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Evidential grid mapping, from asynchronous LIDAR scans and RGB
images, for autonomous driving

Edouard Capellier1,2, Franck Davoine1, Vincent Fremont1, Javier Ibanez-Guzman2, You Li2

Abstract— We propose an evidential fusion algorithm be-
tween LIDAR scans and RGB images. LIDAR points are
classified as either belonging to the ground, or not, and RGB
images are processed by a state-of-the-art convolutional neural
network to obtain semantic labels. The results are fused into
an evidential grid to assess the drivability of an area met
by an autonomous vehicle, while accounting for incoherences
over time and between sensors. The dynamic behaviour of
potentially moving objects can be estimated from the high-level
semantic labels. LIDAR scans and images are not assumed
to be acquired at the same time, making the proposed grid
mapping algorithm asynchronous. This approach is justified by
the need for coping with, at the same time, sensor uncertainties,
incoherences of results over time and between sensors, and the
need for handling sensor failure. In classical LIDAR/camera
fusion, in which LIDAR scans and images are considered to be
acquired at the same time (synchronously), the failure of a single
sensor leads to the failure of the whole fusion algorithm. On
the contrary, the proposed asynchronous approach can be used
to fuse contradictory information over time, while allowing the
vehicle to operate even in the event of the failure of a single
sensor. Experiments on a challenging use case highlight the
interest of the method.

I. INTRODUCTION

Long range 3D perception, and semantic understanding of
the environment, are key challenges for mobile robots and
autonomous vehicles. Although it has been proposed to fully
address, at the same time, both of these issues via a multi-
task convolutional neural network [1], such approaches are
not sufficient on their own. Convolutional neural networks
seem sensible to minimal distortions within an image, as
shown in [2], which justifies to only use them when paired
with highly reliable sensors, such as LIDAR scanners [3].
A fusion framework generating 2D evidential grids from
LIDAR scans, and segmentation results from a state-of-the-
art convolutional neural network, is thus proposed in this pa-
per. Evidential theory was adopted since this formalism can
efficiently cope with incoherences between multiple pieces
of information, while being able to model unobserved areas,
and to manage sensor uncertainties [4]. Furthermore, 2D ev-
idential grids are pertinent inputs for path planning systems,
as in [5]. As explained in Fig. 1, Dempster’s conjunctive rule
is used to fuse, over time, evidential Cartesian grids from
LIDAR scans, and image segmentation results projected on
the ground plane. As this system presents a modular design,
its components that process raw data, such as the neural
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Contact: name.surname@hds.utc.fr

2Renault S.A.S, 1 av. du Golf, 78 288 Guyancourt, France. Contact:
name.surname@renault.com

Fig. 1: Asynchronous fusion based algorithm. Images and
LIDAR scans are individually processed once acquired. An
evidential grid is then built from the sensor input, and fused
with the current global grid, or EgoGrid, based on the current
vehicle pose. Thus, no LIDAR/camera synchronization is
needed.

network, can easily be replaced. One of the specificities
of the proposed approach is its asynchronous behaviour:
the LIDAR scanner and RGB camera are not assumed to
acquire data at the same time. Instead, each sensor operates
freely: each sensor input is processed individually, and fused
with the grid representing the global state, or EgoGrid.
The resulting system is flexible enough to withstand sensor
failure. In the end, the main contributions of this paper are:

• A novel Cartesian grid mapping framework for LIDAR
sensors ;

• A novel evidential, asynchronous, fusion scheme for
semantic segmentation results generated by a convolu-
tional neural network, and LIDAR scans ;

The paper is organized as follows: section II gives an
overview of related work. Section III illustrates the proposed
evidential framework and fusion scheme. Section IV explains
how LIDAR scans and images are individually processed and
fused over time, and section V presents the behaviour of the
system in a challenging use-case: the failure of the camera
while being overtaken by another vehicle.



