L̂← 0,
— if z ≥ 0 =⇒ f ≥ 0.5 =⇒ L̂← 1.

Therefore, the signal of z indicates whether an input
sample will be assigned to class 0 or 1.
Since the input data is normalized into [0, 1], the
weights wl ∈W , with l = 1, ..., p, in the equation

z = x1
iw1 + x2

iw2 + ...+ xp
iwp + b (2)

cause a strong impact in determining the signal of z,
and, consequently, the estimate L̂i for xi. In (2), p
represents the cardinality of A \ (S ∪G).
The cost function of f is cross-entropy. The training
is conducted by using stochastic gradient descent and
the back-propagation algorithm.



Lastly, let C(l)
g be a partition of C(0), where l is the

partition level, and C(l)
1 ∪C

(l)
2 ∪ · · · ∪C

(l)
g = C(0), and

C
(l)
p ∩ C(l)

q = ∅,∀p 6= q. There may be several levels,
that is, l = 1, 2, 3, . . . , and for each level the number
of partitions g is given by g = 2l.

3.2 Description
General view. The proposed framework begins
with an empty subset of selected bands, that is, S = ∅,
to which the bands selected from A will be added. At
the first iteration, C(0) is split by the K-Means algo-
rithm into two partitions, C(1)

1 and C(1)
2 . Then, we use

a single-layer neural network to find a hyperplane that
separates those two partitions. After that, two bands
are selected, and consequently discarded from the data
set. If more bands are needed, we keep repeating this
procedure in deeper levels.
As the proposed method is based on both clustering
and single-layer neural networks, we shall call it CSLN.
Its characteristics are described below.

Iterations. CSLN is an iterative band selection me-
thod. At each iteration, a binary classification problem
between K-Means-generated partitions C(l)

p and C
(l)
q

is to be solved by the function f . Since two bands are
selected at each iteration, one needs to repeat the pro-
cess until the desired number of bands σ is attained.
When σ is even, one needs σ/2 iterations. If σ is an
odd number, (σ + 1)/2 iterations are necessary, and
the first σ selected bands are kept.

Selection of bands. After the training of the neural
network, it is possible to give degrees of importance to
all ak ∈ A\(S∪G). As every element xl ∈ x is directly
linked to wl, for l = 1, ..., p, the magnitude of wl is a
indicator for the band al. In (2), the largest and the
smallest weights constitute the most important contri-
butions to the signal of z. Thus, the bands linked to
those weights are also considered the most important,
and, consequently they are added to the set S. The
feature space F can be updated by A \ (S ∪G).

Avoiding highly correlated bands. The bands of
a hyperspectral image are contiguous, which causes a
high correlation among neighboring bands.
Bearing this in mind, we adopt a method that avoids
the selection of highly correlated bands. For each band
ak ∈ F we construct a vector vk, whose elements are
the bands indices in a descending order in relation to
the correlation to the band ak. Thus, the following
procedure is adopted :

— At a certain iteration, a band ak is selected, so
S ← ak ;

— G ← avk(1), and G is, at the beginning, an
empty set ;

— After this iteration, the feature space is upda-
ted by A \ (S ∪G).

Figure 1 – Flowchart of the proposed BS framework.
At each binary clustering, a single-layer neural net f
is used to select the bands.

We emphasize that only ak ∈ S are the selected
bands. The bands avk(1) ∈ G are discarded.

Algorithm 1 gives the steps followed by the proposed
CSLN framework.

Algorithm 1 Proposed band selection framework
1: Input : C(0), A, σ, S = ∅ and G = ∅
2: for r = 1 : maxIterations do
3: Use the function f to find a hyperplane that

separates C(l)
p and C(l)

q clustered by K-Means
4: Select the bands ak ∈ A related to the largest

and smallest w ∈W
5: S ← ak, and G← avk(1)
6: Update the feature space F by A \ (S ∪G)
7: Return : S

Fig. 1 depicts the proposed framework. Initially, the
whole data set is split into two clusters by K-Means.
Then, a single-layer neural network f is used to find a
hyperplane that separates the clusters. This process is
repeated until the desired number of bands is selected.

4 Results
The results of the proposed method are exhibited in
this Section. Moreover, they are compared with other
band selection approaches by considering the accuracy
of two supervised classifiers, namely, Classification and
Regression Trees (CART) and K-Nearest Neighbors
(KNN). The input data are the selected bands.
The image used is the Indian Pines. It consists of
145× 145 pixels and 224 spectral reflectance bands in
the 0.4− 2.5 µm wavelength range. As for the ground



truth, we count on 16 classes, and they are used only
for classification comparison purposes.

4.1 Competitors
The performance of the proposed method is compared
with four other BS approaches.
The first method is also clustering-based [32], and it
will be referred to as WaLuDi. The second approach
uses both ranking and clustering for band selection
[33], and we will call it CR. The third competitor resorts
to band elimination with partitioned image correlation
[34], and it will be referred to as EM. Lastly, the fourth
competitor relies on information divergence, and this
method will be called ID [35].
As already stated in Section 3.2, our proposed method
will be referred to as CSLN.