II. RELATED WORK
A. Semantic segmentation via convolutional neural networks

State-of-the-art results on several semantic segmentation
benchmarks have been achieved thanks to fully convolu-
tional neural networks. Chen et al. [6] proposed Deeplab-
v2: ResNet101 [7] is used as an encoder network with
additional atrous convolutions, applied with different rates
to detect details at multiple scales, and an additional CRF
as a post-processing step to smooth the segmentation results.
Deeplab-v2 reached 79.7% mIOU accuracy at the PASCAL
VOC-2012 semantic image segmentation task. This result
was overcame by PSPNet [8] in which feature maps initially
encoded by ResNet-50 are reprocessed at different scales
by parallel convolutional layers. PSPNet reached 85.4%
mIoU accuracy on the PASCAL VOC-2012 semantic image
segmentation task and 81.2% accuracy on the CityScapes
dataset [9]. This result was recently overpassed by DeepLab-
v3 [10] which reached 81.3% accuracy on CityScapes thanks
to atrous convolutions in cascade and, similarly to PSPNet,
the use of concatenated multi-scale features for the final
segmentation. After exploring several CNN architectures, we
decided to finetune DeepLab-v2 on additional driving scenes,
as Deeplab-v3 was released too recently, and PSPNet’s
training framework is not publicly available.

B. Evidential occupancy grid mapping

Yu et al. [11] originally proposed an evidential sensor
model to build polar occupancy grids from a Velodyne HDL-
64E LIDAR sensor. Based on the angular resolution and
beam divergence of the LIDAR sensor, a polar missed de-
tection rate is estimated, and a false alarm rate is empirically
defined. Hogger et al. [12] convert this mapping scheme to a
fully Cartesian mapping scheme, by approximating the false
alarm and missed detection rates by two ad hoc constants
without considering the characteristics of their sensor. The
authors of [11] also proposed an evidential mapping scheme
from stereo-vision in [13].

C. LIDAR-camera fusion for autonomous driving

The first satisfying fusion scheme involving LIDAR scans
and image segmentation results, relying on the use of a multi-
layer perceptron and fuzzy reasoning, was proposed by Zhao
et al. [3]. Recently, many new fusion schemes were proposed
thanks to the public release of the KITTI dataset [14], which
consists in calibrated and synchronized LIDAR scans and
images, and localization information, captured in driving
scenes. An evidential fusion framework between LIDAR
classifiers and camera classifiers was proposed for instance
in [15]. Li et al. [16] proposed to use a convolutional neural
network within a monocular SLAM framework, in order to
create a semantic map of a scene. Another recent proposition
is also to directly use convolutional neural networks as fusion
frameworks for LIDAR and camera data. Chen et al. [17] for
instance proposed to train a convolutional neural network on
multi-view data coming from the KITTI dataset, in order to
perform object detection in the 3D space. Since most fusion
schemes designed from the KITTI dataset benefit from the

fact that the LIDAR scans and images were simultaneously
acquired, they cannot address sensor failures. Instead, asyn-
chronous fusion can handle both sensor failures and timing
errors in a flexible way, as sensor inputs are simply processed
individually.

III. EVIDENTIAL FRAMEWORK FOR SENSOR
FUSION

In order to generate the final evidential grid, individual
grids for each sensor reading have first to be computed, and
then fused. The final goal is to know, at every moment,
whether a location in the perceived environment, i.e. a
cell of a grid, can be passed through by an autonomous
vehicle. A corresponding frame of discernment Ω was thus
defined as {D, ND}, where the two singletons D and
ND are propositions respectively indicating that a cell is
either drivable or non-drivable. It is then possible to derive
2|Ω| subsets from Ω, the set of which form the power set
2Ω = {∅, D,ND,Ω}. Each singleton of the power set is a
proposition. The empty set ∅ indicates that the cell is not in a
state that corresponds to the model, and Ω indicates that the
state of the cell is unknown. This explicit quantification of
ignorance is one of the specificities of evidential grids. Safer
decisions can be taken from such grids compared to grids
generated via a classical bayesian framework, as observed
in [18].

The amount of proof corresponding to each proposition of
the power set can be quantified via appropriate functions. It is
assumed that, in each generated grid, a direct quantification
of the belief is available. This quantification, or mass, is
computed via a Basic Probability Assignment (BPA) for
which a mass function m stands for.

Evidential theory offers powerful tools to fuse different
sources of information in a flexible way. Let m1, m2 be
two BPAs independently describing the state of a given
cell. Typically, m1 and m2 can come from different sensor
readings. Dempster’s conjunctive rule [4], described in Eq. 1,
can be used to compute a new joint mass m1,2:

m1,2(A) =
1

1−K
∑

B∩C=A,A 6=∅

m1(B)m2(C) (1)

K =
∑

B∩C=∅

m1(B)m2(C) (2)

The normalization by 1−K is a way to handle any conflict
between the states during fusion, by attributing it to the
empty set.

IV. FROM RAW LIDAR SCANS AND IMAGES TO
EVIDENTIAL GRIDS

Before being able to use the fusion scheme described
previously, evidential grids have to be generated. The fol-
lowing section describes how such grids can be produced
from LIDAR scans and images, and how they are fused.
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Fig. 2: Evidential mapping from a LIDAR scan. The state
having the largest mass is reported for each cell. The curved
arrow indicates the occurrence of backward propagation.

A. Generating evidential grids from LIDAR scans

To convert LIDAR scans into evidential grids, an approach
inpired by Yu et al.’s polar grid mapping [11] is proposed, to
create evidential scan grids in a Cartesian coordinate system.
The resulting grids can then be fused over time, based on
the odometry of the vehicle. Contrary to the work in [12],
the intrinsic characteristics of the LIDAR are still used to
accurately characterize the information available for each
Cartesian cell.

When converting a scan to an evidential grid, drivable
areas are those where only points corresponding to the
ground are detected, and non-drivable ones are those where
an obstacle is detected. The ground is represented by a
flat plane. Provided that the altitude and rotation of the
LIDAR relatively to the ground is known, each point can
be projected on this ground plane. This plane is then divided
into regular cells to build an evidential grid. To quantify the
amount of proof associated with each state in every cell, false
alarm and missed-detection rates are defined. A false alarm
happens if it is wrongly considered, due to sensor noise
for instance, that an obstacle is present. On the opposite,
a missed detection happens when an obstacle that is actually
present is not detected by the LIDAR, often because of its
size or reflectivity. Let αFA be the false alarm rate in a
given cell, no the number of points that hit this cell and
are classified as obstacles, ng the number of points that hit
the cell and are classified as ground points, and αMD(ng)
the corresponding missed detection rate. For each cell, the
corresponding BPA, denoted as ml, is computed as follows:

ml(∅) = 0 (3)

If no point has hit the cell:

ml(D) = 0,ml(ND) = 0,ml(Ω) = 1 (4)

If all the points that hit the cell are classified as ground:

ml(D) = 1− αMD(ng),ml(ND) = 0,ml(Ω) = αMD(ng)
(5)

If at least one point that hit the cell is classified as obstacle:

ml(D) = 0,ml(ND) = 1− αno

FA,ml(Ω) = αno

FA (6)

On the one hand, the false alarm rate is considered to
be the same for every cell. On the other hand, an unique
missed detection rate is computed for every particular cell,
as the number of laser impacts that can intercept a regular
cell depends on its position. To compute the missed detection

rate of a given cell, the maximum number of laser impacts
that can occur in this area is computed, and compared with
the actual number of points classified as ground points that
hit the cell. Given the beam divergence and the horizontal
angular resolution of a LIDAR, this maximum number of
hits can be deduced from the maximum angle between two
points belonging to the cell. For the sake of simplicity and
computational workload, the maximum angle is considered
to be, for every cell, the maximum angle formed by opposite
corners of the cell, named A and B, and the origin of the
grid, i.e. the origin of the LIDAR projected on the ground
plane, named O. Let o be the size of the diagonal of a cell,
b the distance between O and A, and a the distance between
O and B. This maximum angle γ can be computed from the
law of cosines, as follow:

γ = cos−1(
o2 − a2 − b2

−2ab
) (7)

Let lbd be the beam divergence of a LIDAR. The LIDAR is
assumed to be in a position such that any cell belonging to
the ground can only be hit by a single rotating laser. Thus,
for every cell, the missed detection rate can be estimated as
follow:

αMD(ng) = 1− ng · lbd
γ

(8)

Finally, backward extrapolation, given a maximum thresh-
old H , is performed: masses of cells classified as drivable are
propagated to cells where nothing is detected, but obstacles
taller than H cannot be present. Fig. 2 illustrates how
evidential grids are built from LIDAR scans.