4.2 Selected bands
The bands selected by the proposed framework are
displayed in Table 1. We have only the first 18 best-
ranked bands of our competitors, thus the analyses of
results are restricted to this number of bands.
The bands in Table 1 are sorted according to the order
they were selected. For example, at the first iteration,
the bands 2 and 42 were selected.
The results comparisons are made with different quan-
tities σ of selected bands, that is, σs = s × 3, with
s = 1, 2, 3, 4, 5, 6. Thus, for σ2 = 6, for example, the
first six bands of Table 1 are used.

Table 1 – The selected bands according to the order
of selection by the proposed method.

Selected bands 2, 42, 6, 39, 22, 58, 25, 62,
71, 101, 94, 151, 111, 203,
156, 183, 171, 215.

4.3 Results comparison
The classification results exhibited throughout this pa-
per are the mean values over ten runs. The standard-
deviation values are also displayed.
In Table 2, the results of the KNN classifier are shown.
The proposed method CSLN has the best results using
3, 6 and 9 bands. It is illustrated in Fig. 2 (a).
In Table 3, the overall results achieved by the
CART classifier are exhibited. The proposed frame-
work achieves the best results with 3 and 9 bands.
Fig. 2 (b) provides a visual perspective of the results.

4.4 Remarks about the results
KNN results are, in general, superior than that of
CART : 73.26% and 63.13%, respectively. This may
be attributed to the fact that CART splits the fea-
ture space into regions that correspond to the classes.
Therefore, if xi is found in a region corresponding to
a class α, for example, it will be classified as α, even

if it belongs to class β. Whereas, in this same situa-
tion, KNN would analyze the K nearest neighbors of
xi before assigning it a label. Consequently, KNN out-
performs CART when the class boundaries are highly
non-linear. Moreover, according to Tables 2 and 3, one
can notice that, in general, the accuracies get better as
more bands are used. Both facts are depicted in Fig.
3.
As for the band selection methods, using the KNN
classifier, the proposed BS framework achieves the best
results in three situations. Furthermore, by analyzing
the standard-deviation values of Table 2, one can no-
tice that the CSLN method have statistically better re-
sults. With regard to the CART classifier, our method
has the best accuracy with 3 and 9 bands. With 6,
12, 15 and 18 bands, CSLN has similar performance in
relation to its best competitors.

5 Conclusion
The fine spectral details provided by HSI allow for a
good characterization of objects in the scene. But, the
large amount of spectral information can also bring in-
conveniences in terms of processing and storage. The-
refore, this paper proposed a band selection framework
to decrease the image dimensionality.
The proposed unsupervised BS method is based on
K-Means clustering and single-layer neural networks.
It started by clustering the whole data set into two
groups. Then, a single-layer neural network was used
to find a separating hyperplane between the clusters.
The bands linked to the biggest and smallest coeffi-
cients of the hyperplane equation were selected. Then,
we kept repeating this procedure using the generated
clusters to select the desired number of bands.
By analyzing the results, one can see that the KNN
classifier outperforms CART for the Indian Pines
image. Moreover, the more bands, the better the clas-
sifier accuracy. We emphasize that 3 up to 18 selected
spectral bands were investigated. When it comes to
the proposed method, the best results were achieved
in three situations out of six using KNN. With CART,
the proposed method got the best results in two situa-
tions out of six.
With regard to the future works, we will investigate
other clustering algorithms and binary classifiers and
use them in our framework.
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(a)
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Figure 2 – Indian Pines image classification results by KNN classifier. In (a), KNN results. In (b), results achieved
by CART.

Table 2 – KNN results.

3 bands 6 bands 9 bands 12 bands 15 bands 18 bands
Method mean std mean std mean std mean std mean std mean std

CSLN 71.63% 0.66% 77.45% 0.63% 80.69% 0.38% 75.05% 0.66% 75.88% 0.65% 77.52% 0.37%
WaLuDi 65.12% 1.02% 64.65% 0.25% 73.19% 0.72% 78.05% 0.56% 76.25% 0.19% 76.50% 0.67%

CR 69.06% 0.52% 73.65% 1.03% 75.07% 1.43% 76.89% 1.07% 76.47% 1.14% 77.32% 0.22%
EM 64.92% 1.15% 66.86% 1.03% 73.54% 0.28% 74.54% 1.07% 78.92% 0.41% 80.50% 0.52%
ID 63.85% 079% 67.20% 0.22% 69.90% 0.18% 70.23% 1.16% 71.35% 0.47% 72.23% 1.34%

Table 3 – CART results.

3 bands 6 bands 9 bands 12 bands 15 bands 18 bands
Method mean std mean std mean std mean std mean std mean std

CSLN 53.51% 0.90% 64.49% 0.43% 68.56% 0.59% 68.36% 1.08% 69.41% 0.48% 70.85% 1.49%
WaLuDi 45.62% 1.00% 53.71% 1.23% 65.55% 0.95% 68.68% 0.28% 69.68% 0.75% 70.96% 1.15%

CR 52.03% 1.14% 65.66% 0.39% 66.93% 0.37% 68.29% 1.48% 70.46% 0.99% 72.25% 1.91%
EM 44.72% 0.93% 55.72% 1.04% 66.28% 0.52% 66.57% 1.24% 71.33% 0.76% 73.12% 0.51%
ID 49.07% 0.82% 53.16% 1.35% 58.85% 1.42% 62.43% 1.67% 63.37% 1.01% 67.06% 0.87%



Figure 3 – Mean results of all BS methods together.
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