B. Generating evidential grids from segmented images

Fusing evidential grids generated from a LIDAR and pixel-
wise segmentation results requires the later to be converted
into an evidential grid. Contrary to the work in [13], stereo-
vision is not used to estimate the depth of observed objects.
Instead, the segmentation results generated from a mono-
camera can be projected into a bird’s eye view, corresponding
to the ground plane in the LIDAR’s coordinate system, to
generate an evidential grid. The popular pinhole camera
model to represent the behavior of an undistorted camera.
Let K ∈ R3×3 be the camera intrinsic matrix. The extrinsic
matrix corresponding to the transformation between the
camera’s coordinate system and the LIDAR’s coordinate
system is supposed to be known. This matrix is composed of
T ∈ R3×1 and R ∈ R3×3, respectively the translation vector
and rotation matrix relating the two coordinate systems. Let
x = (X,Y, Z, 1)T be a LIDAR point. It can be matched to
a pixel y = s · (u, v, 1)T as follow:

y = K
[
R T

]
x (9)

Then, the RANSAC algorithm, fed with matched LIDAR
points and pixels belonging to the ground plane, can be used
to compute the perspective projection matrix Hpg ∈ R3×3,
between the ground plane in the LIDAR’s coordinate system,
and the camera plane. It is then possible to match each pixel
with a grid cell. To keep the computational workload low,



(a) Original image (b) Segmentation result (c) Projection on the ground

(d) Masses for the D proposition (e) Masses for the ND proposition (f) Masses for the Ω proposition

Fig. 3: Building process of an image-based evidential grid. The picture of a driving scene is segmented by DeepLab, before
being projected on the ground plane. The masses for D (drivable), ND (non-drivable) and Ω (unknown) are then derived
from the activations for each segmented class. In (d), (e), (f), the lighter a pixel is, the larger the mass is.

only the center of each cell of the resulting grid is matched
to a segmented pixel, instead of projecting every pixel in the
evidential grid’s coordinate system. Let xcell be the known
coordinates of the center of a cell, and ypixel, the coordinates
of the corresponding image pixel ; ypixel can be computed
as follow:

ypixel = Hpg · xcell (10)

Finally, the output of a fully convolutional neural network is
used to build a new mass function, for every grid cell. The
activation values are normalized, for every pixel mapped to
a grid cell, via the softmax function, and then used to build
a new mass function mc. Let Ωcnn = {A0, A1, ..., An} be
the set of classes the convolutional neural network has been
trained on. Let zp = (zp0 , z

p
1 , ..., z

p
n) be the corresponding

activation values generated during inference by the neural
network, for a pixel p. Let σ(zpi ) be the normalized activation
for the class Ai and the pixel p. Then:

σ(zpi ) =
exp zpi
n∑

k=0

exp zpk

(11)

σ(zpi ) ∈ [0, 1] and
n∑

i=0

σ(zpi ) = 1. Let ∪Bi∈B be the

union of all the sets, depicted as Bi, that belong to the B
set. It is assumed that there exists a partition of Ωcnn =
{AD, AND, AΩ} such that:

∪A∈AD
= D (12)

∪A∈AND
= ND (13)

∪A∈AΩ
= Ω (14)

A mass mp can then be computed for each pixel p mapped
to a grid cell, as follow:

mp(∅) = 0 (15)

mp(D) =
∑

Ai∈AD

σ(zpi ) (16)

mp(ND) =
∑

Ai∈AND

σ(zpi ) (17)

mp(Ω) =
∑

Ai∈AΩ

σ(zpi ) (18)

A new evidential grid is then obtained from the segmented
image thanks to Eq. (10), which is used to map each cell
of the grid with the corresponding segmentation results, and
mass values. Fig. 3 illustrates how the mass value for each
proposition, in each cell, is derived from the corresponding
segmentation result. As showed in Fig. 3(c), when objects
that do not belong to the ground are projected, they are
stretched, which is normal since their presence occludes the
ground in the distance. Since the information is meaningful,
the grids are kept as they are.



C. Asynchronous fusion of LIDAR data and image segmen-
tation results as an evidential grid

If the speed vector of the vehicle is available at any instant,
and if all the sensor readings are accurately timestamped,
grids corresponding to consecutive sensor readings can be
processed independently from the type of sensor that issued
the raw data. The grid obtained after fusion is called EgoGrid
(cf. Fig 1), and has a BPA denoted as meg for each cell.
At every new sensor reading, issued at a date ti, a single
evidential grid SensorGrid(ti) is generated based on the type
of sensor input (cf. Fig 1). After the ego-motion of the
vehicle is compensated in EgoGrid(ti−1), meg(Ω) is set to 1
for all the new cells that cover previously absent areas. Then,
SensorGrid(ti) can be fused with EgoGrid(ti−1) into a new
EgoGrid(ti) evidential grid via Dempster’s conjunctive rule.
Thanks to this framework, new sensors can easily be added to
the fusion process, and a faulty sensor can be ignored without
preventing the system from working in a degraded mode.
Furthermore, contradictions between successive frames at a
given locations are handled during fusion based on the mass
associated to each state, in each frame. However, objects that
have potentially moved between successive sensor readings
have to be accounted for. No strong dynamic model, for
any type of object, is presupposed. Instead, a decay factor is
used to force every cell to eventually tend to the unknown
state, similarly to [19]. Yet, as the types of the object
present in the scene are available when using DeepLab-v2,
an unique decay rate can be computed for each cell, based
on the likelihood of the presence of a moving object. Let
β be the decay rate associated with a cell of the current
EgoGrid. Four main types of objects, that have similar
dynamic behaviours, were identified: four-wheeled vehicles,
two-wheeled vehicles, pedestrians and fixed objects. Each
behaviour is associated with a typical decay rate: β4W , β2W ,
βP and βF . If no semantic information has been previously
provided about a cell of the EgoGrid, a default value is used
as the decay rate. Yet, if semantic information has been avail-
able for a given cell of the EgoGrid at previous dates, four
values, indicating the likelihood that the object detected at
this position correspond to one of those dynamic behaviours,
are computed. Those indicators are denoted as L4W , L2W ,
LP and LF . Typically, when DeepLab-v2 is used, L4W is
equal to the sum of the activations corresponding to four-
wheeled vehicles in the previous frames, for the given cell ;
L2W is equal to the sum of the activations corresponding to
two-wheeled vehicles in the previous frames ; LP is equal
to the sum of the activations corresponding to pedestrians
in the previous frames, and LF is equal to the sum of the
activations corresponding to fixed objects, such as the road,
or buildings, in the previous frames. Then, the final decay
rate for the cell is given by a weighted arithmetic mean:

β =
L4Wβ4W + L2Wβ2W + LPβP + LFβF

L4W + L2W + LP + LF
(19)

Before fusing EgoGrid(ti−1) and SensorGrid(ti), each cell
of EgoGrid(ti−1) is updated using β, as follow:

meg(A) = β ·meg(A), A ⊂ Ω (20)

meg(Ω) = 1− β + β ·meg(Ω) (21)

V. EXPERIMENTAL RESULTS

The evidential fusion scheme was implemented thanks to
the software library proposed by Fankhauser et al. [20].
It was tested on real-life driving data collected around
HeuDiaSyc Lab in Compiègne, France. The evidential grids
are built from a VLP-16 LIDAR and a single HD camera,
and the pose and speed of the vehicle were obtained from an
IMU. Popular LIDAR/camera datasets, such as KITTI, were
not considered for those tests, since one of the specificity
of the proposed method is that it is intended to work in an
asynchronous fashion. Evidential grids of (90×90)m2 are
built from the collected data, with cells of size (0.1×0.1)m2.
H was empirically set to 0.2m, αFA to 0.05, the default
value of β to 0.995, β4W to 0.80, β2W to 0.75, βP to
0.95 and βF also to 0.995. LIDAR scans were acquired at
10 Hz, and the camera was freely running at 30 Hz. The
extrinsic calibration matrix between the LIDAR’s coordinate
system and the camera’s coordinate system was estimated
from the semi-automatic tool offered within the Autoware
software stack [21]. The recent and fast algorithm described
in [22] was used to classify each LIDAR point as either
ground point or obstacle. DeepLab-v2 was finetuned on the
publicly available Mapillary Vistas dataset [23], consisting
in 25000 real-life driving scenes labelled into 66 object
categories, to ake it usable in our experiments. To speed up
and ease the finetuning of DeepLab-v2, the total number of
classes was reduced, by factorizing some of them. A class for
unlabelled objects in Mapillary Vistas was also reserved, and
included in the loss calculation as an unknown class. Doing
so, pixels are not forced to be classified into a meaningful
class. Thus, in this set up, AΩ ={unknown, sky}, as the
pixels depicting the sky are not supposed to be part of the
ground plane. AD ={road, road marking, crosswalk}, and
the remaining classes form AND. The classical stochastic
gradient descent with momentum was used for finetuning
DeepLab-v2, with the same parameters as in [6]. The loss
function was modified to handle class imbalance within the
dataset, by weighting the error for each pixel depending on
the target class thanks to median class balancing [24]. The
finetuning of DeepLab was performed during sixteen epochs,
until the validation loss started increasing. Three cases,
each highlighting specific advantages and drawbacks of the
proposed approach, are presented. They were generated from
the same driving sequence, but at different instants. The data
collection vehicle was driven in a peri-urban environment
and overtaken by another vehicle. During the overtaking,
the camera was permanently switched off, to simulate a
sensor failure. The full driving sequence is presented in
the supplementary elements of this paper. Additional test
sequences will be made publicly available.

A. Handling sporadic semantic segmentation errors

First, the robustness of the fusion scheme against inco-
herences between successive sensor readings, and especially
sporadic false alarms, is highlighted in Figure 4.



(a) Original image (b) Semantic segmentation

(c) SensorGrid(ti) (d) EgoGrid(ti−1)

(e) Resulting EgoGrid(ti) after fusion

Fig. 4: Robustness of the fusion against sporadic errors. As
displayed in (b), an object was wrongly detected by DeepLab.
However, the conversion and fusion of this information in
the evidential framework efficiently filtered the semantic
segmentation result.

In the semantic segmentation result, white indicates that
the class with the highest activation is ”road” ; grey that it
is ”road marking” ; blue that it is ”building” ; purple that
it is ”sidewalk” ; green that it is ”border”. In the grids, red
cells are those where the largest mass is for ND ; white
that the largest mass is for D ; black that it is for Ω ; the
green point indicates the origin of the LIDAR, considered
to be the vehicle’s position. In Fig. 4b, many segmentation
errors seem to come from the fact that the road is particularly
damaged, and was repaired many times. As a result, objects
are wrongly considered to be present, especially a building in
the bottom-left corner. In the SensorGrid, a blue rectangle
indicates the cells corresponding to this wrongly detected
building. The mass of the cells in this area is larger for Ω,
which indicates that even if the activation for the ”building”

class is the largest, the sum of the classes corresponding to
AΩ is larger. The segmentation result is thus very uncertain in
this area. This is not the case for the pixels wrongly classified
as ”side-walk”, but belonging in fact to the road, since small
obstacles are detected in SensorGrid in front of the vehicle.
The EgoGrid(ti−1) to be fused with the SensorGrid was
generated from 6 previous LIDAR scans and 7 previous
images. The resulting EgoGrid(ti) is marginally impacted, as
no obstacle is considered to be present in front of the origin,
even if a small area is considered to be unknown. This means
that the mass for the areas falsely considered to be non-
drivable in SensorGrid was not very high, compared to the
corresponding mass in EgoGrid(ti−1) for the D proposition.
This shows the interest of fusing all the information over
time, and to consider all the activations of the neural network.

B. Handling systematically contradictory information

(a) SensorGrid from an
image segmentation result

(b) SensorGrid from a
LIDAR scan

(c) EgoGrid generated at this position

Fig. 5: Result of systematic inconsistencies between Sensor-
Grids. The dark blue rectangle indicate the approximative
position of a side-walk.

If temporal fusion among successive frames, and the use
of mass values, can efficiently be used to handle sporadic
errors while processing sensor inputs, the behaviour against
systematic errors is not always as satisfactory. The ground
segmentation algorithm used in this experimental set-up is



mainly designed to detect ground planes. As such, roads
and side-walks are often both considered to be drivable in
a SensorGrid generated from a LIDAR scan. Nevertheless,
side-walk borders are efficiently detected, thanks to the gap
between roads and side-walks, as shown in Fig. 5. Side-walks
though remain uncertain, as the corresponding cells are not
consistently classified as non-drivable.

C. Handling sensor failures

(a) Last image before camera
failure

(b) Last segmentation result
before camera failure

(c) Last EgoGrid before camera failure

(d) EgoGrid after 1s (e) EgoGrid after 2s

Fig. 6: Handling camera failure. Blue rectangles indicate the
actual position of the overtaking car, and blue lines highlight
the border of the sidewalk.

The last case regards the moment when a camera failure
was simulated. SensorGrids can then only be generated from
LIDAR scans. As a result, the EgoGrid was updated less
often, and the decay was less applied. As shown in Fig. 6d,
this results in the conservation of outdated information,
coming from previous detections. However, the car is still
detected, and after a few more scans, the results become
more consistent, as seen in Fig. 6e. Finally, as the side-walk
borders are still detected, an autonomous navigation in such
a fail-soft mode would have still be possible.

D. Evaluation of the importance of handling moving objects

Yager et al. proposed in [25] to evaluate mass functions by
calculating entropy and specificity values. The effectiveness
of the proposed grid mapping scheme can be evaluated from
such indicators. Let Em be the entropy of the mass function
m, and Sm its specificity. Let the plausibility of a set A be
pl(A) =

∑
B|B∈A

m(B).

Em = −
∑
A⊆Ω

m(A).ln(pl(A)) (22)

Sm =
∑

A⊆Ω,A 6=∅

m(A)

card(A)
(23)

A high degree of specificity and low-degree of entropy indi-
cate tat the mass function is informative and non-ambiguous.
The mean entropy and specificity of the mass assignment
in the cells of an evidential grid are thus representative
indicators of the quality of the whole representation.

(a) Mean specificity for a fixed decay rate

(b) Mean specificity when computing the decay rate from β4W ,
β2W , βP and βF

Fig. 7: Comparison of the average specificity for a fixed
decay rate, and the proposed class-dependent decay rate

Those values were calculated for each frame of the se-
quence, in two cases: first, with a fixed decay rate of 0.98
for each cell as in [11], and then based on the values of β4W ,
β2W , βP and βF . The camera failure was simulated from the



frame 163. In both cases, the entropy was extremely low, and
below 0.015. Yet, as shown in Fig.7a and 7b, the specificity
is higher for this sequence when the class of the object
in each cell is considered, making the resulting grids more
informative. Indeed, the average specificity for the sequence
is 0.580 when a fixed decay rate is used, and 0.659 when
the decay rate is computed based on the activations of the
neural network.

VI. CONCLUSIONS

We proposed a grid-based asynchronous fusion algorithm
of LIDAR scans and RGB images. A new Cartesian mapping
scheme from LIDAR scans was proposed, and a way to
cope with possibly moving objects based on their semantic
class was evaluated. The use of an adaptive decay rate,
computed from semantic classification results, seems to be
an efficient way to generate a meaningful representation,
even when moving objects are present. Furthermore, the
interest of asynchronous fusion was highlighted. Processing
each individual sensor reading, and temporally aligning the
generated grids, is a flexible and efficient way to fuse
information, while allowing the fusion system to continue
working although one of the sensors has failed. Real-time
performances have not been reached yet, especially because
of the use of DeepLab-v2, and because each operation on
grid cells are done iteratively. The modular design of our
algorithm will however allow us to introduce more efficient
image processing systems in the future. The need for a
more robust LIDAR classifier, especially in non-flat areas
or in presence of side-walks, was also highlighted by our
experiments.
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